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Ancient genomic sequences have started to reveal the origin and the
demographic impact of farmers from the Neolithic period spread-
ing into Europe1–3. The adoption of farming, stock breeding and
sedentary societies during the Neolithic may have resulted in adapt-
ive changes in genes associated with immunity and diet4. However,
the limited data available from earlier hunter-gatherers preclude
an understanding of the selective processes associated with this cru-
cial transition to agriculture in recent human evolution. Here we
sequence an approximately 7,000-year-old Mesolithic skeleton dis-
covered at the La Braña-Arintero site in León, Spain, to retrieve a
complete pre-agricultural European human genome. Analysis of
this genome in the context of other ancient samples suggests the
existence of a common ancient genomic signature across western
and central Eurasia from the Upper Paleolithic to the Mesolithic.
The La Braña individual carries ancestral alleles in several skin pig-
mentation genes, suggesting that the light skin of modern Europeans
was not yet ubiquitous in Mesolithic times. Moreover, we provide
evidence that a significant number of derived, putatively adaptive
variants associated with pathogen resistance in modern Europeans
were already present in this hunter-gatherer.

Next-generation sequencing (NGS) technologies are revolution-
izing the field of ancient DNA (aDNA), and have enabled the sequen-
cing of complete ancient genomes5,6, such as that of Ötzi, a Neolithic
human body found in the Alps1. However, very little is known of the
genetic composition of earlier hunter-gatherer populations from the
Mesolithic period (circa 10,000–5,000 years before present, BP; imme-
diately preceding the Neolithic period).

The Iberian site called La Braña-Arintero was discovered in 2006
when two male skeletons (named La Braña 1 and 2) were found in a
deep cave system, 1,500 m above sea level in the Cantabrian mountain
range (León, Northwestern Spain) (Fig. 1a). The skeletons were dated
to approximately 7,000 years BP (7,940–7,690 calibrated BP)7. Because
of the cold environment and stable thermal conditions in the cave, the
preservation of these specimens proved to be exceptional (Fig. 1b). We
identified a tooth from La Braña 1 with high human DNA content (48.4%)
and sequenced this specimen to a final effective genomic depth-of-
coverage of 3.403 (Extended Data Fig. 1).

We used several tests to assess the authenticity of the genome sequence
and to determine the amount of potential modern human contamina-
tion. First, we observed that sequence reads from both the mitochondrial
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Ötzi

Ajv70Ire8

Gok4

Ajv52

a b

c

La BraLa Braña-Arinteroa-Arintero
sitesite

La Braña-Arintero
site

Figure 1 | Geographic location and genetic affinities of the La Braña 1
individual. a, Location of the La Braña-Arintero site (Spain). b, The La Braña 1
skeleton as discovered in 2006. c, PCA based on the average of the Procrustes
transformations of individual PCAs with La Braña 1 and each of the five
Neolithic samples1,3. The reference populations are the Finnish HapMap,
FINHM and POPRES. Population labels with labelling of ref. 12 with the
addition of FI (Finns) or LFI (late-settlement Finns). Ajv70, Ajv52, Ire8 and
Gok4 are Scandinavian Neolithic hunter-gatherers and a farmer, respectively3.
Ötzi is the Tyrolean Ice Man1.
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DNA (mtDNA) and the nuclear DNA of La Braña 1 showed the typical
ancient DNA misincorporation patterns that arise from degradation of
DNA over time8 (Extended Data Fig. 2a, b). Second, we showed that the
observed number of human DNA fragments was negatively correlated
with the fragment length (R2 . 0.92), as expected for ancient degraded
DNA, and that the estimated rate of DNA decay was low and in
agreement with predicted values9 (Extended Data Fig. 2c, d). We then
estimated the contamination rate in the mtDNA genome, assembled to
a high depth-of-coverage (913), by checking for positions differing
from the mtDNA genome (haplogroup U5b2c1) that was previously
retrieved with a capture method2. We obtained an upper contamina-
tion limit of 1.69% (0.75–2.6%, 95% confidence interval, CI) (Supplemen-
tary Information). Finally, to generate a direct estimate of nuclear DNA
contamination, we screened for heterozygous positions (among reads
with .43 coverage) in known polymorphic sites (Single Nucleotide
Polymorphism Database (dbSNP) build 137) at uniquely mapped sec-
tions on the X chromosome6 (Supplementary Information). We found
that the proportion of false heterozygous sites was 0.31%. Together
these results suggest low levels of contamination in the La Braña 1
sequence data.

To investigate the relationship to extant European samples, we con-
ducted a principal component analysis (PCA)10 and found that the
approximately 7,000-year-old Mesolithic sample was divergent from
extant European populations (Extended Data Fig. 3a, b), but was placed
in proximity to northern Europeans (for example, samples from Sweden
and Finland)11–14. Additional PCAs and allele-sharing analyses with
ancient Scandinavian specimens3 supported the genetic similarity of
the La Braña 1 genome to Neolithic hunter-gatherers (Ajv70, Ajv52,
Ire8) relative to Neolithic farmers (Gok4, Ötzi) (Fig. 1c, Extended Data
Figs 3c and 4). Thus, this Mesolithic individual from southwestern
Europe represents a formerly widespread gene pool that seems to be
partially preserved in some modern-day northern European popula-
tions, as suggested previously with limited genetic data2,3. We subse-
quently explored the La Braña affinities to an ancient Upper Palaeolithic
genome from the Mal’ta site near Lake Baikal in Siberia15. Outgroup f3

and D statistics16,17, using different modern reference populations, sup-
port that Mal’ta is significantly closer to La Braña 1 than to Asians or
modern Europeans (Extended Data Fig. 5 and Supplementary Infor-
mation). These results suggest that despite the vast geographical dis-
tance and temporal span, La Braña 1 and Mal’ta share common genetic
ancestry, indicating a genetic continuity in ancient western and central
Eurasia. This observation matches findings of similar cultural artefacts
across time and space in Upper Paleolithic western Eurasia and Siberia,
particularly the presence of anthropomorphic ‘Venus’ figurines that
have been recovered from several sites in Europe and Russia, including
the Mal’ta site15. We also compared the genome-wide heterozygosity of

the La Braña 1 genome to a data set of modern humans with similar
coverage (3–43). The overall genomic heterozygosity was 0.042%,
lower than the values observed in present day Asians (0.046–0.047%),
Europeans (0.051–0.054%) and Africans (0.066–0.069%) (Extended
Data Fig. 6a). The effective population size, estimated from heterozyg-
osity patterns, suggests a global reduction in population size of approxi-
mately 20% relative to extant Europeans (Supplementary Information).
Moreover, no evidence of tracts of autozygosity suggestive of inbreed-
ing was observed (Extended Data Fig. 6b).

To investigate systematically the timing of selection events in the
recent history of modern Europeans, we compared the La Braña gen-
ome to modern populations at loci that have been categorized as of
interest for their role in recent adaptive evolution. With respect to two
recent well-studied adaptations to changes in diet, we found the ancient
genome to carry the ancestral allele for lactose intolerance4 and approxi-
mately five copies of the salivary amylase (AMY1) gene (Extended Data
Fig. 7 and Supplementary Information), a copy number compatible
with a low-starch diet18. These results suggest the La Braña hunter-
gatherer was poor at digesting milk and starch, supporting the hypo-
theses that these abilities were selected for during the later transition to
agriculture.

To expand the survey, we analysed a catalogue of candidate signals
for recent positive selection based on whole-genome sequence vari-
ation from the 1000 Genomes Project13, which included 35 candidate
non-synonymous variants, ten of which were detected uniquely in the
CEU (Utah residents with northern and western European ancestry)
sample 19. For each variant we assessed whether the Mesolithic genome
carried the ancestral or derived (putatively adaptive) allele.

Of the ten variants, the Mesolithic genome carried the ancestral and
non-selected allele as a homozygote in three regions: C12orf29 (a gene with
unknown function), SLC45A2 (rs16891982) and SLC24A5 (rs1426654)
(Table 1). The latter two variants are the two strongest known loci
affecting light skin pigmentation in Europeans20–22 and their ancestral
alleles and associated haplotypes are either absent or segregate at very
low frequencies in extant Europeans (3% and 0% for SLC45A2 and
SLC24A5, respectively) (Fig. 2). We subsequently examined all genes
known to be associated with pigmentation in Europeans22, and found
ancestral alleles in MC1R, TYR and KITLG, and derived alleles in
TYRP1, ASIP and IRF4 (Supplementary Information). Although the
precise phenotypic effects cannot currently be ascertained in a European
genetic background, results from functional experiments20 indicate that
the allelic combination in this Mesolithic individual is likely to have
resulted in dark skin pigmentation and dark or brown hair. Further
examination revealed that this individual carried the HERC2 rs12913832*C
single nucleotide polymorphism (SNP) and the associated homozygous
haplotype spanning the HERC2–OCA2 locus that is strongly associated

Table 1 | Mesolithic genome allelic state at 10 nonsynonymous variants recently selected in Europeans
Allelic state Gene Name SNP Amino-acid change Function

La Braña 1 carries the
derived allele

PTX4 Pentraxin 4 rs2745098 Arg281Lys May be involved in innate
immunity

UHRF1BP1 UHRF1 binding protein 1 rs11755393 Gln454Arg Risk locus for systemic
lupus erythematosus

GPATCH1 G patch domain containing 1 rs10421769 Leu520Ser Receptor for OmpA expressed
by E. coli

WWOX WW domain-containing oxidoreductase rs12918952 Ala179Thr Acts as a tumour suppressor and
has a role in apoptosis

CCDC14 Coiled-coil domain-containing protein
14

rs17310144 Thr365Pro Unknown

La Braña 1 carries both
the ancestral and the

derived allele

SETX Senataxin rs1056899 Val2587Ile Involved in spinocerebellar ataxia
and amyotrophic lateral sclerosis

TDRD12 Tudor domain containing 12 rs11881633 Glu413Lys Unknown
La Braña 1 retains the

ancestral allele
C12orf29 Chromosome 12 open reading frame 29 rs9262 Val238Leu Unknown

SLC45A2 Solute carrier family 45, member 2 rs16891982 Leu374Phe Associated with skin pigmentation
SLC24A5 Solute carrier family 24, member 5 rs1426654 Ala111Thr Associated with skin pigmentation
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with blue eye colour23. Moreover, a prediction of eye colour based on
genotypes at additional loci using HIrisPlex24 produced a 0.823 maximal
and 0.672 minimal probability for being non-brown-eyed (Supplemen-
tary Information). The genotypic combination leading to a predicted
phenotype of dark skin and non-brown eyes is unique and no longer
present in contemporary European populations. Our results indicate
that the adaptive spread of light skin pigmentation alleles was not
complete in some European populations by the Mesolithic, and that
the spread of alleles associated with light/blue eye colour may have
preceded changes in skin pigmentation.

For the remaining loci, La Braña 1 displayed the derived, putatively
adaptive variants in five cases, including three genes, PTX4, UHRF1BP1
and GPATCH1 (ref. 19), involved in the immune system (Table 1 and
Extended Data Fig. 8). GPATCH1 is associated with the risk of bacterial
infection. We subsequently determined the allelic states in 63 SNPs
from 40 immunity genes with previous evidence for positive selection
and for carrying polymorphisms shown to influence susceptibility to
infections in modern Europeans (Supplementary Information). La
Braña 1 carries derived alleles in 24 genes (60%) that have a wide range
of functions in the immune system: pattern recognition receptors,
intracellular adaptor molecules, intracellular modulators, cytokines
and cytokine receptors, chemokines and chemokine receptors and
effector molecules. Interestingly, four out of six SNPs from the first
category are intracellular receptors of viral nucleic acids (TLR3, TLR8,
IFIH1 (also known as MDA5) and LGP2)25.

Finally, to explore the functional regulation of the genome, we also
assessed the La Braña 1 genotype at all expression quantitative trait loci
(eQTL) regions associated to positive selection in Europeans (Sup-
plementary Information). The most interesting finding is arguably the
predicted overexpression of eight immunity genes (36% of those with

described eQTLs), including three Toll-like receptor genes (TLR1, TLR2
and TLR4) involved in pathogen recognition26.

These observations suggest that the Neolithic transition did not drive
all cases of adaptive innovation on immunity genes found in modern
Europeans. Several of the derived haplotypes seen at high frequency
today in extant Europeans were already present during the Mesolithic,
as neutral standing variation or due to selection predating the Neolithic.
De novo mutations that increased in frequency rapidly in response to
zoonotic infections during the transition to farming should be iden-
tified among those genes where La Braña 1 carries ancestral alleles.

To confirm whether the genomic traits seen at La Braña 1 can be
generalized to other Mesolithic populations, analyses of additional ancient
genomes from central and northern Europe will be needed. Nevertheless,
this genome sequence provides the first insight as to how these hunter-
gatherers are related to contemporary Europeans and other ancient
peoples in both Europe and Asia, and shows how ancient DNA can shed
light on the timing and nature of recent positive selection.

METHODS SUMMARY
DNA was extracted from the La Braña 1 tooth specimen with a previously pub-
lished protocol2. Indexed libraries were built from the ancient extract and sequenced
on the Illumina HiSeq platform. Reads generated were mapped with BWA27 to the
human reference genome (NCBI 37, hg19) after primer trimming. A metagenomic
analysis and taxonomic identification was generated with the remaining reads
using BLAST 2.2.271 and MEGAN4 (ref. 28) (Extended Data Fig. 9). SNP calling
was undertaken using a specific bioinformatic pipeline designed to account for
ancient DNA errors. Specifically, the quality of misincorporations likely caused by
ancient DNA damage was rescaled using the mapDamage2.0 software29, and a set
of variants with a minimum read depth of 4 was produced with GATK30. Analyses
including PCA10, Outgroup f3

16 and D statistics17 were performed to determine the
population affinities of this Mesolithic individual (Supplementary Information).
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Figure 2 | Ancestral variants around the SLC45A2 (rs16891982, above) and
SLC24A5 (rs1426654, below) pigmentation genes in the Mesolithic genome.
The SNPs around the two diagnostic variants (red arrows) in these two genes
were analysed. The resulting haplotype comprises neighbouring SNPs that are

also absent in modern Europeans (CEU) (n5112) but present in Yorubans
(YRI) (n5113). This pattern confirms that the La Braña 1 sample is older than
the positive-selection event in these regions. Blue, ancestral; red, derived.
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Extended Data Figure 1 | Alignment and coverage statistics of the La Braña
1 genome. a, Alignment summary of the La Braña 1 sequence data to hg19
assembly. b, Coverage statistics per chromosome. The percentage of the

chromosome covered by at least one read is shown, as well as the mean read
depth of all positions and positions covered by at least one read. c, Percentage of
the genome covered at different minimum read depths.
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Extended Data Figure 2 | Damage pattern of La Braña 1 sequenced reads.
a, b, Frequencies of C to T (red) and G to A (blue) misincorporations at the 59

end (left) and 39 end (right) are shown for the nuclear DNA (nuDNA) (a)
and mtDNA (b). c, d, Fragment length distribution of reads mapping to the

nuclear genome (c) and mtDNA genome (d). Coefficients of determination
(R2) for an exponential decline are provided for the four different data sets.
The exponential coefficients for the four data sets correspond to the damage
fraction (l); e is the base of the natural logarithm.
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Extended Data Figure 3 | Genetic affinities of the La Braña 1 genome.
a, PCA of the La Braña 1 SNP data and the 1000 Genomes Project European
individuals. b, PCA of La Braña 1 versus world-wide data genotyped with the
Illumina Omni 2.5M array. Continental terms make reference to each Omni
population grouping as follows: Africans, Yoruba and Luyha; Asians, Chinese
(Beijing, Denver, South, Dai), Japanese and Vietnamese; Europeans, Iberians,

Tuscans, British, Finns and CEU; and Indian Gujarati from Texas. c, Each panel
shows PC1 and PC2 based on the PCA of one of the ancient samples with the
merged POPRES1FINHM sample, before Procrustes transformation. The
ancient samples include the La Braña 1 sample and four Neolithic samples from
refs 1 and 3.
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Extended Data Figure 4 | Allele-sharing analysis. Each panel shows the
allele-sharing of a particular Neolithic sample from refs 1 and 3 with La Braña 1
sample. The sample IDs are presented in the upper left of each panel (Ajv52,

Ajv70, Ire8, Gok4 and Ötzi). In the upper right of each panel, the Pearson’s
correlation coefficient is given with the associated P value.
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Extended Data Figure 5 | Pairwise outgroup f3 statistics. a, Sardinian versus Karitiana. b, Sardinian versus Han. c, La Braña 1 versus Mal’ta. d, Sardinian versus
Mal’ta. e, La Braña 1 versus Karitiana. The solid line represents y 5 x.
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Extended Data Figure 6 | Analysis of heterozygosity. a, Heterozygosity
distributions of La Braña 1 and modern individuals with similar coverage from
the 1000 Genomes Project (using 1-Mb windows with 200 kb overlap). CEU,
northern- and western-European ancestry. CHB, Han Chinese; FIN, Finns;

GBR, Great Britain; IBS, Iberians; JPT, Japanese; LWK, Luhya; TSI, Tuscans;
YRI, Yorubans. b, Heterozygosity values in 1-Mb windows (with 200 kb
overlap) across each chromosome.
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Extended Data Figure 7 | Amylase copy-number analysis. a, Size
distribution of diploid control regions. b, AMY1 gene copy number in La Braña
1. CN, copy number; DGV, Database of Genomic Variation. c, La Braña 1
AMY1 gene copy number in the context of low- and high-starch diet
populations. d, Classification of low- and high-starch diet individuals based on

AMY1 copy number. Using data from ref. 18, individuals were classified as in
low-starch (less or equal than) or high-starch (higher than) categories and the
fraction of correct predictions was calculated. In addition, we calculated the
random expectation and 95% limit of low-starch-diet individuals classified
correctly at each threshold value.
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Extended Data Figure 8 | Neighbouring variants for three diagnostic SNPs
related to immunity. a, rs2745098 (PTX4 gene). b, rs11755393 (UHRF1BP1
gene). c, rs10421769 (GPATCH1 gene). For PTX4, UHRF1BP1 and GPATCH1,

La Braña 1 displays the derived allele and the European-specific haplotype,
indicating that the positive-selection event was already present in the
Mesolithic. Blue, ancestral; red, derived.
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Extended Data Figure 9 | Metagenomic analysis of the non-human reads.
a, Domain attribution of the reads that did not map to hg19. b, Proportion of

different Bacteria groups. c, Proportion of different types of Proteobacteria.
d, Microbial attributes of the microbes present in the La Braña 1 sample.
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