Electrodynamics

Preamble:
Green’s Theorem
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AN ESSAY

Green’s Theorem

MATHEMATICAL ANALYSIS TO THE THEORIES OF

 Green’s theorem is a statement in 2D, relating a line integral
over a closed loop to a surface integral. Given two scalar

functions fand g of the 2D position X, we have: GEORGE GREEN,

Jd 0 .
J d*x Y _%)_ ng (gdx+fdy). O s B
S ox 0y Yol e

C (S) D % BENNETT xl ‘\:l\‘_llu:‘;_ -:;..:u-. NOPTINGHALS
- This theorem is in fact a special case of the Kelvin-Stokes | y
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Stokes Theorem

 The Kelvin-Stokes Theorem is a particular (3D, Euclidean) case:

Jd?ﬁ’xféﬂg dl - F
. -

C(S)

- The Generalized Stokes Theorem , also known as the Stokes-
Cartan Theorem, states that, for a“bulk" 2 and its “boundary"
02, the integral of:

[da)=§F ny
> 0%

where dw is the exterior derivative of the 1-form w .
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Green’s and Gauss’s Theorem

+ The theorem is summed up by the following equality:
Jd3x (f VZg—gV*f) = ﬂﬁﬁ. (ng — g7f> ,

where fand g are scalar functions of the position X’

- The demonstration is straigthforward: just integrate by parts, using the fact that

—

V- V>f = sz , and the Gauss (or divergence) theorem:

Jd%vﬁ F>=@+dS>- F .
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Green’s Theorem and Surveying*

* Let’s consider Green's theorem on a“pancacke” on the plane z = 0, with
area A and height /1.

* Evidently, the volume of the pancakeisV=Ah.

- Now, let’s choose the functions fand g such that we have

f V?g — g V?f = 1.Then, clearly, by Green’s theorem we have that:

[d3x (szg —szf) =V = (JEd? (fﬁg —gi)
* Now let’s suppose we can take

ng—giJ_ﬁ , such that

ds - (f?g —g Vf) # 0 only on the side borders , where

ds = hdi dl
dSy QI
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Green’s Theorem and Surveying

Z
A
* In particular, we can choose fand g such that:
— — 1
fVig—gVif=1 and fVg-gVf==7 .
2 (1A
* This means that: —
Ah=<JEdS-<ng—gi>=J i dl
edge 2 Ih
X
* Sinced S = — hZ Xdl,we can write;

2 xdl)- P 2 dlx 7
Ah:_hJ (Zxdl)-p =_hJ 2-(dlXp)
edge 2 edge 2

1 - _
. By inspection, the area of the triangle in the figure is Edl X p = —dA Z! Therefore,

. [P xdl e |
A =7 > . which is in fact evident!
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Green’s Theorem and Surveying

4
« Examples of functions which fulfill the requirement that t
fVig—gVif=1 and fVg—-gVfi=—p: R
9) *dA
- Choose, for instance: P 4
o ; ¥2 4+ yz pz dl
= an = —————=
8 A A X
- But any choice of these two functions would work, as long as the —
conditions above are satisfied . Notice that, e.g., one can re-scale
support wheel

f—) O{f y & — g/a ' pivot

- The location of the origin is also arbitrary — it could be even out of the nessuring AR giracer
area! (Check!)

* These results allow us to build simple machines* that can measure the
area inside a closed curve just by following the path along that curve!

M pole
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Miscellaneous theorems of vector calculus

 Here are some other examples of identities (“theorems”) of t
vector calculus:
> > - *dx
J dS X Vf= dlf >
S C(S) A
dl
dVVf = dS f x
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Gauss’s Law and Green’s function for the
Poisson Equation

* Let’s go back to Gauss’s Law (the Divergence Theorem):
{d%??’:cﬁd?. F . e

- Consider the Poisson equation: g

-0.5

V¢ =s(x) , where s(X) is the source of the scalar field ¢ . 05 0

- We can solve this equation exactly if we find the Green’s function:

V2G(X, %) =8(x —X") , where §(X — X) is the Dirac delta function (a distribution, actually!)
S W) = Jd%ac;(?, ) 5(F)
> Verify:

V2h(F) = V2 [Cﬂx'c;(?, ) $(F) = [d3x’ 5(F — T)s(¥") = 8(T)
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Gauss’s Law and Green’s function for the
Poisson Equation

* So, the question now is: what is the Green'’s function for the Poisson equation,

® V2G(X,x)=6Fx -7
There are many ways of going about solving for G. My favorite way, though totally
overkill for this problem, is to use the Fourier transform. | will use this derivation

here for "pedagogical” effect. i,

- Given a function (%), its Fourier transform is defined as:

J?(?) = d3xeif°7f(7) , and the inverse,

— ik X
@)= | Gz e B

/ frequency

* The relationships above are guaranteed by the fact that:

Jd3x etk T - 27)38(k) , and conversely J
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Gauss’s Law and Green’s function for the
Poisson Equation

* OK, so let’s try to solve for the Green'’s function of the Poisson equation using a Fourier transform. The equation is:
V2G(X, X)) =6(x — %)

* By looking at the Right-Hand-Side (RHS) of that equation we can "take the hint" that the Green’s function should be a function only of

thedistance R = ¥ — X7, 50 G(¥, X) = G(X = ") = G(R) .

* Let's then write:

~ — 3 ?E* — — d3k —?ﬁ ~ —>
G(k)=|d’Ré" G(R) , andconversely, G(R) = 20 ! G(k)
/4
* Substituting this last equality into the Poisson equation we have:
— Pk o — Bk - Bk e
ViG(R) = V%[ e RG(k) = V,%J e T G(k) = J (=kDe* K G(k)
(27) (27) (2m)?

+ Now, since the RHS of that equation (the source term) is 6( R ) we can use the Fourier expression for it, arriving at:

3 N . 3 .
[ e 608y = ) = [ L
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Gauss’s Law and Green’s function for the
Poisson Equation

* Therefore, the integrands must be the same *, which means that:

&’k 2N,—ik-R &L Ik 1% ~ T 1
J(2”)3 (—k)e G(k)—J(zﬂ)3e = G(k) =-a

* Now all we need to do is to integrate this back to “real" (“configuration”) space:

— 3 1 Y
GR) =— |2 L -wT
2n)3 k2

Let’s use a spherical coordinate system for k, and choose the direction of the k_ axis to lie parallel to the position vector R, so that we can write:

R _1 o0 2w 1 1 '
G(R) = dkk*| d dO, sin, x —ekRcosO,
(R) (27)? L [o P L k k2 €

» Now using the short notation g, = cos 8,, and using the axial symmetry over ¢, we get:

. —1 (® ! |
G(R) = J dk X 2n X[ dM e—lkR,uk
2n) ], -1 ¢
—1 °° sin(kR) . o
= 202 dk X 2 ,  where we used Euler’s formula, ¢’V = cosw +isinw.
)~ Jo
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Gauss’s Law and Green’s function for the
Poisson Equation

* We are almost done. This last result is in terms of a famous integral:

— -11 (® sin
G(R) = —— [ dw X il , Where we wrote w = kR.
27’ R ), w

* This last integral is known as the Dirichlet integral (!), and it results in:

o )
sIn w T
J dw X = — .
0 w 2

* We will prove this integral in a minute. For now let’s write here our main result:
— -11

G(R) = ——

47 R

* This is, therefore, the Green’s function of the Poisson equation, and it is widely used in Electrostatics, Gravity, diffusion, etc.

* Notice that one of the more “popular" ways to write this Green’s function is by noting that its gradient is:

VG(R) = -2z = ViG(E®) = Vy- lVRG(R)] =V, [——] = 5R)

3 — l E) 2—> 1 E) . . . .
d°’RVp:- |——| = d°S - |——| = 1 (ifVcontains the origin!)
S(V)

Which leads to the basic result of Gauss’s law: [
4 R3

Vv
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Gauss’s Law and Green’s function for the
Poisson Equation

* Now let’s get back to the Dirichlet integral:

w .
sinw 1«
[ dw X = — .
0 w 2

* Again, as in so many of these results, there are many proofs — one of them by Feynman himself! Let’s write the function:

()

fla) = J dwe™ ™

0 w

sin w

» In order to find Dirichlet’s integral we have to compute f(0) . But if we differentiate f(a) with respect to a we get:

df
da

°° g SIDW °° Cvd
= dw(—w)e = — dwe sin w
0 w 0

* Now, this integral is trivial to compute using Euler’s formula, with the result that:

ﬂ_ 1

da  1+a2

d 1
= f(a)=Jda—f=—Jda 5 = —arctana + C |
da l+a arctan(x) 2T

. The integration constant can be found by noting that, from the definition of f(a), fora — oo we have f — 0.Since lim arctan a = 7/2 we have:

a—>oo

f(a)=—arctana+§ — f(O)zg.
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Gauss’s Law , Green’s function and all that

* Therefore, one of the main conclusions we draw from today’s lecture is that the Poisson equation:
V2 = s(X)

can be solved as:

¢(x)_[d3 'G(X, X s(X") , where

—1 |
G = e which solves the equation V2G(X,x") = 6(x — X)
T

- Equivalently, we can also state that the first integral of the identities above can be written in terms of:

_1 . T

X — X

VG(X-F) =V, [v G(F — *’)]:Vx. _| = 8(R)
dr | X = X"
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Gauss’s Law & Electrostatics

* In other words, the basic equation of Electrostatics, Gauss’s Law:

—_— — 1 — —
V.E=-V?)=—p(X) , where p isthechargedensityand E = — V¢ ,
€

0
has the solution:
R 1 X
W) = [d3x' )
4r € | X — x|

where the charge density can be a continuous function (a distribution), or it can be a
sum of point charges:

p(X) =) ¢8(F - %)

-----------------------------

* Conversely, one can integrate these equations to find the integral form of Gauss’s Law: q
—_— — —_ — p QN OIS
[ 4V E=¢ a5 E=|axl-g, e
0 :
\% S(V) 14 : q q
Q =3¢
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NeXxt lecture:

* The Helmholtz Theorem
 The electric potential, and the energy of the electric field

 Boundary conditions

Reading material:
» Jackson, Ch. 1

 See also Zangwill, Ch. 1 (Helmholtz Th.)
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