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Derived immune and ancestral pigmentation alleles
in a 7,000-year-old Mesolithic European
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Ancient genomic sequences have started to reveal the origin and the
demographic impact of farmers from the Neolithic period spread-
ing into Europe'~. The adoption of farming, stock breeding and
sedentary societies during the Neolithic may have resulted in adapt-
ive changes in genes associated with immunity and diet*. However,
the limited data available from earlier hunter-gatherers preclude
an understanding of the selective processes associated with this cru-
cial transition to agriculture in recent human evolution. Here we
sequence an approximately 7,000-year-old Mesolithic skeleton dis-
covered at the La Brafa-Arintero site in Leon, Spain, to retrieve a
complete pre-agricultural European human genome. Analysis of
this genome in the context of other ancient samples suggests the
existence of a common ancient genomic signature across western
and central Eurasia from the Upper Paleolithic to the Mesolithic.
The La Braiia individual carries ancestral alleles in several skin pig-
mentation genes, suggesting that the light skin of modern Europeans
was not yet ubiquitous in Mesolithic times. Moreover, we provide
evidence that a significant number of derived, putatively adaptive
variants associated with pathogen resistance in modern Europeans
were already present in this hunter-gatherer.

Next-generation sequencing (NGS) technologies are revolution-
izing the field of ancient DNA (aDNA), and have enabled the sequen-
cing of complete ancient genomes*®, such as that of Otzi, a Neolithic
human body found in the Alps'. However, very little is known of the
genetic composition of earlier hunter-gatherer populations from the
Mesolithic period (circa 10,000-5,000 years before present, Bp; imme-
diately preceding the Neolithic period).

The Iberian site called La Brafia-Arintero was discovered in 2006
when two male skeletons (named La Brafa 1 and 2) were found in a
deep cave system, 1,500 m above sea level in the Cantabrian mountain
range (Ledn, Northwestern Spain) (Fig. 1a). The skeletons were dated
to approximately 7,000 years BP (7,940-7,690 calibrated Bp)”. Because
of the cold environment and stable thermal conditions in the cave, the
preservation of these specimens proved to be exceptional (Fig. 1b). We
identified a tooth from La Brafa 1 with high human DNA content (48.4%)
and sequenced this specimen to a final effective genomic depth-of-
coverage of 3.40X (Extended Data Fig. 1).

We used several tests to assess the authenticity of the genome sequence
and to determine the amount of potential modern human contamina-
tion. First, we observed that sequence reads from both the mitochondrial
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Figure 1 | Geographic location and genetic affinities of the La Braiia 1
individual. a, Location of the La Brafia- Arintero site (Spain). b, The La Brana 1
skeleton as discovered in 2006. ¢, PCA based on the average of the Procrustes
transformations of individual PCAs with La Brana 1 and each of the five
Neolithic samples'”’. The reference populations are the Finnish HapMap,
FINHM and POPRES. Population labels with labelling of ref. 12 with the
addition of FI (Finns) or LFI (late-settlement Finns). Ajv70, Ajv52, Ire8 and
Gok4 are Scandinavian Neolithic hunter-gatherers and a farmer, respectively”.
Otzi is the Tyrolean Ice Man'.
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DNA (mtDNA) and the nuclear DNA of La Brafia 1 showed the typical
ancient DNA misincorporation patterns that arise from degradation of
DNA over time® (Extended Data Fig. 2a, b). Second, we showed that the
observed number of human DNA fragments was negatively correlated
with the fragment length (R* > 0.92), as expected for ancient degraded
DNA, and that the estimated rate of DNA decay was low and in
agreement with predicted values®’ (Extended Data Fig. 2c, d). We then
estimated the contamination rate in the mtDNA genome, assembled to
a high depth-of-coverage (91X), by checking for positions differing
from the mtDNA genome (haplogroup U5b2c1) that was previously
retrieved with a capture method”>. We obtained an upper contamina-
tion limit of 1.69% (0.75-2.6%, 95% confidence interval, CI) (Supplemen-
tary Information). Finally, to generate a direct estimate of nuclear DNA
contamination, we screened for heterozygous positions (among reads
with >4X coverage) in known polymorphic sites (Single Nucleotide
Polymorphism Database (dbSNP) build 137) at uniquely mapped sec-
tions on the X chromosome® (Supplementary Information). We found
that the proportion of false heterozygous sites was 0.31%. Together
these results suggest low levels of contamination in the La Brafa 1
sequence data.

To investigate the relationship to extant European samples, we con-
ducted a principal component analysis (PCA)'® and found that the
approximately 7,000-year-old Mesolithic sample was divergent from
extant European populations (Extended Data Fig. 3a, b), but was placed
in proximity to northern Europeans (for example, samples from Sweden
and Finland)"'™". Additional PCAs and allele-sharing analyses with
ancient Scandinavian specimens’ supported the genetic similarity of
the La Brafia 1 genome to Neolithic hunter-gatherers (Ajv70, Ajv52,
Ire8) relative to Neolithic farmers (Gok4, Otzi) (Fig. 1¢, Extended Data
Figs 3c and 4). Thus, this Mesolithic individual from southwestern
Europe represents a formerly widespread gene pool that seems to be
partially preserved in some modern-day northern European popula-
tions, as suggested previously with limited genetic data®’. We subse-
quently explored the La Brafia affinities to an ancient Upper Palaeolithic
genome from the Malta site near Lake Baikal in Siberia'®. Outgroup f;
and D statistics'®", using different modern reference populations, sup-
port that Mal’ta is significantly closer to La Brafia 1 than to Asians or
modern Europeans (Extended Data Fig. 5 and Supplementary Infor-
mation). These results suggest that despite the vast geographical dis-
tance and temporal span, La Brafia 1 and Mal’ta share common genetic
ancestry, indicating a genetic continuity in ancient western and central
Eurasia. This observation matches findings of similar cultural artefacts
across time and space in Upper Paleolithic western Eurasia and Siberia,
particularly the presence of anthropomorphic ‘Venus’ figurines that
have been recovered from several sites in Europe and Russia, including
the Mal’tasite'”. We also compared the genome-wide heterozygosity of

the La Brafia 1 genome to a data set of modern humans with similar
coverage (3-4X). The overall genomic heterozygosity was 0.042%,
lower than the values observed in present day Asians (0.046-0.047%),
Europeans (0.051-0.054%) and Africans (0.066-0.069%) (Extended
Data Fig. 6a). The effective population size, estimated from heterozyg-
osity patterns, suggests a global reduction in population size of approxi-
mately 20% relative to extant Europeans (Supplementary Information).
Moreover, no evidence of tracts of autozygosity suggestive of inbreed-
ing was observed (Extended Data Fig. 6b).

To investigate systematically the timing of selection events in the
recent history of modern Europeans, we compared the La Brafa gen-
ome to modern populations at loci that have been categorized as of
interest for their role in recent adaptive evolution. With respect to two
recent well-studied adaptations to changes in diet, we found the ancient
genome to carry the ancestral allele for lactose intolerance* and approxi-
mately five copies of the salivary amylase (AMY1) gene (Extended Data
Fig. 7 and Supplementary Information), a copy number compatible
with a low-starch diet'®. These results suggest the La Brana hunter-
gatherer was poor at digesting milk and starch, supporting the hypo-
theses that these abilities were selected for during the later transition to
agriculture.

To expand the survey, we analysed a catalogue of candidate signals
for recent positive selection based on whole-genome sequence vari-
ation from the 1000 Genomes Project", which included 35 candidate
non-synonymous variants, ten of which were detected uniquely in the
CEU (Utah residents with northern and western European ancestry)
sample '°. For each variant we assessed whether the Mesolithic genome
carried the ancestral or derived (putatively adaptive) allele.

Of the ten variants, the Mesolithic genome carried the ancestral and
non-selected allele as a homozygote in three regions: CI20rf29 (a gene with
unknown function), SLC45A2 (rs16891982) and SLC24A5 (rs1426654)
(Table 1). The latter two variants are the two strongest known loci
affecting light skin pigmentation in Europeans®*~>* and their ancestral
alleles and associated haplotypes are either absent or segregate at very
low frequencies in extant Europeans (3% and 0% for SLC45A2 and
SLC24A5, respectively) (Fig. 2). We subsequently examined all genes
known to be associated with pigmentation in Europeans®, and found
ancestral alleles in MCIR, TYR and KITLG, and derived alleles in
TYRP1, ASIP and IRF4 (Supplementary Information). Although the
precise phenotypic effects cannot currently be ascertained in a European
genetic background, results from functional experiments® indicate that
the allelic combination in this Mesolithic individual is likely to have
resulted in dark skin pigmentation and dark or brown hair. Further
examination revealed that this individual carried the HERC2 rs12913832*C
single nucleotide polymorphism (SNP) and the associated homozygous
haplotype spanning the HERC2-OCA2locus that is strongly associated

Table 1 | Mesolithic genome allelic state at 10 nonsynonymous variants recently selected in Europeans

Allelic state Gene Name SNP Amino-acid change Function
La Braiia 1 carries the PTX4 Pentraxin 4 rs2745098 Arg281Lys May be involved in innate
derived allele immunity
UHRF1BP1 UHRF1 binding protein 1 rs11755393 GIn454Arg Risk locus for systemic
lupus erythematosus
GPATCH1 G patch domain containing 1 rs10421769 Leu520Ser Receptor for OmpA expressed
by E. coli
Wwwox WW domain-containing oxidoreductase rs12918952 Alal79Thr Acts as a tumour suppressor and
has a role in apoptosis
CCDC14 Coiled-coil domain-containing protein rs17310144 Thr365Pro Unknown
14
La Braiia 1 carries both SETX Senataxin rs1056899 Val2587lle Involved in spinocerebellar ataxia
the ancestral and the and amyotrophic lateral sclerosis
derived allele
TDRD12 Tudor domain containing 12 rs11881633 Glu413Lys Unknown
La Braiia 1 retains the C120rf29 Chromosome 12 open reading frame 29 rs9262 Val238Leu Unknown
ancestral allele
SLC45A2 Solute carrier family 45, member 2 rs16891982 Leu374Phe  Associated with skin pigmentation
SLC24A5 Solute carrier family 24, member 5 rs1426654 AlalllThr Associated with skin pigmentation
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Figure 2 | Ancestral variants around the SLC45A2 (rs16891982, above) and
SLC24A5 (rs1426654, below) pigmentation genes in the Mesolithic genome.
The SNPs around the two diagnostic variants (red arrows) in these two genes
were analysed. The resulting haplotype comprises neighbouring SNPs that are

with blue eye colour®. Moreover, a prediction of eye colour based on
genotypes at additional loci using HIrisPlex** produced a 0.823 maximal
and 0.672 minimal probability for being non-brown-eyed (Supplemen-
tary Information). The genotypic combination leading to a predicted
phenotype of dark skin and non-brown eyes is unique and no longer
present in contemporary European populations. Our results indicate
that the adaptive spread of light skin pigmentation alleles was not
complete in some European populations by the Mesolithic, and that
the spread of alleles associated with light/blue eye colour may have
preceded changes in skin pigmentation.

For the remaining loci, La Brana 1 displayed the derived, putatively
adaptive variants in five cases, including three genes, PTX4, UHRF1BPI
and GPATCHI (ref. 19), involved in the immune system (Table 1 and
Extended Data Fig. 8). GPATCH1 is associated with the risk of bacterial
infection. We subsequently determined the allelic states in 63 SNPs
from 40 immunity genes with previous evidence for positive selection
and for carrying polymorphisms shown to influence susceptibility to
infections in modern Europeans (Supplementary Information). La
Brana 1 carries derived alleles in 24 genes (60%) that have a wide range
of functions in the immune system: pattern recognition receptors,
intracellular adaptor molecules, intracellular modulators, cytokines
and cytokine receptors, chemokines and chemokine receptors and
effector molecules. Interestingly, four out of six SNPs from the first
category are intracellular receptors of viral nucleic acids (TLR3, TLRS,
IFIH] (also known as MDAS5) and LGP2)*.

Finally, to explore the functional regulation of the genome, we also
assessed the La Brana 1 genotype at all expression quantitative trait loci
(eQTL) regions associated to positive selection in Europeans (Sup-
plementary Information). The most interesting finding is arguably the
predicted overexpression of eight immunity genes (36% of those with
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also absent in modern Europeans (CEU) (n=112) but present in Yorubans
(YRI) (n=113). This pattern confirms that the La Brafia 1 sample is older than
the positive-selection event in these regions. Blue, ancestral; red, derived.

described eQTLs), including three Toll-like receptor genes (TLR1, TLR2
and TLR4) involved in pathogen recognition®

These observations suggest that the Neolithic transition did not drive
all cases of adaptive innovation on immunity genes found in modern
Europeans. Several of the derived haplotypes seen at high frequency
today in extant Europeans were already present during the Mesolithic,
as neutral standing variation or due to selection predating the Neolithic.
De novo mutations that increased in frequency rapidly in response to
zoonotic infections during the transition to farming should be iden-
tified among those genes where La Brafia 1 carries ancestral alleles.

To confirm whether the genomic traits seen at La Brafia 1 can be
generalized to other Mesolithic populations, analyses of additional ancient
genomes from central and northern Europe will be needed. Nevertheless,
this genome sequence provides the first insight as to how these hunter-
gatherers are related to contemporary Europeans and other ancient
peoples in both Europe and Asia, and shows how ancient DNA can shed
light on the timing and nature of recent positive selection.

METHODS SUMMARY

DNA was extracted from the La Brafa 1 tooth specimen with a previously pub-
lished protocol’. Indexed libraries were built from the ancient extract and sequenced
on the Illumina HiSeq platform. Reads generated were mapped with BWA?” to the
human reference genome (NCBI 37, hg19) after primer trimming. A metagenomic
analysis and taxonomic identification was generated with the remaining reads
using BLAST 2.2.27+ and MEGAN4 (ref. 28) (Extended Data Fig. 9). SNP calling
was undertaken using a specific bioinformatic pipeline designed to account for
ancient DNA errors. Specifically, the quality of misincorporations likely caused by
ancient DNA damage was rescaled using the mapDamage2.0 software®, and a set
of variants with a minimum read depth of 4 was produced with GATK™. Analyses
including PCA'’, Outgroup f3'® and D statistics'” were performed to determine the
population affinities of this Mesolithic individual (Supplementary Information).
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Extended Data Figure 1 | Alignment and coverage statistics of the La Brafia  chromosome covered by at least one read is shown, as well as the mean read
1 genome. a, Alignment summary of the La Brafa 1 sequence data to hgl9 depth of all positions and positions covered by at least one read. ¢, Percentage of
assembly. b, Coverage statistics per chromosome. The percentage of the the genome covered at different minimum read depths.
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Extended Data Figure 3 | Genetic affinities of the La Braia 1 genome.

a, PCA of the La Brafia 1 SNP data and the 1000 Genomes Project European
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Illumina Omni 2.5M array. Continental terms make reference to each Omni

population grouping as follows: Africans, Yoruba and Luyha; Asians, Chinese

refs 1 and 3.

(Beijing, Denver, South, Dai), Japanese and Vietnamese; Europeans, Iberians,
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Tuscans, British, Finns and CEU; and Indian Gujarati from Texas. ¢, Each panel
shows PC1 and PC2 based on the PCA of one of the ancient samples with the
merged POPRES+FINHM sample, before Procrustes transformation. The

ancient samples include the La Brafa 1 sample and four Neolithic samples from
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La Brana 1 displays the derived allele and the European-specific haplotype,

indicating that the positive-selection event was already present in the

Mesolithic. Blue, ancestral; red, derived.

Extended Data Figure 8 | Neighbouring variants for three diagnostic SNPs

related to immunity. a, rs2745098 (PTX4 gene). b, rs11755393 (UHRF1BPI
gene). ¢, rs10421769 (GPATCHI1 gene). For PTX4, UHRF1BP1 and GPATCHI,
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Read count

Extended Data Figure 9 | Metagenomic analysis of the non-human reads.
a, Domain attribution of the reads that did not map to hg19. b, Proportion of
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