AN INTRODUCTION TO (DISCRETE) DISTRIBUTIONS 221

eligible voter’s decision to cast a ballot is influenced by one (or a handful of)
other voter(s), we might think it less likely that it is influenced by many of the
other voters. If we draw a random sample (i.e., choose the survey respondents
at random), then the probability that any given respondent’s decision to vote
was influenced by another respondent’s decision is effectively zero.?3

We can use the Bernoulli distribution to describe the relative frequency dis-
tribution of the outcomes over “not vote, vote” in an Australian election. If,
for example, 96% of the electorate submitted valid ballots, then the relative
frequency distribution would look like Figure 10.4.
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Figure 10.4: Bernoulli Distribution, p = 0.04

The Bernoulli distribution provides an important foundation for building
more complex distributions, as we show below. It is useful for both statisti-
cal and theoretical models where one is interested in sequences of independent
binary choices.

A more detailed overview of the Bernoulli distribution can be found online
at http://mathworld.wolfram.com/BernoulliDistribution.html.

10.6.2 The Binomial Distribution
The PMF for the binomial distribution is defined by the equation:

Pr(Y = yln.p) = <Z)py<1 e (10.5)

331f this point does not make sense, please review a discussion of random sampling in a
good research design text.
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Table 10.8: Unanimous Court Decisions

Case 1 | Case 2 | Case 3 | No. of Unanimous Cases
D D D 0
U D D 1
D U D 1
D D U 1
U U D 2
U D U 2
D U U 2
U U U 3

where n > y, n, and y are positive integers and 0 < p < 1.3* The variables
n and y in equation (10.5) represent the number of cases (or observations) and
the number of positive outcomes, respectively. We recognize that this is the sort
of equation that makes many political scientists blanch and ask why they are
messing with such exotica! So let’s work it out via a concrete example, after first
describing the assumptions that underlie it. You can also flip back to Figure
10.1 to recall what an example of the binomial distribution looks like.

The binomial distribution can describe any discrete distribution with three or
more observations where (1) each observation is composed of a binary outcome,
(2) the observations are independent, and (3) we have a record of the number of
times one value was obtained (e.g., the sum of positive outcomes). As an exam-
ple, a data source might record the number of unanimous votes by a court (e.g.,
Epstein, Segal, and Spaeth, 2001) but not provide us with the individual vote
breakdown for each case. If we assume that the justices’ votes are independent
across cases, then the binomial distribution should be useful for describing the
DGP.

To keep the example simple, we will assume that the court rules on only
three cases per term. This is not terribly realistic, but one could extend it to
twenty-five, thirty, or however many cases there actually are per term. Limiting
the example to three keeps things tractable.

The first thing to do is to list the possible outcomes as ordered sets and count
them. Since there are two possibilities (divided decision, unanimous decision)
and three cases, there are 23 = 8 possibilities, as listed in Table 10.8.

To develop the binomial distribution, we start with the Bernoulli distribution,
which says that Pr(Y = 1) = p and Pr(Y =0) = 1 — p (see equation (10.3)).
We will assign a unanimous case (U) the value 1 and a divided case (D) the value
0. Since we have assumed that the three cases are independent, the probability
that there are zero unanimous (i.e., three divided) cases is the product of the

34Recall from the previous chapter that () = (,"7',

y y!(n—y)!

n, i.e., the number of combinations that involve choosing y elements of some type from n total
elements.

) is shorthand for choosing y from
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marginal probabilities that each case is divided, or Pr(Y = 0,0,0): (1 — p) x
(1—p)x (1—p) = (1—p)3. This matches equation (10.5) when n = 3 and y = 0.

The probability that there is only one unanimous case is the sum of the
products of the marginal probabilities over the three ordered sets that might
produce that outcome. That’s a mouthful, so let’s break it down. In Table 10.8,
D represents a divided decision and U represents a unanimous decision. The
table indicates that there are three different ways we might end up with one
unanimous decision. So we will need to sum the probabilities over those three
ways. What is the probability that we will observe only one unanimous case in
each manner it can be achieved? Again, we take the product of the marginal
probabilities. In the first row in Table 10.8 with only one unanimous case, that
product is p x (1 —p) x (1 —p). In the second row with only one unanimous case,
the joint probability is (1 — p) x p X (1 — p). Finally, the third row produces the
joint probability (1 —p) x (1 —p) x p. When we add those three together we get
3p(1 — p)?. This matches equation (10.5) when n = 3 and y = 1.

We determine the other outcomes the same way: we take the sum of the
joint probabilities, each of which is the product of marginal probabilities. Table
10.8 indicates that there are again three ordered sets that yield two unanimous
decisions. Thus, the probability that we observe two unanimous decisions is the
sum of the joint probabilities of each of those combinations: p x p X (1 —p) plus
px (1—p) x pplus (1 —p) x px p, or 3p>(1 — p). This matches equation (10.5)
when n =3 and y = 2.

Finally, there is only one ordered set that produces the outcome of three
unanimous decisions. So the probability that there are three unanimous deci-
sions is the joint probability p x p x p = p®. This matches equation (10.5) when
n=3and y = 3.

Equation (10.5) is simply a general representation of the sum of the joint
probabilities that we discussed in the preceding paragraphs as individual equa-
tions. To get a graphical sense of what the binomial distribution looks like,
please point your browser to Balasubramanian Narasimhan’s “Binomial Prob-
abilities” applet, available at http://www-stat.stanford.edu/~naras/jsm/
exampleb.html.

There are some statistical routines that rely on the binomial distribution (e.g.,
bitest in Stata), and the binomial distribution can be assumed in generalized
linear regression models. Though these tests are common in other fields, they
are not used widely in political science.

Some readers might be interested in a more detailed presentation of the bi-
nomial distribution. Gill (2006, sections 1.4.3, 6.2, 7.1.3, 7.1.4), Lindsey (1995,
pp. 13-14, 99-201), and King (1989, pp. 43-45) are great places to start. A
thorough technical overview is available online at http://mathworld.wolfram
.com/BinomialDistribution.html.


http://www-stat.stanford.edu/~naras/jsm/example5.html
http://www-stat.stanford.edu/~naras/jsm/example5.html
http://mathworld.wolfram.com/BinomialDistribution.html
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10.6.3 The Multinomial Distribution

The multinomial distribution is an extension of the binomial distribution to
cases where more than two mutually exclusive (and collectively exhaustive) out-
comes can occur. Whereas the binomial distribution describes the number of
times Y = 1, where Y is a random variable described by a Bernoulli distribu-
tion, the multinomial distribution counts the number of times each one of k
different outcomes happens, where each outcome happens with probability p;,
i € {1,...,k}. Since the outcomes are mutually exclusive and collectively ex-
haustive, all these probabilities sum to one. Let Y; represent a random variable
that counts the number of times outcome i occurs. If there are n independent
events, then Y; € {0,1,2,...,n} for all 4, and Zle Y; = n. In this case we can
write the multinomial PMF for non-negative integers y1, ..., yx as

0 otherwise.

(10.6)

Though the multinomial distribution is not often invoked in applied statistical
work in political science, it can be invoked as one of many possible distributions
when using what is called the generalized linear model (GLM) to estimate a
regression equation (i.e., a statistical model you will learn about). The GLM
has not yet become popular in political science, but see Gill (2001) for an intro-
duction by a political scientist.

Readers interested in more thorough and technical discussions should examine
the MathWorld entry at http://mathworld.wolfram.com/MultinomialDis
tribution.html or Zelterman (2004, pp. 8-9).

_nl Tk ko=
Pri(i=y)Nn..nYe=yr)) = { Y1l yx! [Ticipi" whend i yi=mn,

10.6.4 Event Count Distributions

Many variables that political scientists have created are integer counts of events:
the number of bills passed by a legislature, the number of wars in which a country
has participated, the number of executive vetoes, etc. Event counts frequently
exhibit frequency distributions consistent with those produced by a handful of
well-known probability distributions.

10.6.4.1 The Poisson Distribution

The Poisson distribution is named after the French mathematician Siméon Denis
Poisson. Its PMF can be written as

/’[‘y
y! x er’

Pr(Y =ylu) = (10.7)

where p > 0 is the expected number of events, y is a positive integer representing
the number of events observed, and the variance, o2, is equal to the mean, y.%°

35You will also see this equation written as Pr(Y = y|u) = e*”“ﬁ. Recall that e # = L.
y! e
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The Poisson has a location parameter (u) but it does not have a separate scale
parameter.

The graph of the Poisson distribution, displayed in Figure 10.2 above, reveals
an asymmetry: these distributions tend to have a long right tail. Note, however,
that as the mean of the distribution rises, the asymmetry of the distribution
declines.

Whence comes equation (10.7)? The goal is to produce a PMF that describes
the number of times one observes zero events, one event, two events, 3 events,
etc., over a fixed period of time (e.g., wars per century). The Poisson distribution
describes event counts produced by a process that meets three criteria: integer
count, independence, and a known mean. We discuss each in turn.

First, the individual events must be countable as whole numbers given a
period of time, and it cannot be possible to count the non-events. The inability
to count non-events may seem odd, but this is actually quite common. For
example, we might want to observe the number of wars countries entered into
during the twentieth century. We can easily count this using whole numbers.
Note, however, that it is nonsensical to count the number of non-wars into which
countries entered during the twentieth century.?® Recall that the Bernoulli and
binomial distributions involve events with binary countable outcomes: we can
count the events and the non-events. When we can only count the events, and
not the non-events, the Poisson distribution might be useful.

Second, the events must be produced independently from one another over
the period of time one is counting them. Consequently, the probability that
the count is, say, two, is computed independently of the probability that the
count is, say, five.3” Third, the average frequency of events in a given period
(1 in equation (10.7)) must be known. When used in statistical analyses one
can determine p from one’s data, but this requirement explains why we use the
notation Pr(Y = y|u) in equation (10.7).

A classic example of an event count generated by a Poisson process is the
number of traffic accidents at a given intersection over time (e.g., the number
of accidents per quarter year). Five years of quarterly data on the number
of accidents at a given intersection will often prove to be Poisson distributed.
Yet a large number of accidents in any three month period (say four or five)
could lead people to conclude that the intersection is dangerous—which is to
say that the accidents are mot independent. The Poisson distribution—which
assumes independence of events—shows that even when we assume that events

36Though one can, and scholars do, count the number of years that contain no wars between
the countries in a particular pair of countries (a dyad).

37This implies that one adds all the probabilities of each count’s occurring to get the
probability that some number occurs (i.e., the probability that some count in the sample
space occurs, which is 1). In fewer words, if S is the event that greater than or equal to 0
events occur, 1 = Pr(S) = % + 17—:” + % +...=eHY2, *:—,1 Since the sum is the
definition of (and Taylor series for) e”, we see that the RHS of this does equal 1. This is
actually why the e is present in the PMF: it is a normalization factor, to ensure that when
one sums over all possible outcomes (i.e., all possible counts), one gets 1, as one must for a
PMF.
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are independent of one another we will still randomly get clusters of relatively
large numbers of events. Such clustering of events will be unusual (i.e., have a
low frequency), but we should be reluctant to accept a single large cluster as
sufficient evidence to infer that the events were not independent. Thus, if one
conducts a data analysis and finds that the data fit the Poisson distribution,
one can conclude that the accidents were likely produced randomly. If they are
not Poisson distributed, then perhaps the light at the intersection or the speed
limit needs to be evaluated to determine what systematic factor is producing
the accidents.

That said, many integer counts of events that interest political scientists are
expected to be related to one another by theory. For example, it seems unlikely
that bills passed in a legislature, unanimous court decisions, wars, or executive
vetoes are independent of one another. And if we assume that the presence
of one event either raises or lowers the probability of another event in a given
period of time, then a variable measuring that event type would not be produced
by a Poisson process.

For a lucid and detailed discussion of the Poisson distribution, visit Bruce
Brooks’s entry at his “Acquiring Statistics” site: http://www.umass.edu/wsp/
statistics/lessons/poisson/.

10.6.4.2 The Negative Binomial Distribution

The Poisson distribution describes the distribution of event counts for rare ran-
dom events. The negative binomial, on the other hand, provides one with the
expected event count prior to the occurrence of a set number of non-events. Be-
cause it is built on the binomial distribution, the DGP is one where events have
binary countable outcomes (i.e., once we know how many non-events occurred,
we can determine the number of events by subtracting the number of non-events
from the total number of trials).
The PMF for the negative binomial distribution can be written as

Pr(Y =ylr,p) = (y * ; - 1>py(1 -p), (10.8)

where y is the number of observed events (typically called “successes”; e.g.,
presidential vetoes), r is the number of observed non-events (typically called
“failures”; e.g., presidential signatures on bills) over y + r opportunities (or
Bernoulli trials), and p is the probability of any particular event (“success”;
e.g., veto). The distribution describes the number of events (successes, vetoes),
y, prior to observing the rth non-event (failures, signed bills).3® We should note
that what one calls an event (success) or non-event (failure) is arbitrary, and
one can frame this distribution as describing the number of successes (vetoes)
before a set number of failures (signed bills), as we have done, or the number

38Zelterman (2004, pp. 13-14) provides a proof that this PMF sums to 1.
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of failures (vetoes) before a set number of successes (signed bills). To switch to
the alternative formulation, swap p and 1 — p in equation (10.8).

The combination in the PMF, (y+;71), arises because the negative binomial
distribution represents the probability of observing r observations of one out-
come (call it “signs the bill”) and y observations of the alternative outcome (call
it “veto”) in y + r observations, given that the (y + r)th observation has the
value “signs the bill.” That is a mouthful, so let’s break it down.

The negative binomial distribution is built from the binomial distribution,
which was built on the Bernoulli distribution. As you know, the Bernoulli dis-
tribution concerns the probability of the outcomes for a binary variable, and in
our example the binomial distribution describes the number of “veto” outcomes
in a series of independent Bernoulli trials. The negative binomial describes a
variable that counts the number of vetoes prior to the rth signed bill, which
could be interpreted as the number of successes before the rth failure or the
number of failures before the rth success. Lethen3? offers the following succinct
description, which employs the second of these interpretations:

The negative binomial distribution is used when the number of suc-
cesses is fixed and we’re interested in the number of failures before
reaching the fixed number of successes. An experiment which follows
a negative binomial distribution will satisfy the following require-
ments:

1. The experiment consists of a sequence of independent trials.
2. Each trial has two possible outcomes, S or F.

3. The probability of success, IT = P(S), is constant from one trial
to another.

4. The experiment continues until a total of r successes are ob-
served, where r is fixed in advance.

When would a political scientist suspect that a variable she is studying was
produced by a negative binomial DGP? One possibility is the veto example
considered above. Another possibility is a study of international conflict focused
on the decision to use force in the presence of international disputes. Students
of international politics often study event counts of international uses of force.
Imagine that we know that the incidence of uses of force over the past two
centuries is .01 (i.e., the probability that any given country uses force in any
given year is .01). We can now use equation (10.8) to calculate the PMF for
various counts of the use of force. That is, once we select a year in which to
begin our observations we can use it to determine the probability that a given
country will use force for the first, second, third, etc. time, in the first, second,
third, etc. year of observation.

39«The Negative Binomial Distribution,” available online at http://stat.tamu.edu/
stat30x/notes/node69.html.
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To be concrete, let’s calculate the probability that the second use of force
occurs in the sixth year, so that there are four years without force. If we call
war a failure and peace a success, then equation (10.8) states

4421
P(Y = 4]2,0.01) = ( + P )0.012(1 —0.01)*

= (Z) % .0001 x 0.9606

5
=5 x 0.00009606

= 0.00048.

We could perform the same calculations for the probability that the third use of
force occurs in the seventh year, etc., but that would get tedious very quickly.
And since we have the PMF defined, there is no need to do such calculations as
we can instruct a computer to do them if we ever need to calculate several.

The PMF for the negative binomial distribution looks similar to the PMF for
the Poisson distribution, as we see in Figure 10.5.
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Figure 10.5: PMF of Negative Binomial Distribution, n = 3,5,7,9;p = 0.5

One of the key features of the negative binomial distribution relative to the
Poisson distribution is that the mean and variance are not constrained to equal
one another. The variance is greater than the mean for the negative binomial
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distribution, and because the negative binomial distribution has two indepen-
dent parameters, one can set both the mean and the variance separately.

King (1989) brought the negative binomial distribution to the widespread
attention of political scientists, and it has been primarily used as a model of
event counts when the mean and the variance of the sample data are not equal.*’
In this sense, Poisson regression models tend to be viewed as special cases of
negative binomial statistical models.*!

For a thorough technical overview of the negative binomial distribution, see
http://mathworld.wolfram.com/NegativeBinomialDistribution.html.

10.6.5 Why Should I Care?

Political scientists are often interested in concepts that can be represented as
binary outcomes, ordinal scores, or event counts. Even if one does not intend to
use statistics to test hypotheses it is still useful to have an understanding of the
difference between these types of distributions. In other words, thinking about
distributions leads one to invest in theoretical speculation about what might
lead a concept or variable to hold different values in different cases. Another
way of saying the same thing is that theory building for the purpose of explain-
ing why different outcomes occur in different cases is equivalent to speculating
about a DGP. Further, if one does plan to use statistical hypothesis testing in
one’s empirical work, then knowledge of discrete distributions and their DGPs
is critically important.

10.7 EXPECTATIONS OF RANDOM VARIABLES

We opened this chapter by discussing what a random variable is, but thus far we
have mostly discussed how these variables are distributed. This, as we hope we
have made clear, is undoubtedly important, but there are still many occasions
when one desires more specific knowledge regarding a random variable. For
instance, its expected value, its variation around its mean, and one’s expected
utility when it is a function of the variable are all useful to political scientists.
To obtain this knowledge, we must deal with the expectation of the random
variable.

The expectation of a random variable X, denoted Ex[X] or simply E[X]
when no confusion (in the presence of more than one variable) is possible, is the
weighted average value that the random variable can take, where the weights
are given by the probability distribution.

Let’s consider a common example one encounters in game theory and ex-
pected utility theory. As noted in the previous chapter, game theorists denote a

400r when a dispersion parameter in Poisson regression models suggests that it is unlikely
that the dependent variable was drawn from a Poisson distribution with equal mean and
variance.

41The log-gamma distribution is an alternative to the negative binomial that is used widely
in other fields.
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lottery any outcome that is uncertain, including a lottery of the kind US states
advertise, such as Powerball. A lottery consists of a set of values of outcomes
and a corresponding set of probabilities that each outcome might occur. In other
words, it is a probability distribution over values of outcomes, and the outcome
of the lottery is a random variable.

We compute that variable’s expectation by weighting (multiplying) each value
by the chance that it occurs, and summing over all values. So, if the lottery has
potential outcomes $0, $1,000, and $1,000,000, and these occur with probabili-
ties 0.9998999, 0.0001, and 0.0000001 respectively, then the expectation of the
lottery’s outcome is (0.9998999-$0)-(0.0001-$1, 000)+(0.0000001-$1, 000, 000) =
$0 + $0.1 + $0.1 = $0.20, or twenty cents.

This is known as the expected value of the lottery. In general, if a discrete
random variable X takes on values x;, then the expected value is calculated for
X according to the formula*?

Ex[X] = Zmi(Pr(X = z;)). (10.9)

Note that the complex part of equation (10.9) is the Pr(X = ;) term.
For the example we just did that term was provided for each value z;. Let’s
try a slightly more complicated example before moving on, one in which the
probabilities are dependent on, and specified for, the values. To do this, we’ll
use the Poisson distribution we introduced in the previous section.

Imagine that you are interested not in the distribution of event counts but
rather in how many events one should expect to see. Recalling that Pr(X =

th

xi|p) = =, we can compute this via equation (10.9)

. . =t = i
Ex[X]= Zz(Pr(X =1)) = Zzi' o —e ”27
i i=0 i=0

This doesn’t give us an answer yet, but we can get there by expanding out the

sum
el i—1

w'i pi P W
_— = O _— = = —_— = u.

=0

In the first step we pulled the ¢ = 0 term in the sum out, which is zero. In the
second step we divided top and bottom by i, recalling that %' = (i — 1)}, and
pulled a p out, recalling that p* = p x p*~!. In the third step we noted that the
sum from one to infinity of ¢ — 1 is the same as the sum from zero to infinity of
1, since the first index of both is zero and they both go on forever. Finally, in
the fourth step we used the definition of the exponential function. Plugging this
back into the sum in the equation for the expected value produces our answer,

Ex[X] = e *ue* = p.

42 A very similar equation is true for continuous random variables, and we provide it in the
next chapter. Basically, one replaces the sum with an integral and the PMF with a PDF.
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Thus the expected value of the event count—which is also the mean—is equal
to the parameter u. Though we technically knew that, it’s nice to be able to
derive it ourselves, right? More important, this technique can be used for other
PMFs, as well to find expected values of other distributions.

10.7.1 Expected Utility

Expected values are useful, but they are limited in that they consider only the
(weighted) average value of the variable itself, and not the average value of more
complex functions of that variable, which are what we typically care about in
political science. In statistics, expectations of functions of the random variable
allow the computation of moments of the distribution, which we consider in the
next subsection. In this subsection we turn to the expectation of utility func-
tions, or expected utility for short. Expected utility, typically denoted EU (x),
is much like expected value, except that rather than specifying a weighted av-
erage of the variable it specifies a weighted payoff, under a few assumptions on
the utility function about which you will learn in your game theory class.*? Its
expression even looks much the same as that for the expected value:

EU(X) =Y u(x;)(Pr(X = 1;)). (10.10)

g

In equation (10.10), the small « (a Bernoulli utility function) gives the payoffs
for the known values that the random variable can take, while the EU(z) (von
Neumann—Morgenstern utility) provides the weighted average utility one can
expect to get, given the probability distribution of the values of the random
variable.

Let’s start with a concrete example that has the character of the example of
the lottery above. This relates to the game matching pennies we introduced in
the previous chapter. We'll vary it a little and insert some payoff values to make
the calculation clearer. Let two people each toss a penny. If the pennies turn
up the same (both heads or both tails), then player 1 keeps player 2’s penny.
If they turn up mixed (one head and one tail), then player 2 keeps player 1’s
penny. The payoff (or utility) each player receives from a round of play is 1 cent
if she wins and —1 cent if she loses.** The difficulty is that we do not know
whether she will win or lose. That is, we are uncertain about the outcome.
Of course, probabilities help us analyze uncertain situations, and an expected
utility calculation is nothing more than a means of determining what utility a
person should expect to receive in an uncertain situation.

43For a brief introduction see Shepsle and Bonchek (1997, pp. 15-35)

44Note that this game has the character of a lottery rather than of a strategic interaction.
When matching pennies is introduced in game theory it typically involves the decision to play
heads or tails, and is an example of a game in which there are no pure strategy equilibria (e.g.,
Osborne, 2004, pp. 19-20). That is to say, the optimal strategy is to play each of heads and
tails half the time, using what is known as a mixed strategy, as noted in the previous chapter.
The optimal strategy produces the lottery we analyze here.
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We can use equation (10.10) to compute the expected utility for this game
for each player. This is

EU(MPLQ) = (pHH X U,LQ(HH)) + (pHT X U,LQ(HT))
+ (pra xu12(TH)) + (prr x w1 2(TT)),  (10.11)

where M P is the matching pennies game (or lottery); the subscripts 1 and 2
indicate the player; p denotes the probabilities of each joint outcome; H indicates
a coin landing heads and T indicates a coin landing tails; and u indicates the
utility (or payoff) associated with an outcome.

One reads equation (10.11) as follows: the expected utility of playing
matching pennies for players 1 and 2 is the probability of heads-
heads times the utility of heads-heads plus the probability of heads-
tails times the utility of heads-tails plus the probability of tails-heads
times the utility of tails-heads plus the probability of tails-tails times
the utility of tails-tails.

We can replace the variables with values and calculate the expected utility of
this game (really lottery) for each player. We identified the utilities (or payoffs)
to each player above (player 1: HH or TT is +1, HT or TH is —1; player 2: HH
or TT is —1, HT or TH is 4+1), but where do the probabilities come from? The
sample space has four outcomes that are equally likely: HH, HT, TH, or TT.
Therefore, the probability of each outcome is % or 0.25. Because the players
have different payoffs we must calculate two expected utility equations, one for

each player

EU(MP,) = 0.25(1)+ (0.25)(—1) + (0.25)(—1) + 0.25(1)
= 0.25-0.25—0.25+0.25
= 0
EU(MP,) = 0.25(=1)+ (0.25)(1) + (0.25)(1) + 0.25(—1)
= —0.25+0.25+0.25 — 0.25
0.

This demonstrates that the expected utility of playing this game is zero for
each player. Perhaps that explains why this is not a very popular gambling
game.

You may wonder what the point was of presenting this game, given that
the utilities were each nothing more than values of the lottery, implying that
an expected value computation would be entirely appropriate. Though true in
this case, it needn’t be: one could assume that both players were risk averse
in the realm of gains but risk seeking in the realm of losses, as in prospect
theory (Kahneman and Tversky, 1979). In this case, we might assign v, (TT) =
ui(HH) = ue(HT) = ua(TH) = 2, and ua(TT) = we(HH) = w(HT) =
u1(TH) = —4, so that winning is not as good for either player as losing is bad.
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One can still use equation (10.10) even though the utilities do not equal the
values of the lottery, and verify that EU(MP;) = EU(M P,) = —1 in this case.
Risk-averse players not only get no benefit from playing the game, assuming
their utility from doing nothing is zero, but actively prefer not to play the game
at all.

We discuss risk preferences a bit more at the end of this section and consider
more complex expected utility computations in the next chapter, but first we
illustrate further with a more complex and more interesting example, taken from
Stokes (2001), which we discussed in the context of Bayes’ rule in the previous
chapter.

Stokes asks us to consider a voter who places himself on the left side of a left-
right ideological continuum (pp. 16-17). The election offers four candidates,
none an incumbent, who are vying for the candidacy of two parties. The voter
has beliefs about where on the ideological scale both parties sit and can thus
identify the party whose policies are closest to (and farthest from) his own.
However, he also believes that there are two types of politicians: ideologues,
who will pursue the policies they campaign on, and power seekers, who will lie
during the campaign when they know their preferred policy is unpopular, and
then switch once in office. The voter’s problem is trying to determine how to
vote given that though he is confident about the policy the candidates for each
party should adopt, he is uncertain whether the candidate for each party is a
power seeker type or an ideologue. One can represent Stokes’s voter’s decision
using the following expected utility equation:

EU(vi) = (pir - (L)) + ((1 = pir) - u(R)) (10.12)

where v; represents a vote for candidate i, p;;, represents the probability of a
government under ¢ enacting a set of leftist policies and 1 — p;;, a set of rightist
policies,* respectively, u represents utility associated with a policy outcome,
and L and R represent the leftist and rightist set of policies, respectively. Since
i represents the candidate who wins and since several candidates are competing,
i is drawn from the set of all candidates.

A conventional way to read equation (10.12) is: the expected utility
of voting for candidate i is equal to the product of the probability that
candidate i adopts leftist policies and the utility derived from leftist
policies plus the product of the probability that i does not adopt leftist
policies and the utility derived from rightist policies.

Stokes specifies values for the variables in the equation, thus making it pos-
sible to perform calculations and compare the candidates. For her left-leaning
voter she assumes that the value of leftist policies is 10 and that the value of
rightist policies is —10. If the politician is an ideologue then she will remain
faithful to her announced platform with a probability of 1.46 However, if the

45Note that p;r = 1 — p;r,. One could rewrite the equation using p; instead of 1 — p; 1.
46Since probabilities must sum to 1 and the politician will either remain faithful or switch,
the probability that an ideologue switches is 1 — 1 = 0.
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politician is a power seeker, then he will switch policies after the election with
probability 0.3.47

We can now consider different scenarios. Let us simplify and assume that
there are only two candidates, | and r, standing for the left and right party,
respectively. Assume further that our voter believes that both candidates are
ideologues. To calculate the expected utility for voting for each candidate, place
the relevant values from the paragraph above into the equation. In this case, 4
can take two values, [ and r, for each of the two candidates. Because the payoffs
to the voter are different for each candidate, we need to calculate the expected
utility to the voter for each candidate

EUM) = (pi-u(L)+ (1 - pir) - u(R))
= 1.0(10) + (1 — 1.0)(—10)
= 10.

EU@,) = (piz-u(L)+((1—pis) - u(R))
= 0(10) + (1 — 0)(—10)
= -10.

Thus, under the specified assumption, FU(v;) > EU(v,). In words, the ex-
pected utility of voting for an ideologue leftist candidate is greater than the
expected utility of voting for an ideologue rightist candidate: the voter should
cast a ballot for the leftist party. There is nothing surprising here.*® Nonethe-
less, it illustrates how one can construct an expected utility model.

For practice, let us consider another scenario that Stokes does not evaluate.
Let’s assume that the voter believes that both candidates are power seekers

EU(w) = (pir-w(L))+ ((1 = pir) - u(R))
— 0.7(10) + (1 — 0.7)(—10)
— 740.3(-10)
= 4.
EU(v,) = (pir-uw(L))+ (1 —pir) - u(R))
— 0.3(10) + (1 — 0.3)(—10)
— 340.7(-10)
—4.

Thus, EU(v;) > EU(v,). In words, the expected utility of voting for a power
seeking leftist is greater than the expected utility of voting for a power seeking
rightist, so the voter will again vote for the left party candidate.

47 Again, the probabilities must sum to 1 and there are only two options. Thus we can use
the probability that a power seeker will switch (0.3) to determine the probability that the
power seeker will remain faithful: 1 — 0.3 = 0.7.

481f you are wondering why Stokes (2001) would analyze such a simple equation, it turns
out that she does not. We made it up as an illustration based on her model, and explain below
why she builds her model.
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Since this example suggests that the voter’s decision is not affected by his
beliefs about whether the candidates are ideologues or power seekers, you might
be wondering what use Stokes’s model has. Had she constructed it for the
purpose of determining vote choice it would not have been very interesting (at
least not using these values).*"

10.7.1.1 Ezpected Utility and Risk Preferences

When we discussed utility functions in Chapter 3 we were really discussing the
little u in our expected utility equation. We talked a bit there about what
different functional forms for the utility implied substantively, but didn’t go
into a lot of detail. We can say a little more by bringing expected utility into
the mix. Recall our discussion of concave and convex functions in Chapter 8 (or
flip there for a moment if you skipped that section or chapter). A function is
concave if the secant line joining two points is below the curve, and convex if it
is above it. Assume the curve is one’s small-u utility function. Equation (10.10)
is a linear combination of the utility function u evaluated at several points.

Let’s consider two such points for clarity, so that our actor may realize one of
two possible utility outcomes. This means that equation (10.10) specifies a point
on the secant line joining these two utility outcomes. For a concave function,
this secant is below the curve, implying that the expected utility for any lottery
over utilities is less than the utility the actor would obtain by receiving with
certainty the corresponding combination of the outcomes that produced these
utilities. In other words, an actor with a concave utility function prefers the sure
thing to the gamble. We call such actors risk averse. Conversely, should an
actor have a convex utility function, then the secant is above the utility curve,
and the actor prefers the gamble to the sure thing. Such actors are said to be
risk seeking. Finally, if an actor has a linear utility function, then the secant
is coincident with the utility function, and the actor is indifferent between the
gamble and the sure thing. We call such actors risk neutral.

This is a bit complex, particularly in such a small space, but an example
will help clarify. Consider the following gamble: you get 0 with probability
one-half, and 4 with probability one-half. The expected value of this gam-
ble is %O + %4 = 2. We'll look at how three different types of people would
treat this gamble. First, consider a risk-averse person with the concave utility
u(z) = v/z. Equation (10.10) states that the expected utility for this person is
1u(0) + $u(4) = 0+ 22 = 1. If she were instead to receive with certainty the
combination of outcomes that are possible in the lottery (0 and 4), weighted by
the same chance that each occurs (%), then she would receive the expected value

of the lottery, 2. Her utility for the expected value of the lottery is u(2) = v/2,

49As an aside, a common exercise in such modeling is to set the expected utility of the
options equal to each other and solve for the values of a given variable that make the actor
indifferent between the choices. Among other things, this allows computation of what are
known as mixed strategy equilibria. Those of you who go on to study formal models and
game theory will learn how to do this.
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which is greater than her expected utility for the lottery itself. Not only would
she prefer to get the expected value of the lottery for certain, she’d actually
take less then the expected value if she could be guaranteed that amount. This
is what risk averse means: one is willing to give away potential gains or pay
extra to avoid risk. As an example, Feddersen, Sened, and Wright (1990) offer
a model of candidate entry that assumes risk aversion.®

Next consider a risk-seeking person with the convex utility u(z) = 22. Equa-
tion (10.10) states that the expected utility for this person is $u(0) + fu(4) =
%O + %16 = 8. This is more than her valuation of the expected value of the
lottery, u(2) = 4; she is so interested in the gamble itself that one would need
to pay her to get her to accept the sure thing over the lottery, even though the
sure thing here is what the lottery is expected to pay off.

Finally, consider a risk-neutral person with the linear utility u(x) = x. Such
a person has expected utility equal to her valuation of expected value and so is
indifferent between the gamble and the sure thing (e.g., Gradstein, 2006). Risk
neutrality is the most common assumption seen in the game theoretic literature
in political science for the simple reason that it is easier to deal with mathemat-
ically; however, risk aversion is more prevalent substantively, and many models
account for this.

10.7.1.2  Why Should I Care?

Expected utility and expected value are central concepts not only in game theory
but also in rational choice theory, expected utility theory, and many behavioral
and boundedly rational models of politics. Even the theoretical portions of
papers and books that are primarily empirical in focus will often use these
concepts, and if you want to understand the theory, you will need to understand
these concepts.

10.7.2 The Moments of a Distribution

If we replace u(xz) with more general functions, equation (10.10) can apply to
the expected value of any function of the values of a random variable. One class
of such expectations of particular use in statistics is the moments of a distribu-
tion. The moments of a distribution are an important set of parameters one
can use to describe a distribution. They involve the expected values of partic-
ular functions of the random variable across the distribution, such that the kth
moment of a variable X can be represented as E[X*], where E[] indicates the
expectation of the function of the variable inside the brackets.?’ The expected
value of a variable is the sum of the possible values it might take weighted by
the probability that each value will turn up, i.e., E[X]. The mean (or average)

50For a useful introduction to this model, see Gelbach (2013, pp. 16-20).

51More explicitly, the kth moment of a variable is the kth derivative of the
moment-generating function evaluated at zero. See http://mathworld.wolfram.com/
Moment-GeneratingFunction.html for more detail.
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is the expected value of the variable X', and so it is also the first moment of a
variable. The first moment is a location parameter and is also one measure of
the central value of a distribution.??

One can define moments about zero and moments about the mean.’® The
equation for moments about zero of discrete variables is

Z ¥ (Pr(X = ;)), (10.13)

where k is the kth moment about zero. As noted, the first moment (i.e., where
k = 1 in equation (10.13)) is the central tendency or mean. For a variable,
X, that takes with equal probability the values z;, i = 1,2,3... N, the first
moment of equation (10.13) is & Zivzl x}. Note that this is the (unweighted)
average of the values. Make sure it is apparent to you that when k = 1, equation
(10.13) produces an average for variable X.

In statistical analyses we are often interested in the second, third, and fourth
moments about the mean as they can provide useful information about the scale
and shape of a distribution (and thus are known as scale and shape parameters).
The second moment about the mean is of interest by itself, and the third and
fourth moments about the mean are useful components of other indicators.
Moments about the mean are defined by the equation

> (@i — wk(Pr(X = ;). (10.14)

i

The second moment about the mean (i.e., k& = 2 in equation (10.14)) is the
variance and it measures the variation of the distribution about its mean value.

Two other measures of interest are the skewness and kurtosis of a distribution.
Skewness involves the third moment about the mean, and it is usually weighted
by the standard deviation, though some people use the third moment without
a denominator.’® A common measure of skewness is the third moment divided

52You will learn in your statistics courses that there are three common measures of central
tendency: the mean, median, and mode. We focus on the mean here.

53The equations are different for discrete and continuous variables, and we focus on discrete
variables here. One takes the integral, rather than the sum, for continuous variables.

54This is known as a uniform distribution; it is more commonly observed in political science
as a continuous distribution and so is covered in the next chapter.

55Some authors (e.g., Kmenta, 1986, p. 67) define skewness as the third moment alone.
Further, most authors refer to a measure of skewness rather than the measure. The skew-
ness entry at the MathWorld website offers this observation: “Several types of skewness
are defined, the terminology and notation of which are unfortunately rather confusing”
(http://mathworld.wolfram.com/Skewness.html).
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by the standard deviation cubed:*®

X —p ’ M3
E|ll — = — 10.15
(F1) | -4 (10.15)

where p3 represents the third moment around the mean and o represents the
standard deviation. Skewness measures the symmetry of the distribution about
its central value. When skewness is zero, the distribution is symmetric.

Like skewness, kurtosis is used as the label for a number of specific measures.
Kurtosis always involves the fourth moment about the mean, and it is often
weighted by the standard deviation. A common measure of kurtosis is the
fourth moment about the mean divided by the fourth power of the standard

deviation: .
X _
E (“) - (10.16)

57

o ot
The kurtosis measures the flatness or peakedness of the distribution relative to
a standard normal distribution.

10.7.2.1  Why Should I Care?

The moments of a distribution are often parameters in the functions one can
use to describe them (e.g., the PMF/PDF, CDF, etc.). As such, they show up
repeatedly in the study of statistics, and they are often of use when constructing
formal models or otherwise trying to discipline one’s thinking about a political
process. You are likely quite familiar with thinking about the first and second
moments of a distribution: in large undergraduate courses you probably paid
close attention not only to your own score on a test but also to the average score
(i.e., the first moment about zero) and, if your professor made it available, the
dispersion or variance of the scores (i.e., the second moment about the mean).
And regardless of the extent to which you use formal theory or statistics in your
own research, you will need to be familiar with the moments of distributions to
do competent grading in large lecture courses.

The third and fourth moments are frequently used to determine whether a
given empirical sample deviates from a normal distribution. More generally,
using the moments of a sample of data as estimates of the population moments
is known as the method of moments in statistics.®®

56The standardized moment is one that is divided by the standard deviation raised to the
power of the moment. For example, the standardized second moment is the second moment
divided by the standard deviation squared. This measure of skew, then, is the standardized
moment. The standardized moments are of interest because they are the moments for a stan-
dardized normal distribution (i.e., a normal distribution with a mean of zero and a standard
deviation of one). The standardized normal distribution is invoked for a number of hypothesis
tests in statistics.

57The MathWorld entry observes: “There are several flavors of kurtosis commonly encoun-
tered, including the kurtosis proper” (http://mathworld.wolfram.com/Kurtosis.html).

58The method of moments is the most common way to teach statistics in political science.
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10.8 SUMMARY

This chapter argues that political scientists need to think about the (likely) dis-
tributions of concepts when developing theories and that a working familiarity
of specific distributions is important for (1) developing formal theories of poli-
tics and (2) applying statistical inference to hypothesis testing. We introduced
several ways one can represent the distribution of a variable (e.g., frequency
counts, relative frequency counts, and several functions) and then briefly de-
scribed several commonly used distributions for discrete variables.

10.9 EXERCISES

1. Write down a research question that interests you. Try to state some
assumptions, and then deduce one or more hypotheses from your assump-
tions. Write them down and bring them all to class.

2. How is the relative frequency distribution different from a frequency dis-
tribution?

3. Why can’t one create a PDF by plotting the graph of the relative frequency
distribution of each value in the sample?

4. What is the difference between a PMF and a CDF?

5. Write down an example where a contingency table would be useful for
examining the joint distribution of two variables. Bring it to class.

6. Write down a political process that you think might be drawn from the
following discrete distributions: Bernoulli or binomial, Poisson or negative
binomial (you should have two political processes).

7. Visit the “Distributions” page of the Virtual Laboratory website at the
University of Alabama, Huntsville (http://www.math.uah.edu/stat/
dist/index.xhtml) and select the “Random Variable Experiment” link
under “Applets.” Go to the bottom of the Random Variable Experiment
applet and select the “Applet” link. Under the label “Bernoulli Trials”
you will find applets for the binomial and negative binomial distributions,
and under the “Poisson Process” label you will find links to applets for
the Poisson distribution (click on “Poisson Experiment”). Investigate the
distributions covered in this chapter. More explicitly, select a distribution
and note the scale and location of the density function. Adjust one of the
parameters using the scroll bar. If there is more than one parameter, ad-
just it. Write down what happens when you adjust each parameter for the
following distributions: Bernoulli, binomial, Poisson, negative binomial.

Wonnacott and Wonnacott (1977) is a good example, and in Chapters 18 and 19 they con-
trast the method of moments with two other techniques: maximum likelihood estimation and
Bayesian inference.
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8.

10.

11.

CHAPTER 10

Visit the Public Data site at Google (http://www.google.com/public
data/). Select a dataset that is of interest to you (they have many from
which to choose). Select the Explore the Data link and plot some univari-
ate distributions (as of this writing, note the options for plotting to the
upper right of the page; try different options—you won’t break anything).
Summarize two things of interest that you learn (or “confirm”) by doing
so. Now select some other variables that you believe might covary with the
first one you selected, and plot some joint bivariate distributions. Again,
summarize two or three things of interest that you learn from doing this.

If the mean number of wars is three per year, what is the probability that
there will be four wars in any given year?

A person persuaded a friend to meet her at a concert. Her boss droned on
forever at a meeting, and she is running late. To make matters worse, she
accidentally dropped her cell phone down the elevator shaft and cannot
recall what concert she had said they should attend. She recalls that an
orchestra is playing Bach on the north side of town, but a Stravinsky con-
cert is being performed on the west side. She prefers Bach to Stravinsky,
such that seeing the former is worth ten units of utility and the latter only
five. However, she prefers going with her friend to going alone such that
being together yields eight units of utility and being alone yields minus
two. We can depict her utility using the following matrix:

Friend
Bach Stravinsky
Bach 18 8
Woman Stravinsky 3 13

Now assume that she recalls wanting to select the concert her friend would
prefer, but she has no idea whether her friend likes Bach better than
Stravinsky, and therefore assigns a probability of 0.5 that her friend is
waiting for her at the Bach concert. Calculate the expected utility of go-
ing to the Bach concert and the expected utility of going to the Stravinsky
concert. Which should she choose?

Now assume that she knows her friend prefers Stravinsky to Bach and
assigns the probability 0.3 that her friend is at the Bach concert. Recal-
culate the expected utilities of her choices. Which concert should she go
to now?

Two nations, A and B, face off at the brink of war. A knows B is either
strong or weak, and that it would win any war with certainty if B were
weak, but lose with certainty if B were strong. A has a prior belief of 40%
that B is strong, and observes manuevers that a strong B would do 60%
of the time but a weak B would do only 30% of the time. If A gets 1 for
winning, —1 for losing, and 0 for not starting a war, should A start a war
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after observing the maneuvers? (Hint: You’ll have to use material from
Chapter 9 as well.)

10.10 APPENDIX

Our presentation has been relatively informal, and one can find more formal
treatments in Gill (2006) and online (e.g., the various MathWorld we entries
we noted throughout). Those interested in studying methods as a subfield
will want a more thorough treatment. Another place to look is King (1989,
chaps. 2 and 3). The National Institute of Standards and Technology Engi-
neering Statistics Handbook, section 1.3.6, “Probability Distributions” (http:
//www.itl.nist.gov/div898/handbook/eda/section3/eda36.htm) is also a
good source. Finally, Zelterman (2004) provides a thorough discussion of dis-
crete distributions.
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Chapter Eleven

Continuous Distributions

In the previous chapter we covered the concepts of random variables and their
distributions, but used only discrete distributions in our discussion and exam-
ples. We did this to keep a chapter very important for the development of both
empirical and theoretical political science free of calculus, for those readers who
might want to skip over Part IT of the book. However, there is little in the
previous chapter specific to discrete distributions. Indeed, as we show below,
replacing sums with integrals gets you much of the way toward representing the
distributions of continuous random variables.

In this chapter we make this replacement, as well as discuss the few other
concepts necessary to get us all the way there. Section 1 tackles this job, and
presents the changes to the conceptual edifice we built in the last chapter nec-
essary for understanding the properties of continuous random variables. We
also discuss joint distributions here, both empirically and theoretically. Sec-
tion 2 makes explicit the comparison between discrete and continuous random
variables via more complex examples of expected utility than were presented in
the previous chapter. We also introduce the uniform distribution, probably the
most common one used in applied game theory and one you’ve undoubtedly seen
before in the discrete case. We discuss the notion of stochastic dominance here
as well. Finally, Section 3 presents examples of continuous density functions
useful for statistical analysis.

11.1 CONTINUOUS RANDOM VARIABLES

In the preceding chapter we limited the discussion to the probability distribu-
tions of discrete concepts or variables. In this chapter the focus is continuous
concepts and variables. Though this is a bit loose, the difference can be thought
of as similar to countability. If you can list each value the random variable can
take and assign an integer and a probability to each, then you have a discrete
random variable, represented by a discrete distribution. If you can’t, you may
have a continuous random variable, represented by a continuous distribution.
Most of the same concepts we introduced in the previous chapter for discrete
variables and their distributions apply to continuous ones as well. In particular,
like the PMF of a discrete variable, the probability density function (PDF)
of a continuous variable is related to the relative frequency distribution of that
variable. More specifically, the PDF is a function that describes the smooth
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curve that connects the various probabilities of specific (ranges of) values for a
sample.

However, there is a difference between the PMF and the PDF, and the ter-
minology we’ve used hints at it. Note that we said ranges of values, rather than
values, and used the word density, rather than mass, in the name. A PDF differs
from a PMF in that it does not describe the chance that any particular value
of the random variable is drawn at random from the distribution. Rather, it
describes the relative likelihood of drawing any specific value, and the exact prob-
ability of drawing a value within some range. This is why it is called a density
function rather than a mass function: it describes the density of the probability
within some range of values that the random variable may take, rather than the
explicit “mass” of probability at a particular value.

We unpack this and make it a bit more formal below, but let’s first consider
why this difference exists. We’ll start by assuming that some random variable
X can take all the values between 0 and 1, inclusive. In other (fewer) words,
x € [0,1] for all values z that X might take.! Since all random variables have
to take some value, the probability that x € [0,1] is 1. Now consider the range
x € [0,0.5]. The chance of being here is probably less than 1, so we’ve reduced
the probability from 1. Now shrink it to « € [0,0.25]. Again, we’ve likely shrunk
the probability of being in that region.? If we keep doing that over and over
again we keep shrinking the probability. And because X is continuous, there is
no point at which we can stop: X is defined over [0, 0.001], [0,0.00001], and so
on, forever. The probability at a point would be the probability at the limit of
this shrinking process, but that’s ill-defined. So we don’t define it, and don’t in
general speak about probabilities at specific points, even though the PDF will
take non-zero values at these points.

This is likely confusing, and may remain so until we look at some examples.
That’s fine. But it might help to think about it another way. Specifically,
another way to think about this is that the PDF is a function that allows one
to sum a series of probability weights to produce the likelihood of drawing a
value less than some value; the CDF described in the previous chapter gives
this likelihood for all points. These weights do not directly correspond to true
probabilities of drawing particular points, though; if they did, we would have to
sum over an infinite number of finite probabilities to get the CDF at any point
(because the range of values is continuous), and that would give an infinite
probability. So the weights are instead the relative likelihoods that each value
will be randomly drawn from the population. We show below that the PDF
makes it possible to identify different probability distributions for continuous
variables, and being able to do so turns out to be very important for developing
statistical models that can produce valid hypothesis tests (more on why you
care below).

1Recall that we’re using capital letters for the random variables and lowercase letters for
the values (realizations) of the random variables.

2As with most things in this book, this argument is loose, but the rough idea is what’s
important.
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11.1.1 The PDF of a Continuous Variable

Now that we’ve discussed the main difference between a PDF and a PMF ver-
bally, let’s formalize it. Recall that for a PMF f(z) describing the probability
distribution of the random variable X, Pr(X = z) = f(xz). The equation is
similar but a bit more complex for a PDF f(z). In general the probability that
X takes values in some region B is Pr(X € B) fB x)dz. This might be
too general, so we consider an apphcatlon in Wthh the Values of the random
variable are real numbers, as they typically are in statistical (and most formal)
applications in one dimension:

b
Pr(X € [a, b)) :/ f(z)dz. (11.1)

Recalling Chapter 7, equation (11.1) states that the probability of the vari-
able’s being in the range [a, b] is given by the definite integral of the PDF from a
to b. As with the PMF, f(z) > 0 for all PDF's, so this definite integral is the area
under the PDF curve between a and b. You might have heard the phrase linking
probability and inference to “the area under the curve” in a research methods
course; this is the origin of that phrase. Unlike a PMF, though, the PDF func-
tion is not limited to taking values no greater than 1, since it does not directly
describe probability, only relative likelihood. So, for a PDF, f(z) € [0,00). A
value of 0 for the PDF at some point x still means that we can’t randomly draw
that z, however.

If the probability of being in some interval [a, b] is the integral of the PDF over
that region, then we are saying that the probability is computed by summing
lots of f(z)dz. If we replace the dz with a Az, we’re back to the area under a
rectangle, or, in other words, the area under the relative frequency histogram.
This is the connection between relative frequency and the PDF. A PDF in this
sense is like a smoothed-out histogram.

This covers most of the properties of a PDF of importance for our purposes.
But as with a PMF, the probability that some value in the sample space is
drawn must be 1, so that Pr(—oo < X <o0) = [~ f(z)dz = 1.

To this point we have described the PDF only in generic terms. We do
this so that you understand where it comes from (especially its connection to
the [relative] frequency distribution). In Section 3 below we identify a number
of specific PDFs commonly used in political science (and other fields). First,
though, we discuss a few more topics: CDFs, parameters, joint distributions,
and expectations.

11.1.1.1 Why Should I Care?

Many of the variables that interest political scientists have discrete, not con-
tinuous, distributions. Nevertheless, continuous distributions are important.
First, some processes of interest—especially measures of time, such as how long
a coalition government survives, the timing of sending legislation to the floor
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for a vote, the length of a war, etc.—are continuous. Second, it turns out that
several continuous distributions are remarkably flexible and useful for modeling
noncontinuous variables. Further, it is common to assume that various portions
of statistical models (e.g., error terms) take a continuous distribution, and a
number of statistical hypothesis tests are constructed using continuous distri-
butions. Last, as we demonstrate below, continuous distributions are used in
formal theory, and regardless of whether you seek literacy (i.e., the ability to
read and understand formal models) or competence (i.e., the ability to create
and use formal models), familiarity and comfort with continuous distributions
is important. To that end, below we discuss several commonly used continuous
distributions and identify their PDF's.

11.1.2 The CDF for a Continuous Variable

Not surprisingly the nettlesome difficulty of an infinite and uncountable number
of potential values rears its head again when we think about the CDF of a
continuous variable. As with the PDF, the solution lies in thinking about ranges
of values instead of discrete ones.

Since we cannot write the CDF for a continuous variable as the sum of the
probabilities of each discrete value below the specified value, we have to write
it as the sum of all the value ranges below the specified value. Luckily, this is
a more straightforward translation from the discrete case. In fact, we merely
replace the sum with an integral to get the equation for the CDF:

P(X <z)=F(z) = [ F(t)dt. (11.2)

Equation (11.2) states that the probability that a variable drawn randomly from
the sample has a value less than or equal to x is the sum of all of the probabilities
of all ranges of values less than or equal to . Because the CDF, unlike the PDF,
is a probability, it is constrained to take values between 0 and 1.3

Equation (11.2) also introduces, or rather reintroduces, a piece of notation
for the CDF: F(z), if the PDF is f(z). This notation is common in both game
theory and statistics and arises from the relation between the PDF and the
CDF: the latter is the antiderivative of the former.

11.1.3 The Parameters of Continuous Density Functions

Like the PMFs of discrete distributions, the PDFs of many continuous distri-
butions have defined parameters. The most common are the location and scale
(dispersion) parameters introduced in the preceding chapter, but some contin-
uous distributions have a shape parameter. The shape parameter identifies
a point of inflection in a PDF whose graph changes shape. Most distributions

3For this reason, CDFs are commonly used to model processes that are constrained be-
tween two values, or that involve binary choice.
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we use do not have a shape parameter: their central location might change as
a function of a parameter and the spread of their values might change as the
function of a parameter, but the general shape of the PDF remains the same.
Some distributions, however, can also change shape. This is easiest to see in a
graph of a distribution that contains a shape parameter, like that of the beta
distribution, seen in Figure 11.1.

Density
15 20 25 3.0

1.0

05

0.0

X value

Figure 11.1: Beta PDF with Various Parameter Values

The beta distribution has two parameters, o and 3, both of which are shape
parameters. As the graph of the PDF demonstrates, the shape of the distribu-
tion changes as the parameters change values.

That said, we reiterate that the distributions most frequently used in our dis-
cipline do not have shape parameters. As such, you will encounter distributions
with location and scale (dispersion) parameters in the political science literature
with considerably greater frequency than distributions with a shape parameter.

11.1.4 Joint Distributions

As discussed in the preceding chapter on discrete distributions, we are often
interested in the joint distribution of two variables. We discussed empirical joint
distributions there. We extend that discussion here for continuous variables, and
also introduce theoretical joint distributions of both discrete and theoretical
variables.
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11.1.4.1  Empairical Joint Distributions

Unlike for discrete variables, contingency tables are not useful for plotting the
joint distribution of continuous variables. The tabular (or matrix) format of
the contingency table limits its usefulness for looking at the joint distribution of
continuous variables (or integer variables with more than a handful of values).
The problem is that there are too many potential values that the variable may
take. Thus, when we want to examine the joint distribution of continuous
variables or one discrete and one continuous variable, rather than a contingency
table we use a scatter plot.

A scatter plot is a graph with one variable’s values listed on the vertical
axis (typically the dependent or caused variable) and the other variable’s values
listed on the horizontal axis (typically the independent or causal variable). As
examples, we have produced two scatter plots.
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Figure 11.2: Is Violent Protest Related to Macroeconomic Output?

The first plot, in Figure 11.2, is composed of one discrete and one continuous
variable. It seems to indicate a slight positive relationship between the size of
the economy and the number of violent protest events.

The second plot, in Figure 11.3, depicts two continuous variables and suggests
that the number of votes cast in national parliamentary elections is not strongly
related to the size of government expenditures.
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Figure 11.3: Is the Size of the Popular Vote Related to Government Expendi-
ture?

11.1.4.2 Theoretical Joint Distributions

Whenever the values on the y-axes of these scatter plots are correlated with
those on the z-axes, we might think there is a relationship between the two
variables represented on the axes. Since we think of the variables on both axes
as random variables, we can describe the joint variation of the variables, whether
or not there is a conditional relationship between them, with joint probability
distributions. These are theoretical constructs that describe the simultaneous
realizations of more than one random variable. We stick to examining two
random variables here, but everything we write here can be generalized. We
also discuss joint distributions for discrete and continuous random variables at
the same time.*

Joint distributions merely describe probabilities of more than one outcome
at once. For two discrete random variables, we can write their joint PMF as
f(z,y) = Pr(X =2xNY =y). This is simply the chance that both = and y are
simultaneously realized. If £ = y = 1 and X and Y correspond to the values
one might roll on two dice, the joint probability is the chance that two ones are
rolled, or %.

For two continuous random variables, we can write their joint PDF the same

4We include discrete joint distributions in this chapter rather than in the previous chapter
because the continuous version is more commonly observed, and the previous chapter is already
relatively lengthy. Also, the logic behind joint discrete outcomes was provided in Chapter 9.



CONTINUOUS DISTRIBUTIONS 249

way: f(z,y). “Summing” the small bits of probability f(z,y)dzdy over some
region X € A,Y € B produces the probability Pr(X € ANY € B).

Thus, f(x,y) is a way of writing the probability that two things occur simulta-
neously. Asin Chapter 9, we can expand this “and” statement. For both discrete
and continuous distributions, if the random variables X and Y are independent,
then f(z,y) = f(z)f(y). However, if X is conditional on Y (or vice versa), then
f(z,y) = fxy(z|y)fy (y) (or with z and y and X and Y switched). Here the
subscripts on the PDFs make clear the nature of the distribution. The function
fy (y) is the marginal distribution of the random variable Y which averages over

X. For the continuous distribution, this means that fy (y f f(z,y)dz. The

conditional distribution of X is given by fxy(z|y) = ]}i (75))’ which is nothing

more than the equation above rearranged.®

As with a single variable, something must happen, so that [ [ f(z,y)dzdy = 1
for the continuous case and ;> f(z;,y;) = 1 for the discrete case. The
double integrals (or sums) tell us to integrate (or sum) over first one variable
and then the other; we discuss this more in Part V of the book. These same
integrals and sums allow us to compute the joint CDFs: PT(X <znY <y)
is F(z,y) = [* ['. f(@,y)da'dy for the continuous case® and F(z,y) =
Dwi<a Doygicy (xl, Yi) for the discrete case.

This may have seemed complicated, but most of the complication is nota-
tional. Basically, joint probability distributions work in the same way as those
for a single random variable: they tell you either the probability of two events
happening at the same time (for two discrete random variables) or the relative
likelihood of two events happening at the same time (for two continuous random
variables). When the distributions for each variable are independent you can
treat them entirely separately, but when one is conditional on the other you can-
not do so. This is no different from how one treats any conditional probability,
as we discussed in Chapter 9.

11.2 EXPECTATIONS OF CONTINUOUS RANDOM
VARIABLES

In the previous chapter we discussed expectations of random variables. This
discussion was general, but all our examples were of, and all our equations were
for, discrete random variables. Here we discuss expectations of continuous ran-
dom variables. Most of what we said in Chapter 10 holds here as well. In
fact, all we're going to do is rewrite some of the equations used in the previous
chapter for the continuous case, using the substitutions (integrals for sums, etc.)
we introduced in the previous section. We’'ll start by presenting expectations

5This rearrangement should look familiar from our discussion of Bayes’ rule in Chapter 9.

%You will often see integrals over z’ and y’ when the bounds of the integral contain z or
y. Since it doesn’t matter what letter or expression we use when we integrate over it (recall
Chapter 7), using the “primed” versions of x and y enables us keep track of which integral
corresponds to which bounds.
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in general, then discuss expected utility and moments of distributions in subse-
quent subsections. The one new concept here is the uniform distribution, which
is commonly used in game theory (and which serves as an uninformative prior
in Bayesian statistics); we present this when discussing expected utility.

Recall from the previous chapter that we write the expectation of a random
variable X as Ex[X], or E[X] when there is no confusion about other variables.
In words, the expectation is the weighted average of the values that a variable
can take, where the weights are given by the probability distribution of X. Also
recall that the equation for an expectation is Ex[X] =, z;(Pr(X = x;)). So
you multiply each value x; by the weight on that value, and add all these up.
Since the PMF (f(z;)) of a discrete distribution provides the relevant probability
weights Pr(X = x;), we can also write the expectation as Ex[X] = >, ; f(x;).
This is for a discrete random variable; for a continuous one we translate the sum
to an integral and the PMF to a PDF:

Ex[X] = /OO xf(z)de. (11.3)

— 00

The bounds on the integral ensure that the expectation includes all possible
values of X that might be drawn. Equation (11.3) has the same interpretation
as for the discrete case: it’s a weighted average of the values of a continuous
random variable, and so provides the mean of the distribution.

11.2.1 Expected Utility

As we noted in the previous chapter, we need not limit ourselves to the expecta-
tion of the variable itself; we can also consider functions of that variable. When
we call these functions u(x), we get expected utility EU(X) = >, u(z;)(Pr(X =
x;)) in the discrete case. Again, replacing the probability with the PMF pro-
duces the equation EU(X) = >, u(x;) f(x;). And changing to an integral and
to the PDF provides the expected utility for the continuous case:

EU(X) = / u(z) f(x)dz. (11.4)

—0o0

Again, the bounds on the integral ensure that the expectation includes all pos-
sible values of X, and so all possible u(x) that might be drawn. Equation (11.4)
also has the same interpretation as for the discrete case: it’s the weighted average
utility one can expect to get, given the probability distribution of the random
variable. Everything we said in the previous chapter about risk preferences and
why one would need to understand and be able to compute expected utilities
continues to be true in this case as well, and we won’t repeat it. Instead we’ll
move right to an example. To do this, though, we’ll first introduce the uniform
distribution.
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11.2.2 The Uniform Distribution

You’ve undoubtedly seen the uniform distribution before, even if you haven’t
heard it called that. It is the distribution that assigns equal probability or
likelihood to all possible events in the sample space. The discrete case is so
straightforward that we didn’t even bother mentioning it in the previous chap-
ter. If there are m possible outcomes, then the uniform distribution assigns
probability % to each outcome. For example, there are tv&io outcomes in a coin

flip, so the probability of getting either heads or tails is 5, while there are six

outcomes in the roll of a (fair) die, so the probability of getting any number
1

between one and six is 5.

Though this discrete distribution applies commonly outside the social sci-
ences, it is not often used in political science. Few empirical scenarios place
equal weight on every possible event. In game theory, whenever the probability
is discrete, one typically wants to let it vary as a parameter, and so one assigns
probabilities p; to all events < € 1,...,n, as in the examples we used in the last
chapter.” And even when the chances of all events are equal, the argument is
more typically made in the context of classical probability, as in Chapter 9, than
with a uniform distribution.

The continuous uniform distribution, however, is commonly used in game
theory, and also as an uninformative prior in Bayesian statistics. We show below
that the form of its PDF is somewhat more complicated than %, yet both the
discrete and the continuous uniform distribution share the same fundamental
property: the chance of drawing any value is the same.

To get a continuous PDF that satisfies this, let’s begin with the easiest option
and make the PDF constant at 1 throughout some range.? Let’s call this range
the interval [a, §]. Then we could let the PDF be 1 from « to 3, and 0 for all
other values of X. It turns out this is almost good enough. The only problem
is that when you integrate the PDF over all X, you need to get 1, and here you
don’t. Instead you get [*_ f(z) - dx = ff 1-dr = z|? = B — a.® But this is
a constant, so we can readily fix this problem: we divide the PDF by ﬁ%a to

cancel out the 8 — a and leave the integral as 1.'° This yields the expression
for the PDF of the uniform distribution:

5 if z€lo,p,

flz) = { 0 (11.5)

otherwise.

Note that « is a location parameter (i.e., it determines the center of the

7Some researchers will also assume a discrete uniform distribution as an uninformative
prior in Bayesian statistical models.

8We need a finite range here, since otherwise we’d have to make an infinite number of
subranges equally likely, so that the chance of getting any one of them (such as [0, 1]) would
effectively be zero.

9The second step is true because the PDF is 0 outside [a, 8], so the definite integral is 0
outside this range.

10The 5ia is known as a normalization constant (or factor) for this reason.
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distribution), and 8 is a scale parameter (i.e., it determines the dispersion of
the distribution). If X is distributed according to a uniform distribution with
these parameters we can write X ~ Ula, 8]. Figure 11.4 plots the PDF of the
uniform distribution.

. [
®
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a b
Figure 11.4: Uniform PDF

We are generally interested not in the uniform distribution’s PDF but rather
in its CDF. Recall that the CDF is the integral of the PDF from negative infinity
up to some value x. For the uniform distribution, this function is F(x) =
. ﬁl dt = 7 [Tdt = 1 Fatla = §=5 for any @ € [a, B]. For smaller values
of z the CDF is 0 and for larger values 1t is 1, since there is no chance of drawing
an z less than « or more than §. Putting this together produces the CDF of
the uniform distribution:

0 if z<a,
F(x) = 2:2 if =€l pf, (11.6)
1 if x> g.

The important thing to note about this CDF is that it is linear in x. Since
the CDF represents the chance of drawing a value from the distribution less
than or equal to z, the linearity of the CDF means that this chance increases
proportionally with . We illustrate this in Figure 11.5.

11.2.3 A Game Theoretic Example

In game theory, we often need to know the probability that a given variable has
a value below some cutoff point. For instance, we might want to know what
the chance is that one’s expected utility for things like contesting an election
or launching a military expedition would exceed the payoff from taking the
alternative option (e.g., doing nothing).
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Figure 11.5: Uniform CDF

If one’s utility is a function of a random variable, the CDF of the distribution
of that variable determines the probability that any realization of the variable
is less than some value. If the distribution is continuous, we need to integrate
the PDF to get the CDF. In most cases this can be difficult, particularly if we
care about obtaining closed-form solutions of the game (i.e., one can write down
the equation for the answer). The simplicity of the uniform PDF allows us to
readily compute the CDF, and its linearity implies that subsequent calculations
will be easier to deal with than would be the case for nearly all alternative
distributions.

Further, in game theory we often don’t have strong beliefs about the distri-
bution of some parameter of the model, and the uniform distribution allows one
to assume no preference for any particular value in the distribution. For both
these reasons, game theorists typically assume the uniform distribution when a
particular distribution must be chosen.!!

To see how this works, we’ll consider an example of the type you may very
well see in a game theory class in political science. Flip back to (or merely recall)
Chapter 3, wherein we used as an example of a utility function the quadratic loss
function u(x) = —(z—2)?, where z is the ideal policy, « is the enacted policy, and
the utility function indicates that z is the most preferred policy, with policies
less preferred the further they are from z. We said there that this was a common
form of utility for modeling voting behavior. Having now completed Chapter
8, we might recognize that the reason for this is that this utility function is

H1Of course, it is always better not to have to choose a distribution, as then your model
doesn’t rely on an assumption (of the uniform distribution) that may be wrong, but this option
isn’t always optimal!
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both differentiable and concave everywhere, and so has a maximum at the ideal
policy x = z that can be computed comparatively easily.

Assume there exists a pivotal voter who will determine the outcome of an
election or the vote in a legislature,'? and assume that she has a quadratic
loss utility function with z = m. This means that the pivotal (aka median)
voter prefers policies closer to m than those further away. However, while we
can assume that the median voter knows her own most preferred option (aka
ideal point) m, no one else does. In particular, neither of the two candidates
contesting an election does. The candidates do realize, however, that in order
to win, they must secure her vote.

Let’s say that the policy space—a line over which all policies can be aligned
in order, such as a left—right continuum—is [0, 1], which means these are all the
available policies from which to choose. Let’s also say that neither candidate
has any clue where the median voter’s ideal point might be within this range.
We represent this cluelessness formally by saying M ~ UJ[0, 1], where M is the
random variable corresponding to the median voter’s ideal point.

Game theorists are often interested in where the candidate faced with such
circumstances will place policy along the continuum. If the candidates knew
where m was located, they would select m, as doing so is the best way to win
the election. However, they do not know the location of m. This is often referred
to as a location game, and it has two or more candidates each choosing a position
in the policy space for their platforms. They run on these platforms, then voters
(in this case, the median voter only) vote for the candidate they like best, and
the winning candidate (the one with the most votes) typically must enact her
platform.!3

In the real game the candidates either enter simultaneously or in some se-
quence. For our purposes, we’ll simplify things. Let’s say that there is already an
incumbent in office—Sunhee—who has cleverly staked out the position x4 = %
Sunhee reasons, quite correctly, that occupying the mean of the distribution of
M gives her the best chance of winning, which is what her primary interest is in
the election. Ryan seeks to challenge Sunhee, but unlike Sunhee he is extreme
in his views and only cares about enacting a far left policy of 0, or as close to
that as he can get. Specifically, his utility is ug = —(x — 0)2. If he wins the
election with platform xp, Ryan gets utility —z%, and if he loses the election
he gets utility —(1 — 1)> = —%, as Sunhee’s platform of § gets enacted.

To figure out where Ryan should locate his platform, we need to maximize

121n rational choice theories one often appeals to what is called the median voter theorem,
which, speaking loosely, says that the voter whose ideal policy in one dimension is in the
middle (the median) of all voters’ ideal policies is a pivotal voter who determines the outcome
of the vote. See Shepsle and Bonchek (1997) for an introduction.

13This ignores what are called credible commitment problems (e.g., the candidate once in
office can do what she wants), but we need not concern ourselves with this here. There is,
however, quite a broad literature on this topic (e.g., McCarty and Rothenberg, 1996), and our
discussion of Stokes (2001) in previous chapters is one example.
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the expected utility
1
EU(xg) = Pr(win|zg)(—x%) + Pr(lose|x3)(—1). (11.7)

In Chapter 8 we learned how to maximize this, but before doing so we need to
know Pr(win|zg). (Note that Pr(loselxp) = 1 — Pr(win|xp) since there are
only two candidates.) But how does one go about finding this?

Consider the median voter. Her utility function implies she will always vote
for the candidate closer to her. So when is she closer to Sunhee’s platform of
one-half, and when is she closer to Ryan’s platform of z5? Well, the midpoint
of xp and one-half is % = 28 4+ 1 Assuming (safely) that Ryan locates
to the left of Sunhee, whenever the realized m is less than this midpoint, Ryan
wins, because the median voter’s ideal point is closer to his position than to
Sunhee’s, and whenever the realized m is greater than this, Sunhee wins. Stated
mathematically, Pr(win|zg) = Pr (m < 22 + 1).

This probability is the CDF of M evaluated at 22 + 1 € [0,1]. For U[0,1],
a=0and 8 =1, so the CDF is F(m) = m. Thus, F(J’c —i—i):%—l—i. The
probability of the median voter’s ideal point being less than Z& + i is therefore
equal to 2 + , and this is the probability that Ryan wins. Plugging this into
equation (11.7) yields EU(:EB) = -2 (12’3 + i) — i (1 —ZE 7) Simplifying

2
3
gives EU(xp) = -2 — Z& 4 28 — 3.
Maximizing this utlhty entalls ﬁrst taklng the first-order condition (see Chap-

ter 8), which is f% — 28 4+ &2 = 0. We can multiply through by —8 to get

rid of the fractions, which ylelds 122% + 4xp — 1 = 0. Then we use the tools of
L2

Chapter 2 to solve this; e.g., the quadratic equation gives us S 5 16+4
Only one of these is in the range [0, 1], so we’ll choose that one. Thls gives the
candidate extremum zj = %.

We next check whether this is a local maximum by computing the second-
order condition at that point. This is =327 — 1 < 0, so 2 is a local maximum.

Finally, we compare the utility at this point to that at the bounds. At zp =0,

we get EU(0) = . At zpg = 5, which is the furthest Ryan can go and still
be to the left of Sunhee We get EU( ) = —75. Finally, at 23 = ¢, we get
EU(xy) = —53 — 755 + 5 — 5 = — 1%, which is the biggest of the three

values. So the global maximum occurs at 7; = %.

Ryan thus locates at a position considerably to the left of one-half, and so
accepts that he will lose more often than Sunhee; he’s just willing to take the
extra risk of losing so as to enact his ideal policy when he wins.

This was a pretty involved example (though it is a simplification of Calvert
(1985)), but it illustrated, we hope, the way in which the CDF can be used in
game theory. For those interested, we discuss this at a bit higher level in the
last part of this section, which introduces the notion of stochastic dominance.
Before getting there, though, we briefly illustrate the moments of continuous
distributions, again using the uniform distribution as an example.
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11.2.4 Moments of Continuous Distributions

In the preceding chapter we discussed moments of distributions and why they
are important; since that discussion continues to apply to the case of continuous
distributions we do not repeat it. Rather, we will merely present the definitions
for the kth moment in the continuous case. The kth moment about zero is

/ zF f(z)dz, (11.8)
and the kth moment about the mean is
/ (z — p)k f(z)dz. (11.9)

We can see how this works with the uniform distribution. First we compute
its first moment, the mean . This is

po= [ xf(x)de
= 1 fﬁxdx

= 5= aza: 2|18 (11.10)
_ B2—a?

_ pHta
5 -

You may recognize this as the midpoint of the line segment [«, 5]. When a =0
and f =1, u=3

We can also compute the variance, which is the second moment about the
mean. This is

or = [7 2f(x)dx
_Blafﬁ —2,ux+u)dx
= 5= (32 — pa?® + pPa) 8
— (53—a3>/3—u([§32—a2>+u2(B—a)
=(B2+aB+a?)/3— (8% +a®+2aB)/2+ (8% + a® +2a3) /4
= (B2 4+ aB+a?)/3 - (8% +a® +2aB)/4
_ B+a’—2a8

sy

(11.11)

When o =0 and =1, 02 = 12 Higher moments may be computed similarly.
The same procedure may be followed for other, more complex distributions,
though their integrals are likely to be more difficult.

We can also use our earlier discussion of theoretical joint distributions to
compute a different sort of second moment that will prove convenient for work
in statistics. When there are two variables distributed jointly we can discuss
their covariance. Like the variance, the covariance considers variation around
the mean, but now around the means of two variables. It is computed according
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to the equation o,y = [ [ (2 — pa)(y — py) f (2, y)dady, with p, and p,
the means of the random variables X and Y, respectively.

The form of the covariance implies that when both variables exceed their
means or both are below their means the integrand is positive, while if one is
above and one is below its mean the integrand is negative. Thus, the covariance
measures the degree to which two random variables “move together” in their
joint distribution. If one often tends to be large (small) when the other is large
(small), then their covariance will be positive, while if one tends to be large
while the other is small, then their covariance will be negative. A covariance of
zero implies that the two variables are not correlated in this fashion; this often
happens when the two variables are drawn from independent distributions, but
this is not necessary for a covariance of zero.

Like the variance, the covariance can become large in magnitude. When
interested in the relative degree of correlation between two variables, we can
instead form a correlation coefficient. This is computed from the covariance
and the variances of each variable and varies between —1 and 1. A 0 means
no correlation, and a 1 (—1) means perfect positive (negative) correlation. It
has the form p;y, = a”yy, where the two components of the denominator are the

040

standard deviations (the square roots of the variances) of X and Y, respectively.

11.2.5 Stochastic Dominance

In game theory and expected utility theory, expected utilities for actions are
compared together and the action that produces the highest expected utility is
chosen. It is natural to compare payoffs for individual outcomes, but when ac-
tions produce stochastic payoffs one can also compare the distributions directly.
This leads to the important notion of stochastic dominance.

Before giving the formal definitions, let’s consider an intuitive example. Con-
sider a type of lottery in which you can receive either nothing or a million dollars.
Now compare two specific lotteries, one in which you have a 0.0000000001 chance
of getting the million dollars and one in which you have a 0.3 chance of getting
the million dollars. Which one would you prefer?

The answer is obvious, of course, but it does illustrate the concept of explicitly
comparing probability distributions to each other. The notion of stochastic
dominance formalizes this comparison. If we let f(z) and g(z) be two different
PDFs, then we say f(z) first-order stochastically dominates (FOSD) g(z) if their
CDFs obey this relation: F(z) < G(z) for all z.

This is very abstract, so we break it down. The CDF tells you the chance of
drawing a value from that distribution below a certain value x. If the CDF for
g(z) is always greater than that for f(z) for all x, then the chance of drawing
a lower value from the distribution is always greater in g(z) than in f(x). This
implies, since 1 — F(z) > 1 — G(x), that the chance of drawing a value higher
than z is always greater in f(x) than in g(x) for all z. So, in a sense, f(z) can be
expected to produce higher values than g(x), and we say the former dominates
the latter. For our example this is true: the first lottery is more likely to produce
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the lesser value than the second, and less likely to produce the higher value. So
the second FOSD the first.

How does this relate to preference? Another way of writing f(x) FOSD g(z) is
7 u@) f(a)de > [7_ u(z)g(x)dx for all increasing functions u(x).'* In other
words, if you place higher value on obtaining greater levels of some random
variable X, perhaps because it corresponds to revenue, shares in a government’s
cabinet, or your piece of the division of land in a cease-fire bargain, then you
always prefer that the distribution f(x) be the one that determines levels of
revenue, cabinet shares, or land distributions, as opposed to g(z). And this is
for the reason we stated above: it is more likely to produce higher values of
these things.

FOSD is thus a useful concept because it lets you state preference over dis-
tributions without having to go to the trouble of figuring out expected utilities;
you can just compare CDFs. Further, as it works for any increasing utility
function, one need not even specify a particular function. This is particularly
useful when employing techniques in game theory such as monotone comparative
statics (e.g., Ashworth and Bueno de Mesquita, 2005).

It does, however, require a pretty strong assumption on the distributions that
may be hard to justify substantively in some cases. We can also define a lesser
form of dominance, second-order stochastic dominance (SOSD) It has a very
similar definition: f(z) SOSD g(z) if [~ z)de > [% u(x)g(x)dz for
all increasing concave functions u(x ) Recalhng from the previous chapter that
concave utility functions represent risk-averse actors, if f(z) SOSD g(z) then it
is preferred by all risk-averse individuals.

We can compare two uniform distributions to illustrate these concepts. Let
f(z) ~ U[L,3] and g(x) ~ UJ[0,2]. Then f(x) FOSD g(x). Anyone who wants
higher values of x prefers f(z), because it yields consistently higher values of
x. Now let f(x) ~ UJ[1,3] and g(x) ~ U[0,4]. Then f(x) SOSD g(x), but
not FOSD. A risk-neutral person (i.e., one with a linear utility function) is
indifferent between two lotteries represented by these distributions; they each
have the same mean value, and the potential for higher values in g(z) is balanced
out by the potential for lower values. However, a risk-averse person prefers the
first lottery to the second because she is less likely to draw a really low value.

11.3 IMPORTANT CONTINUOUS DISTRIBUTIONS FOR
STATISTICAL MODELING

In this section we introduce several commonly used continuous distributions:
the Gaussian family, the logistic distribution, some duration distributions, and
three distributions used frequently in statistical hypothesis tests. The Gaus-
sian family includes the normal distribution and the power transformed normal

14 An equivalent equation holds for discrete distributions, using sums instead of integrals:
>oiul@i) f(xs) > >, u(xi)g(x;). Note that if we were to call u(zx) utility, then both formula-
tions express expected utility under different probability distributions.



CONTINUOUS DISTRIBUTIONS 259

distribution. Duration distributions include the exponential distribution, the
Pareto distribution, the gamma distribution, and the Weibull distribution. Fi-
nally, we review the chi squared (x?), the F, and the (Student’s) ¢ distributions.

11.3.1 The Gaussian Family

Families of distributions have the same basic parameter structure. The Gaus-
sian distribution is named after one of the first scholars to use it, Johann Carl
Friedrich Gauss.

11.8.1.1 The Normal Distribution

The normal distribution is the best known of all continuous distributions. It
may be written as N (i, 0?), so that if X is distributed normally, X ~ N(u,o?).
As seen in this notation, the distribution admits two parameters, the mean
(or average) value, represented by u, and the variance (or dispersion) of values
around the mean, represented by 02. The PDF of the normal distribution is
given by

1

V2mo?

Note that while 7 is often used as a symbol to indicate the probability of ob-
serving an event, in equation (11.12) it represents the value 3.14159.... The
normal distribution is so commonly used, particularly the standard normal, in
which ¢ = 0 and 02 = 1, that the standard normal PDF has its own symbol:
¢(z). The standard normal CDF is denoted ®(z). We can use equation (11.12)
to graph some normal distributions, and we have done so in Figure 11.6.

One interesting (and unusual) property of the normal distribution is that the
parameters (1 and ¢02) are independent of one another.!® The mean () deter-
mines the central location of the distribution and the variance (02) determines
the scale of the distribution. A second property of interest is the symmetry of
the normal distribution: the graph of the function to the right of the mean is
the mirror image of the graph of the function to the left of the mean.'®

You have likely heard that the normal distribution has a bell-shaped curve.
This is true for many (but as Figure 11.6 demonstrates, not all) values of u and
o2, but it is not very meaningful. We have already seen a discrete distribution
(the binomial) that frequently produces a bell-shaped curve, and we introduce
many others below. It follows that one cannot draw the inference that sample
data with a bell-shaped relative frequency distribution were drawn from a nor-
mal distribution. In fact, it is a good idea to unlearn the habit of referring to
distributions as bell-shaped, as that observation provides precious little infor-
mation about the distribution. In your statistics courses you will learn some

e @)’ (11.12)

flasp,0”) =

)

15Note that we could have replaced “u and o2” with “the first and second moments.” You
will sometimes encounter that usage.

16Tts skewness is zero.
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Figure 11.6: Three Normal PDFs, y, 02 = 0,1;0,3;0, 10

formal tests one can conduct to determine the probability that a given sample
of data was drawn from a normal distribution (e.g., the Jarque-Bera test).

What kinds of processes are likely to produce a normal distribution? Lindsey
(1995, p. 113) observes that the “normal distribution describes a continuous
response variable, taking any real value, positive or negative, which is the result
of a large number of small accumulating, unknown, additive factors.” We sus-
pect that description does not strike you as likely to represent the process that
produces a majority of the variables political scientists want to explain.

To better understand the limits of the usefulness of the normal distribution
in empirical political science, try this as an exercise. Compile a list of vari-
ables that come to mind that political scientists use to measure concepts in
their theories. How many of them are continuous measures (especially those
with both negative and positive values)? Our expectation is that your list will
be dominated by integer variables (e.g., the number of seats in parliament or
the number of militarized disputes) and ordinal or nominal variables (e.g., an
attitudinal scale or party identification).

This does not mean that the normal distribution is useless in statistics. Far
from it! In fact, the central limit theorem states that in sufficiently large samples,
sampling distributions approximate the normal distribution. We note that the
central limit theorem does not imply that the normal distribution is the most
appropriate distribution available. However, it does suggest that if one does not
have a positive case to make for why the concept for which one has developed
hypotheses fits a particular distribution, then the normal distribution is the
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best choice (though a better decision would be to go back to develop a stronger
theory and develop a positive case for the likely distribution of one’s concept).

That said, as Lindsey (1995, p. 113) observes, “the normal distribution is
primarily important for its nice mathematical properties, and is much overused
in many areas of research for this reason.” To elaborate, owing to the nice
mathematical properties of the normal distribution, it was relatively easier to
develop techniques (and, later, software) for inferential statistics assuming a
normal distribution than it was to assume other distributions. As such, the
practice and teaching of applied statistical work focused on models that invoked
the normal distribution. However, the past forty years have witnessed a dramatic
increase in computing power, and software that can implement models that
invoke different distributional assumptions has become commonplace. Thus,
while it is important to use models that invoke a normal distribution when
using a dependent variable that is normally distributed, the general point is
that it is important to use a model that invokes the appropriate distribution.
Political scientists became widely aware of this in the 1990s, and the overuse of
models that assume a normal distribution has been declining ever since (Krueger
and Lewis-Beck, 2008). Nevertheless, the appeal to the central limit theorem
remains an important counterargument, but proper consideration will have to
wait for your statistics courses.

Interestingly, though the normal distribution may be overused in empirical
political science, it is perhaps underused in formal theoretical political science.
Parameters that might in fact be distributed normally are rarely modeled as
such. The reason is that, as we have noted, CDF's of distributions are important
in formal theory, and the CDF of the normal distribution admits no closed-form
expression. In other words, to compute the CDF at some value z, one must
numerically approximate the integral defining the CDF. This is not an issue in
statistics, as statistical computing software can use numerical approximation to
do so. You either have already seen or will soon see tables of z-scores;'” these
are computations of the standard normal CDF ®(z) or transformations of these.
However, in game theory one often wants a closed-form expression that one can
maximize, and the normal distribution does not admit this. Computational
modeling, lacking this constraint, is more likely to take up use of the normal
distribution when appropriate (e.g., Siegel, 2009).

Before turning our attention to the distributions of other variables, we briefly
consider some variations of the normal distribution.

11.3.1.2 The Power-Transformed and Log-Normal

Power transformations can be used to make variables whose distributions deviate
from the normal more closely approximate the normal. We can write a power-

17 A z-score is obtained by transforming z to z = %, and such tables list the corresponding
values of ®(z) or transforms thereof.
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transformed normal distribution as follows:
by A—1

f(x;u,aQ,A) = %6_#(2&_/”2. (1113)

Like all Gaussian distributions, it has the location and scale parameters p and
o2, but it also has a shape parameter . Equation (11.13) is quite similar to
equation (11.12); to see how this transformation operates, observe that when
A =1, equation (11.13) reduces to equation (11.12). However, when A < 1, the
right side of the distribution will be longer than the left side, and when A > 1,
the left side will be longer than the right. An asymmetry where one side (or

tail) of the graph of the function is longer than the other is called skewness.'®
Figure 11.7 is a plot of the power-normal.'?

0.7

,r

0.6

0.5

Density
0.4

0.3

x value

Figure 11.7: Power-Transformed Normal PDF

In the 1970s and 1980s, when political scientists recognized that much of their
sample data had a skewed distribution, they frequently sought to transform the
variable to make it more closely approximate the normal distribution. The most
common transformations are power transformations, and the log transformation

is the most widely used of the power transformations. We can write the log-
normal distribution as
F s 0%) = — e~ 7z Un@) )

_ . 11.14
vV 2mo? ( )

18Recall from the previous chapter that skewness is the third moment about the mean.
19This figure is from the National Institute of Standards and Technology’s online Engi-
neering and Statistics Handbook. Note that their p is our A. To see their full entry (including

the equation that they use), see http://www.itl.nist.gov/div898/handbook/eda/section3/
eda366d.htm.
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The graph of this function looks like Figure 11.8.
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Figure 11.8: Log-Normal PDF, =0, 02 =1

11.3.1.8 Why Should I Care?

As noted, it used to be fairly common practice to transform skewed distributions.
When theory suggests that a given variable has a log (or other power) normal
distribution, then these transformations are entirely appropriate. However, in
the past ten to fifteen years, increasing numbers of political scientists have come
to recognize that skewed sample data might well imply a non-Gaussian distri-
bution. And the popularity of these transformations has declined as computers
have made it easier to estimate models that assume non-Gaussian distributions.
However, it is critical to keep in mind that some political processes may well
produce log-normal or other power variants of the normal distribution, and that
it is entirely appropriate to perform such transformations in such cases. For
further reading, Mills (1991, pp. 40-50) provides a useful discussion of trans-
forming sample data so that they approximate the normal distribution. For a
more thorough overview of the normal distribution, please see the webpage at
http://mathworld.wolfram.com/NormalDistribution.html.

11.3.2 The Logistic Distribution

The PDF for the logistic distribution can be written as


http://mathworld.wolfram.com/NormalDistribution.html
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_ m(z—p)

e oV3
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fla;p,0%) = (11.15)

Like the normal distribution, the PDF for the logistic distribution is defined by
two moments, the mean and the variance. Further, as Figure 11.9 indicates, the
logistic distribution’s PDF is symmetric. However, the logistic distribution is
not part of the Gaussian family.

-
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Figure 11.9: Logistic and Normal PDFs, 1 = 0, 02 = 1 (the logistic distribution
has a lower peak and wider tails)

Figure 11.9 depicts two distributions with the same mean and variance. One
is the logistic distribution and the other is the normal. Their similarity is re-
markable, yet they have a clear difference: the logistic distribution displays
considerably thicker tails, implying that values further from the mean are more
likely to be drawn from a logistic distribution than a normal one. If you recall
our discussion of moments in the last chapter, the fourth moment, or kurtosis,
describes the thickness of the tails of distributions. The logistic has a non-zero
kurtosis, while the normal distribution’s is zero.

The logistic distribution is primarily used by political scientists modeling bi-
nary outcomes (e.g., voted/didn’t vote, participated in a militarized dispute/did
not participate). You will learn more about this in your statistics classes.
You can find a more thorough technical overview of the logistic distribution
at http://mathworld.wolfram.com/LogisticDistribution.html.


http://mathworld.wolfram.com/LogisticDistribution.html
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11.3.3 Duration Distributions

How long do legislators typically serve in a lower (e.g., provincial or state) house
before seeking election to a higher (e.g., federal) legislature? How long do dif-
ferent types of coalition governments (e.g., majority vs. minority) survive? How
long do different types of polities (e.g., democracies vs. autocracies) persist?
How long do different types of military alliances (e.g., defensive vs. offensive)
last? Political scientists are increasingly interested in concepts that are mea-
sured in units of time. Variables that measure such concepts can usually be
modeled as if they were drawn from a duration distribution.

If you take advanced statistics courses you will likely encounter these models.
A widely used model, the Cox proportional-hazards model, makes no distribu-
tional assumptions. That sounds too good to be true: we can use this model
to employ statistical inference regardless of the distribution of our measure of
duration. Yet, as Box-Steffensmeier and Zorn (2001) show, the Cox model can
produce misleading inferences when hazards are not proportional. The articles
by Zorn (2000) and Box-Steffensmeier and Zorn (2002) may also be consulted
to learn more about the statistical models available for duration analysis.

11.3.8.1 The Ezponential Distribution
The PDF for the exponential distribution is

flzyp) = %e‘fm (11.16)

where p > 0 is the mean duration between events. If we define A\ = i, then we

can rewrite equation (11.16) as f(z;A) = Ae~*?, and this is common notation
that you may encounter. We provide some representations of the exponential
distribution’s PDF in Figure 11.10.

The exponential distribution describes events produced by a process with a
constant risk to failure. That is, the probability of failure does not change over
time. “Failure” is a generic term that indicates the presence of a new state and
should not be taken literally. That is, we can use the exponential distribution
to study processes where it would be awkward to speak of “failure.”

What sort of political process might produce a variable with an exponential
distribution? The duration of cabinet governments seems an unlikely candidate
since if the government persists long enough, elections are required after a given
period of time (e.g., Cioffi-Revilla, 1984; King et al., 1990). So, if elections are
required after five years in office and the government survives 1,824 days (i.e.,
one day less than five years), then we know with certainty that the government
will dissolve the next day. So the duration of cabinet governments is not constant
over time. Further, one likely expects a government’s prospects for failure to
be low in the first months in office, then rise some, etc. And lots of political
processes seem likely to have risks of failure that change over time. For example,
would you be willing to assume that the probability that a person votes is
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Figure 11.10: Exponential PDF, A =2,3.4

independent of her age? Do you suspect that the probability that a country
goes to war is independent of the time that has passed since it last went to war?

That we can think of variables that interest political scientists which have
failure risks that probably vary over time does not, however, suggest that the
exponential distribution is useless. In fact, it is quite useful for processes with a
constant risk of failure. Whether there are many duration processes of interest
to political scientists that have a constant risk of failure over time is something
for scholars to determine as the literatures that explore durations continue to
grow.

You can find a thorough technical overview of the exponential distribution at
http://mathworld.wolfram.com/ExponentialDistribution.html.

11.8.3.2 The Pareto Distribution
The PDF for the Pareto distribution can be written

f: k. B) { g for x2p (11.17)

for = <p,

where k > 0 is a shape parameter and (3 is a scale parameter such that z > g > 0.

Midlarsky (1988) uses the Pareto distribution to both theoretically and em-
pirically model land inequality in Latin America. He argues that land was
settled sequentially over time such that those who first claimed rights to land
were able to secure larger properties than those who came later. Unlike many
probability density functions which assume independence among observations,
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Figure 11.11: Pareto PDF, 8 =1,k=1,2,3

the Pareto distribution assumes that the initial values have an effect on the size
of subsequent values. As Midlarsky (1988, p. 494) puts it, “the assumption of a
progressive sequential inequality leads to the Pareto distribution.”

A thorough technical overview of the Pareto distribution is available at
http://mathworld.wolfram.com/ParetoDistribution.html.

11.8.3.8 The Gamma Distribution

The PDF for the gamma distribution can be represented for x > 0 and «, 3 > 0
as

o le™
BT (a) ’

where « is a shape parameter, ( is a scale parameter (the mean is af3), and I'(«)
is a named integral function that is equal to (o — 1)! if « is a positive integer.2’
As Figure 11.12 demonstrates, the gamma distribution produces rather different
PDFs, depending on the values of o and S.

When « = 1, the gamma distribution reduces to the exponential distribution,
with 4 = . That is because we can think of « as the number of distinct
periods of constant risk. The exponential assumes that risk is constant over the
entire time, so there is only one period (i.e., « = 1). However, imagine that a
political scientist were to argue that there are four distinct periods that cabinet

flz;a,B) = (11.18)

20You can find a definition of the gamma function at http://mathworld.wolfram.com/
GammaFunction.html.


http://mathworld.wolfram.com/ParetoDistribution.html
http://mathworld.wolfram.com/GammaFunction.html
http://mathworld.wolfram.com/GammaFunction.html

268 CHAPTER 11

w |
= —_— =1, p=2
- =2, B:Q
T
s 1 ==== g=3 p=2
-—- =5, =1
o | — — a=9, p=0.5
z o
&
o
O o
(=}
S Jd
.;“-.,- ..
=) L o ol SRR s
d T T T T T
0 5 10 15 20

X value

Figure 11.12: Gamma PDFs

governments experience with respect to risk of failure: (1) a honeymoon period
with low risk, (2) a period of risk (when the honeymoon is over), (3) a mature
period with reduced risk (for those governments that survive), and (4) a high-
risk period (because the government is approaching the constitutional limit of
its life). If that is a reasonable theory, then one would expect that if a variable
measuring the life of a government is produced by a gamma distribution, then
a=4.

You can find a thorough technical overview of the gamma distribution at
http://mathworld.wolfram.com/GammaDistribution.html.

11.3.8.4 The Weibull Distribution
One can represent the PDF for the Weibull distribution as follows:

f(w; 0, 8) ={ arel T8 for 220,

(11.19)
0 for <0,

where « is a shape parameter and 3 is the scale parameter. The Weibull PDF
is very similar to the gamma PDF; the differences are that I' is not in the
denominator, « is in the numerator, and the exponent of the e is raised to the
power « (compare equations (11.18) and (11.19)). As such, note that, as with
the gamma distribution, when o = 1 the Weibull reduces to the exponential
distribution, again with p = f.

We provide some graphs of the Weibull distribution PDF using different val-
ues of the parameters in Figure 11.13. You can see that the risk changes over
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time, and further, that the changes depend on the values of the parameters «
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Lindsey (1995, p. 133) offers the following explanation of the processes that
produce a Weibull distribution:

It can be interpreted as if several processes are running in paral-
lel, with the first to stop ending the duration. This is a weakest
link mechanism, as when the failure of some part causes a machine
to break down and the total operating time of the machine is the
duration.

In other words, imagine that a number of “things” were required for a cabinet
government to persist, such that if any one of those “things” were no longer
present, the government would fall. The Weibull distribution should be useful
when we want to study a variable measuring duration and we believe that the
political processes that affect the duration are each necessary conditions to con-
tinuation. Though the hypotheses that are frequently tested using models built
on the Weibull distribution are not often stated as sets of necessary conditions,
it is probably the most widely used duration distribution in political science.

As a concrete example, we may consider Bennett (1997), who studies the
duration of international military alliances. He estimates a statistical model that
assumes that the duration of alliances have a Weibull probability distribution.
In other words, the probability that an alliance is broken at any given moment
in time, ¢, depends on (1) how long the alliance has lasted and (2) a number
of other factors that Bennett specifies (e.g., changes in the power of the allies,
regime change, etc.; see the article for details).

Those interested in a thorough technical overview of the Weibull distribution
should visit http://mathworld.wolfram.com/WeibullDistribution.html.
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11.3.4 Distributions Used Frequently in Statistical Hypothesis
Tests

These distributions are of interest primarily in testing statistical hypotheses
and are not much used to structure theoretical expectations. They will also
be discussed at length—or at least the tests based on them will be—in your
statistics classes. Accordingly, we will introduce them only briefly here.

11.83.4.1 Chi-squared (x?) Distribution

The sum of the squares of n independent variables each distributed according
to a standard normal distribution is distributed according to a chi-squared (x?)
distribution. We write a variable distributed in this way as Q ~ x?(n), where
n is the number of degrees of freedom. Its PDF is

Zn/2—1 /2
W for «x Z 0,
for = <0.

fain) = (11.20)

The chi-squared distribution is actually a special case of the gamma distribution,
as one can see by using the parameters o = § and = 2 in equation (11.18).

11.3.4.2  The (Student’s) t Distribution

The Student’s ¢ distribution is the distribution of a random variable that is pro-
portional to the ratio of a variable that is distributed according to the standard
normal distribution and the square root of a variable that is distributed accord-
ing to a chi-squared distribution. Such ratios arise when normalizing differences
in means by the standard deviation. The distribution looks much like a normal
distribution but with thicker tails, is particularly useful for small sample sizes,
and approaches the standard normal distribution as the sample size approaches
infinity. Its PDF, where n is the number of degrees of freedom, is

e (e
f(z;n) = ﬁ(%) (1 + n) . (11.21)

11.8.4.8 The F Distribution

The F distribution is the distribution of a random variable that is equal to
the ratio of two random variables, each distributed according to a chi-squared
distribution and each scaled according to its number of degrees of freedom. It
is used commonly in the analysis of variance and in testing the hypothesis that
several parameters are not jointly null. If its two degrees of freedom are n; and
ng and if x > 0, then the F distribution’s PDF is

(TLll’) ni n;LZ
(n1z+no)"1 Fng

R Laxi ) iy (11.22)
2B (%, %)

f(x;nlan2) =
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where B(z,y) =

_ '@l
I'(z+y)

is the beta function.

11.4 EXERCISES

1.

10.

11.

12.

Why can’t one create a PDF by plotting the graph of the relative frequency
distribution of each value in the sample?

What is the difference between a PMF and a PDF?
What is the difference between a PDF and a CDF?

Write down an example where a scatter plot would be useful for examining
the joint distribution of two variables.

Why can’t we eyeball a probability distribution and determine whether it
is normal?

. What is the difference between a relative frequency distribution of a sample

and a PDF?
Why does a PDF require calculating an integral?
Show that Var(X) = E[(X — p)?] = E[X?] — u?.

An individual benefits from an action whenever X > 10. If X is a random
variable distributed uniformly on [0, 25], what is the probability that the
individual will benefit?

Annual country budget deficits (surpluses) are distributed normally, with
a mean of —$100 million and a standard deviation of $300 million. What
do both of these parameters tell us substantively about this distribution?
Explain.

Write down a political process that you think might be drawn from the
following distributions: normal or log-normal; logistic; or exponential,
Pareto, gamma, or Weibull (you should have three political processes).

Visit the “Distributions” page of the Virtual Laboratory Website at the
University of Alabama, Huntsville (http://www.math.uah.edu/stat/
dist/index.xhtml). Click on the “Random Variable Experiment” link
under “Applets.” You can do experiments changing the parameters of a
number of distributions (the normal, gamma, chi-squared, Student’s ¢, F,
beta, Weibull, Pareto, logistic, and log-normal are available). Investigate
the distributions covered in this chapter. More explicitly, select a distribu-
tion and note the shape and location of the density function. Adjust one
of the parameters using the scroll bar. If there is more than one parame-
ter, adjust it. Write down what happens when you adjust each parameter
for the following distributions: normal, log-normal, logistic, beta, gamma,


http://www.math.uah.edu/stat/dist/index.xhtml
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Pareto, and Weibull. Note the distributions that can be made to have a
bell shape given some parameter values.

13. Using the random variable experiment applet you used in the previous
exercise, run the simulation 1,000 times (set Stop to 1,000) with an update
frequency of 10 (use the Update tab), and note the apparent convergence
of the empirical density to the true density. What does this imply, in your
opinion, for the shape of the distribution of real data relative to the shape
of a theoretically derived PDF?

11.5 APPENDIX

Our presentation has been relatively informal, and one can find more formal
treatments in Gill (2006) and online (e.g., the various MathWorld entries we
noted throughout). Those interested in studying methods as a subfield will want
a more thorough treatment. Another place to look is King (1989, chaps. 2 and
3). The National Institute of Standards and Technology Engineering Statis-
tics Handbook, section 1.3.6, “Probability Distributions,” available at http:
//www.itl.nist.gov/div898/handbook/eda/section3/eda36.htm, is also a
good source.
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