
ELECTRODYNAMICS I / IFUSP / LECTURE 0

Electrodynamics 
Preamble: 
Green’s Theorem

1



• Green’s theorem is a statement in 2D, relating a line integral 
over a closed loop to a surface integral. Given two scalar 

functions  and  of the 2D position , we have: 

 .  

• This theorem is in fact a special case of the Kelvin-Stokes 
Theorem: 

 . 

Proof: take the  plane, and identify    ,  . 

f g ⃗x

∫S
d2x ( ∂f

∂x
−

∂g
∂y ) = ∮ ⃗C (S)

(g dx + f dy)

∫S
d ⃗S ⋅ ⃗∇ × ⃗F = ∮ ⃗C (S)

d ⃗l ⋅ ⃗F

x − y f → Fy g → Fx

Green’s Theorem

x

y
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• The Kelvin-Stokes Theorem is a particular (3D, Euclidean) case: 

  

• The  Generalized Stokes Theorem , also known as the Stokes-
Cartan Theorem, states that, for a “bulk"  and its “boundary" 

, the integral of: 

 , 

where  is the exterior derivative of the 1-form  .

∫S
d ⃗S ⋅ ⃗∇ × ⃗F = ∮ ⃗C (S)

d ⃗l ⋅ ⃗F

Σ
∂Σ

∫Σ
dω = ∮∂Σ

ω

dω ω

Stokes Theorem

Σ

⃗l = ⃗∂ Σ
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• The theorem is summed up by the following equality: 

 , 

where  and  are scalar functions of the position  

• The demonstration is straigthforward: just integrate by parts, using the fact that 

 , and the Gauss (or divergence) theorem: 

  .

∫ d3x (f ∇2g − g ∇2f) = ∮ d ⃗S ⋅ (f ⃗∇ g − g ⃗∇ f)
f g ⃗x

⃗∇ ⋅ ⃗∇ f = ∇2f

∫ d3x ⃗∇ ⋅ ⃗F = ∮ d ⃗S ⋅ ⃗F

Green’s and Gauss’s Theorem
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⃗∇ ⋅ ⃗F |V

⃗F |S

⃗S
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• Let’s consider Green’s theorem on a “pancacke” on the plane , with 
area  and height  . 

• Evidently, the volume of the pancake is  . 

• Now, let’s choose the functions  and  such that we have 

 . Then, clearly, by Green’s theorem we have that: 

 

• Now let’s suppose we can take  

  ,  such that 

   only on the side borders , where 

z = 0
A h

V = A h

f g
f ∇2g − g ∇2f = 1

∫ d3x (f ∇2g − g ∇2f) = V = ∮ d ⃗S ⋅ (f ⃗∇ g − g ⃗∇ f)

f ⃗∇ g − g ⃗∇ f ⊥ ̂z

d ⃗S ⋅ (f ⃗∇ g − g ⃗∇ f) ≠ 0

dS = h dl

Green’s Theorem and Surveying*
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d ⃗S

d ⃗S h
dl
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• In particular, we can choose  and  such that: 

       and          

• This means that: 

   

• Since  , we can write: 

 

• By inspection, the area of the triangle in the figure is   !  Therefore, 

    ,    which is in fact evident!

f g

f ∇2g − g ∇2f = 1 f ⃗∇ g − g ⃗∇ f =
1
2

⃗ρ

A h = ∮ d ⃗S ⋅ (f ⃗∇ g − g ⃗∇ f) = ∫edge

d ⃗S ⋅ ⃗ρ
2

d ⃗S = − h ̂z × d ⃗l

A h = − h∫edge

( ̂z × d ⃗l) ⋅ ⃗ρ
2

= − h∫edge

̂z ⋅ (d ⃗l × ⃗ρ )
2

1
2

d ⃗l × ⃗ρ = − dA ̂z

A = ̂z ⋅ ∮
⃗ρ × d ⃗l
2

Green’s Theorem and Surveying
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• Examples of functions which fulfill the requirement that 

       and        :    

• Choose, for instance: 

    and       

• But any choice of these two functions would work, as long as the 
conditions above are satisfied . Notice that, e.g., one can re-scale  

   ,    .  

• The location of the origin is also arbitrary — it could be even out of the 
area! (Check!) 

• These results allow us to build simple machines* that can measure the   
area inside a closed curve just by following the path along that curve!

f ∇2g − g ∇2f = 1 f ⃗∇ g − g ⃗∇ f =
1
2

⃗ρ

f = 1 g =
x2 + y2

4
=

ρ2

4

f → α f g → g/α

Green’s Theorem and Surveying

ELECTRODYNAMICS I / IFUSP / LECTURE 0 * http://www.ams.org/publicoutreach/feature-column/fcarc-surveying-two

z

y

x

A
d ⃗l

⃗ρ
d ⃗A

7



• Here are some other examples of identities (“theorems”) of 
vector calculus: 

 

 

 

∫S
d ⃗S × ⃗∇ f = ∮C(S)

d ⃗l f

∫V
dV ⃗∇ f = ∮S(V )

d ⃗S f

∫V
dV ⃗∇ × ⃗F = ∮S(V )

d ⃗S × ⃗F

∫V
dV ( ⃗∇ ⋅ ⃗F + ⃗F ⋅ ⃗∇ ) ⃗G = ∮S(V )

(d ⃗S ⋅ ⃗F ) ⃗G

Miscellaneous theorems of vector calculus
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• Let’s go back to Gauss’s Law (the Divergence Theorem): 

  . 

• Consider the Poisson equation: 

     ,    where    is the source of the scalar field  . 

• We can solve this equation exactly if we find the Green’s function: 

    ,    where    is the Dirac delta function (a distribution, actually!) 

 

• Verify: 

∫ d3x ⃗∇ ⋅ ⃗F = ∮ d ⃗S ⋅ ⃗F

∇2ϕ = s( ⃗x ) s( ⃗x ) ϕ

∇2
x G( ⃗x , ⃗x ′ ) = δ( ⃗x − ⃗x ′ ) δ( ⃗x − ⃗x ′ )

⇒ ϕ( ⃗x ) = ∫ d3x′ G( ⃗x , ⃗x ′ ) s( ⃗x ′ )

∇2
x ϕ( ⃗x ) = ∇2

x ∫ d3x′ G( ⃗x , ⃗x ′ ) s( ⃗x ′ ) = ∫ d3x′ δ( ⃗x − ⃗x ′ ) s( ⃗x ′ ) = s( ⃗x )

Gauss’s Law and Green’s function for the 
Poisson Equation
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• So, the question now is: what is the Green’s function for the Poisson equation, 

(*)        

• There are many ways of going about solving for . My favorite way, though totally 
overkill for this problem, is to use the  Fourier transform. I will use this derivation 
here for "pedagogical" effect. 

• Given a function , its Fourier transform is defined as: 

    ,    and the inverse ,    

 

• The relationships above are guaranteed by the fact that: 

    ,    and conversely    

∇2
x G( ⃗x , ⃗x ′ ) = δ( ⃗x − ⃗x ′ )

G

f ( ⃗x )

f̃ ( ⃗k ) = ∫ d3x ei ⃗k ⋅ ⃗x f ( ⃗x )

f ( ⃗x ) = ∫
d3k

(2π)3
e−i ⃗k ⋅ ⃗x f̃ ( ⃗k )

∫ d3x e± i ⃗k ⋅ ⃗x = (2π)3 δ( ⃗k ) ∫
d3k

(2π)3
e± i ⃗k ⋅ ⃗x = δ( ⃗x )

Gauss’s Law and Green’s function for the 
Poisson Equation
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• OK, so let’s try to solve for the Green’s function of the Poisson equation using a Fourier transform. The equation is: 

   

• By looking at the Right-Hand-Side (RHS) of that equation we can "take the hint" that the Green’s function should be a function only of 

the distance  ,  so    . 

• Let’s then write: 

    ,    and conversely ,     .  

• Substituting this last equality into the Poisson equation we have: 

   

• Now, since the RHS of that equation (the source term) is  we can use the Fourier expression for it, arriving at: 

∇2
x G( ⃗x , ⃗x ′ ) = δ( ⃗x − ⃗x ′ )

⃗R = ⃗x − ⃗x ′ G( ⃗x , ⃗x ′ ) = G( ⃗x − ⃗x ′ ) = G( ⃗R )

G̃ ( ⃗k ) = ∫ d3R ei ⃗k ⋅ ⃗R G( ⃗R ) G ( ⃗R ) = ∫
d3k

(2π)3
e−i ⃗k ⋅ ⃗R G̃( ⃗k )

∇2
x G ( ⃗R ) = ∇2

x ∫
d3k

(2π)3
e−i ⃗k ⋅ ⃗R G̃( ⃗k ) = ∇2

x ∫
d3k

(2π)3
e−i ⃗k ⋅( ⃗x − ⃗x ′ ) G̃( ⃗k ) = ∫

d3k
(2π)3

(−k2)e−i ⃗k ⋅ ⃗R G̃( ⃗k )

δ( ⃗R )

∫
d3k

(2π)3
(−k2)e−i ⃗k ⋅ ⃗R G̃( ⃗k ) = δ( ⃗R ) = ∫

d3k
(2π)3

e−i ⃗k ⋅ ⃗R

Gauss’s Law and Green’s function for the 
Poisson Equation
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• Therefore, the integrands must be the same *, which means that: 

         

• Now all we need to do is to integrate this back to “real" (“configuration”) space: 

 

• Let’s use a spherical coordinate system for , and choose the direction of the  axis to lie parallel to the position vector , so that we can write: 

 

• Now using the short notation  , and using the axial symmetry over  we get: 

 

                  ,    where we used Euler’s formula,  .

∫
d3k

(2π)3
(−k2)e−i ⃗k ⋅ ⃗R G̃( ⃗k ) = ∫

d3k
(2π)3

e−i ⃗k ⋅ ⃗R ⇒ G̃( ⃗k ) = −
1
k2

G( ⃗R ) = − ∫
d3k

(2π)3

1
k2

e−i ⃗k ⋅ ⃗R

⃗k kz
⃗R

G( ⃗R ) =
−1

(2π)3 ∫
∞

0
dk k2 ∫

2π

0
dφk ∫

π

0
dθk sin θk ×

1
k2

e−ikR cos θk

μk = cos θk φk

G( ⃗R ) =
−1

(2π)3 ∫
∞

0
dk × 2π × ∫

1

−1
dμk e−ikRμk

=
−1

(2π)2 ∫
∞

0
dk × 2

sin(kR)
kR

eiw = cos w + i sin w

Gauss’s Law and Green’s function for the 
Poisson Equation
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• We are almost done. This last result is in terms of a famous integral: 

    ,    where we wrote   . 

• This last integral is known as the Dirichlet integral (!), and it results in: 

  . 

• We will prove this integral in a minute. For now let’s write here our main result: 

 

• This is, therefore, the Green’s function of the Poisson equation, and it is widely used in Electrostatics, Gravity, diffusion, etc. 

• Notice that one of the more “popular" ways to write this Green’s function is by noting that its gradient is: 

              

Which leads to the basic result of Gauss’s law:      (if  contains the origin!)

G( ⃗R ) =
−1
2π2

1
R ∫

∞

0
dw ×

sin w
w

w = kR

∫
∞

0
dw ×

sin w
w

=
π
2

G( ⃗R ) =
−1
4π

1
R

⃗∇ G( ⃗R ) =
1

4π

⃗R
R3

⟹ ⃗∇2
RG( ⃗R ) = ⃗∇R ⋅ [ ⃗∇RG( ⃗R )] = ⃗∇R ⋅ [ 1

4π

⃗R
R3 ] = δ( ⃗R )

∫V
d3R ⃗∇R ⋅ [ 1

4π

⃗R
R3 ] = ∮S(V )

d2 ⃗S ⋅ [ 1
4π

⃗R
R3 ] = 1 V

Gauss’s Law and Green’s function for the 
Poisson Equation
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• Now let’s get back to the Dirichlet integral: 

  . 

• Again, as in so many of these results, there are many proofs — one of them by Feynman himself! Let’s write the function: 

 

• In order to find Dirichlet’s integral we have to compute  . But if we differentiate  with respect to  we get: 

 

• Now, this integral is trivial to compute using Euler’s formula, with the result that: 

             

• The integration constant can be found by noting that, from the definition of ,  for  we have  . Since  we have: 

                    .

∫
∞

0
dw ×

sin w
w

=
π
2

f (a) = ∫
∞

0
dw e−wa sin w

w

f (0) f (a) a

df
da

= ∫
∞

0
dw (−w) e−wa sin w

w
= − ∫

∞

0
dw e−wa sin w

df
da

= −
1

1 + a2
⟹ f (a) = ∫ da

df
da

= − ∫ da
1

1 + a2
= − arctan a + C

f (a) a → ∞ f → 0 lim
a→∞

arctan a = π /2

f (a) = − arctan a +
π
2

⟹ f (0) =
π
2

Gauss’s Law and Green’s function for the 
Poisson Equation
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• Therefore, one of the main conclusions we draw from today’s lecture is that the Poisson equation: 

 

can be solved as: 

    ,    where 

    ,    which solves the equation         

• Equivalently, we can also state that the first integral of the identities above can be written in terms of: 

∇2ϕ = s( ⃗x )

ϕ( ⃗x ) = ∫ d3x′ G( ⃗x , ⃗x ′ ) s( ⃗x ′ )

G =
−1
4π

1
| ⃗x − ⃗x ′ |

∇2
x G( ⃗x , ⃗x ′ ) = δ( ⃗x − ⃗x ′ )

⃗∇2
xG( ⃗x − ⃗x ′ ) = ⃗∇x ⋅ [ ⃗∇xG( ⃗x − ⃗x ′ )] = ⃗∇x ⋅ [ 1

4π
⃗x − ⃗x ′ 

| ⃗x − ⃗x ′ |3 ] = δ( ⃗R )

Gauss’s Law , Green’s function and all that
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• In other words, the basic equation of Electrostatics, Gauss’s Law: 

    ,    where    is the charge density and     , 

has the solution: 

    , 

where the charge density can be a continuous function (a distribution), or it can be a 
sum of point charges: 

 

• Conversely, one can integrate these equations to find the integral form of Gauss’s Law: 

⃗∇ ⋅ ⃗E = − ∇2ϕ =
1
ϵ0

ρ( ⃗x ) ρ ⃗E = − ⃗∇ ϕ

ϕ( ⃗x ) =
1

4π ϵ0 ∫ d3x′ 
ρ( ⃗x ′ )

| ⃗x − ⃗x ′ |

ρ( ⃗x ) = ∑
i

qi δ( ⃗x − ⃗x i)

∫V
d3x ⃗∇ ⋅ ⃗E = ∮S(V )

d ⃗S ⋅ ⃗E = ∫V
d3x

ρ
ϵ0

= QV

Gauss’s Law & Electrostatics
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• The Helmholtz Theorem 

• The electric potential, and the energy of the electric field 

• Boundary conditions 

Reading material:  

• Jackson, Ch. 1 

• See also Zangwill, Ch. 1 (Helmholtz Th.)

Next lecture:
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