Proteins

Condensation reactions of amino acids

The peptide bond

Figure 3-3a Molecular Biology of the Cell (© Garland Science 2008)

The intermolecular interactions

Figure 3-4 Molecular Biology of the Cell (© Garland Science 2008)

Protein folding

Figure 3-5 Molecular Biology of the Cell (© Garland Science 2008)

Folding patterns

Figure 3-7 Molecular Biology of the Cell (© Garland Science 2008)

Folding patterns

Figure 3-7 Molecular Biology of the Cell (© Garland Science 2008)

β -sheets

Figure 3-8 Molecular Biology of the Cell (© Garland Science 2008)

Ramachandran plot

A **Ramachandran plot** (also known as a **Ramachandran diagram** or a $[\phi, \psi]$ plot), originally developed in 1963 by G. N. Ramachandran.

White regions : Sterically disallowed for all amino acids except glycine.

Red regions : allowed regions namely the a-helical and b-sheet conformations.

Yellow areas : outer limit

http://www.slideshare.net/damarisb/protein-structure-details

Folding process

Converging concepts of protein folding *in vitro* and *in vivo* Nat. Struct. Mol. Biol. **2009**, 16, 574 pdf

http://youtube.com/watch?v=meNEUTn9Atg

Domains

Figure 3-10 Molecular Biology of the Cell (© Garland Science 2008)

Domains in evolutionarily related proteins

Figure 3-19 Molecular Biology of the Cell (© Garland Science 2008)

4D structure

Figure 3-21 Molecular Biology of the Cell (© Garland Science 2008)

Actin filaments

Figure 3-25 Molecular Biology of the Cell (© Garland Science 2008)

Organization vs. disorganization

Figure 3-27 Molecular Biology of the Cell (© Garland Science 2008)

Large structures

Tomato bushy stunt virus

Figure 3-30 &31 Molecular Biology of the Cell (© Garland Science 2008)

Disulfide bond

Figure 3-35 Molecular Biology of the Cell (© Garland Science 2008)

Active site of an enzyme and catalysis

Multiple reactions

On/Off states of proteins

Figure 3-64 Molecular Biology of the Cell (© Garland Science 2008)

Protein kinase and kinome

Figure 3-65 Molecular Biology of the Cell (© Garland Science 2008)

Proteasome - ubiquitination

Figure 3-78 Molecular Biology of the Cell (© Garland Science 2008)

Post-translational modifications of proteins

Figure 3-81 Molecular Biology of the Cell (© Garland Science 2008)

Protein transmembrane rotors – ATP synthase

https://www.youtube.com/watch?v=3y1dO4nNaKY

Transmembrane protein - ABC transporter

Figure 3-78 Molecular Biology of the Cell (© Garland Science 2008)

Antibody (Ab)

Figure 3-41 Molecular Biology of the Cell (© Garland Science 2008)

Protein denaturation

Figure 3-6 Molecular Biology of the Cell (© Garland Science 2008)

Reading material

• The shape and structure of the proteins

- Next class:
- Membrane structure and membrane proteins
- Cell junction & cell adhesion

Good web source:

https://www.ibiology.org/research-talks/cell-biology/