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The timing of Neanderthal disappearance and the extent to which they
overlapped with the earliest incoming anatomically modern humans
(AMHs) in Eurasia are key questions in palaeoanthropology1,2. Deter-
mining the spatiotemporal relationship between the two populations
is crucial if we are to understand the processes, timing and reasons
leading to the disappearance of Neanderthals and the likelihood of
cultural and genetic exchange. Serious technical challenges, however,
have hindered reliable dating of the period, as the radiocarbon method
reaches its limit at 50,000 years ago3. Here we apply improved accel-
erator mass spectrometry 14C techniques to construct robust chro-
nologies from 40 key Mousterian and Neanderthal archaeological
sites, ranging from Russia to Spain. Bayesian age modelling was used
to generate probability distribution functions to determine the latest
appearance date. We show that the Mousterian ended by 41,030–39,260
calibrated years BP (at 95.4% probability) across Europe. We also dem-
onstrate that succeeding ‘transitional’ archaeological industries, one
of which has been linked with Neanderthals (Châtelperronian)4, end
at a similar time. Our data indicate that the disappearance of Nean-
derthals occurred at different times in different regions. Comparing
the data with results obtained from the earliest dated AMH sites in
Europe, associated with the Uluzzian technocomplex5, allows us to
quantify the temporal overlap between the two human groups. The
results reveal a significant overlap of 2,600–5,400 years (at 95.4% prob-
ability). This has important implications for models seeking to explain
the cultural, technological and biological elements involved in the
replacement of Neanderthals by AMHs. A mosaic of populations in
Europe during the Middle to Upper Palaeolithic transition suggests

that there was ample time for the transmission of cultural and sym-
bolic behaviours, as well as possible genetic exchanges, between the
two groups.

European Palaeolithic sites contain the best evidence for the replace-
ment of one human group (Neanderthals) by another (AMHs)1. The
nature and process of the replacement, both in cultural and genetic terms,
has been the focus of extensive research1,6,7. Recent studies of complete
Neanderthal and modern human genomic sequences suggest that Nean-
derthals and AMHs interbred outside Africa7. This resulted in an intro-
gression of 1.5–2.1% of Neanderthal-derived DNA8, or perhaps more9,
in all modern non-African human populations. The analysis of three
Neanderthal mitochondrial DNA (mtDNA) genomes from Denisova
(Russian Altai), Vindija (Croatia) and Mezmaiskaya (Russian North Cau-
casus) indicates that the greatest amount of gene flow into non-African
AMHs occurred after these Neanderthal populations had separated from
each other8. At present it is not clear whether interbreeding occurred once
or several times outside Africa10, or where it happened. After the inter-
breeding episode(s), Neanderthals and their distinctive material cul-
ture disappeared and were replaced across Eurasia by AMHs, but the
precise timing of this has remained difficult to identify in the absence of
a reliable chronological framework3.

Recent research has shown that radiocarbon ages have usually under-
estimated the true age of Palaeolithic remains, sometimes by several
millennia3. This is due largely to problems in removing young carbon
contamination from old organic samples at the limit of the 14C method.
The application of more rigorous chemical protocols11–13 has recently
resulted in improved reliability and accuracy. Several determinations
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that had previously supported late Neanderthal survival have been shown
to be marked underestimates (for example, Vindija14, Zafarraya15 and
Mezmaiskaya16) and should be set to one side.

We performed extensive accelerator mass spectrometry (AMS) dat-
ing of critical late or final Mousterian archaeological horizons from 40
sites across Europe and the Mediterranean rim to explore the timing of
Neanderthal extinction (Fig. 1a and Supplementary Methods). We also
dated succeeding ‘transitional’ contexts, containing stone tool indus-
tries associated either with AMHs or with Neanderthals. These include
Uluzzian (distributed across peninsular Italy and southern Greece and
attributed to AMHs on the basis of associated AMH deciduous teeth
excavated in Cavallo Cave5) and Châtelperronian (France and Canta-
brian Spain) layers, currently linked with Neanderthals on the basis of
skeletal and technological evidence, although the association is debated17,18.
Other transitional industries, such as the Szeletian and Bohunician of
central and eastern Europe have not been dated as part of this study,
nor have sites outside Europe, such as in the far northern Arctic fringes
of Eurasia, where late Mousterian industries have been reported19.

We obtained 196 AMS radiocarbon measurements and used them to
build high-precision age models using Bayesian statistics on the OxCal20

platform. This allows us to incorporate stratigraphic and other relative
age information, along with the calibrated likelihoods for each site. Prob-
ability distribution functions (PDFs) corresponding with the temporal
boundaries of the latest Mousterian occupations were generated (Fig. 1b
and Supplementary Methods).

The results show that the Mousterian end boundary PDFs all fall before
40,000 calibrated years (cal) BP (all probability ranges are expressed at
95.4%) (Fig. 1b). When placed into a single phase Bayesian model, the
PDFs result in an overall end boundary ranging from 41,030–39,260
cal BP (Fig. 1c and Supplementary Methods). This PDF represents the
age of the latest European Mousterian on the basis of our data.

The combined data suggest that the Mousterian ended at a very sim-
ilar time, across sites ranging from the Black Sea and the Near East, to
the Atlantic coast (Fig. 1a, b). Southern Iberia has been held to represent
an exception to a wider European pattern21, with late survival of Nean-
derthals previously argued at sites such as Gorham’s Cave, Gibraltar22.
We could not reproduce any of the late dates from sites in this region15

(Supplementary Methods) and it is apparent that many previous deter-
minations underestimate the real age. It is unclear how long Neander-
thals persisted in southern Iberia15. More dating evidence is required
before we can determine whether Neanderthal presence was later here
than elsewhere in Europe.

Our data also reveal differences in the spatiotemporal distribution of
the latest Mousterian sites (Fig. 1b). The PDFs obtained were statistically
ordered and the results show that significant differences exist between
several late Mousterian contexts in different regions of Europe (Sup-
plementary Methods). This may be attributed to the emergence of ‘tran-
sitional’ industries that replace the Mousterian between ,45,000–41,000
cal BP in some, but not all regions. At Fumane in Italy, for example, the
Mousterian is replaced by the Uluzzian at 44,800–43,950 cal BP, while
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Figure 1 | Site locations and final boundary age
ranges for Mousterian and Neanderthal sites
a, Location of the 40 sites analysed and discussed in
this paper. 1: Gorham’s Cave; 2: Zafarraya; 3: El
Niño; 4: Sima de las Palomas; 5: El Salt; 6:
Quebrada; 7: Jarama VI; 8–15: La Viña, El Sidrón,
La Güelga, Esquilleu, Morı́n, Arrillor, Labeko
Koba, Lezetxiki; 16: Abric Romanı́; 17: L’Arbreda;
18–21: Pech de l’Azé, Le Moustier, La Ferrassie,
La Chappelle; 22: La Quina; 23: Saint-Césaire;
24: Les Cottés; 25: Arcy-sur-Cure; 26: Hyaena Den;
27: Pin Hole; 28: Spy; 29: Grotte Walou; 30: Néron;
31: Mandrin; 32: Bombrini/Mochi; 33:
Geissenklösterle; 34: Fumane; 35: Castelcivita;
36: Oscurusciuto; 37: Cavallo; 38: Lakonis; 39: Ksar
Akil; 40: Mezmaiskaya. b, Bayesian PDFs for the
model boundaries of the final dated Mousterian
phases by site across Europe (generated using
OxCal4.2 software20 and INTCAL13 (ref. 29)).
c, PDF for the latest Mousterian based on the
data in b.
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at Mochi/Bombrini on the Italy–France border the Mousterian seems
to last longer—until 41,460–40,500 cal BP. In the latter region, the Auri-
gnacian arrives after a hiatus and no transitional complexes are evident.
Since both the Uluzzian and Aurignacian are linked to AMHs, this lends
support to the idea of a staggered replacement of Neanderthals in Italy
as they neared local extinction (Supplementary Methods). Other late
Mousterian contexts in sites in northern Spain, such as Abric Romanı́
and L’Arbreda, are also considerably later than Fumane, suggesting that
the Mousterian ended at different times in some parts of Europe.

The temporal range of the ‘transitional’ technocomplexes was also
examined. With regard to the Châtelperronian, it is apparent on stra-
tigraphic grounds that the Mousterian precedes it at all sites where both
occur. However, our results show that the Châtelperronian at some sites
(for example, Arcy-sur-Cure) starts statistically significantly before the
end of the Mousterian at other sites in Europe such as Abric Romanı́
and Geissenklösterle (Germany). If Neanderthals were responsible for
both Mousterian and Châtelperronian, the implication is that there was
considerable regional variation in their behaviour and adaptation stra-
tegies during this transition period. Assuming that the Châtelperronian
is associated with Neanderthals, we combined the end boundaries for
both into a single-phase Bayesian model and obtained a final ‘Neander-
thal’ end PDF of 40,890–39,220 cal BP. The result is indistinguishable
from the final Mousterian PDF, showing that uncertainty over the author-
ship of the Châtelperronian does not affect the age estimated for the last
Neanderthals; they did not survive after ,41,000–39,000 cal BP (Fig. 2b).

By comparing the final Neanderthal PDF with those obtained for the
start of the Uluzzian at the Cavallo site23, we can quantify the temporal
overlap between Neanderthals and the earliest western European AMHs
(Fig. 2b). The difference is significant and ranges from 2,600 to 5,400
years at 95.4% probability. Coexistence has been linked previously with
the possibility of cultural transmission from AMHs to Neanderthals,
termed ‘acculturation’24, as a means of accounting for late Neanderthal
technical and behavioural development. The early presence of AMHs
in Mediterranean Europe by ,45,000–43,000 cal BP (ref. 23) and the
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potential overlapping time may have acted as a stimulus for putative
Neanderthal innovative and symbolic behaviour in the millennia before
their disappearance. When we compare the start and end boundary PDFs
for both Uluzzian and Châtelperronian sites we observe that they are
very similar (Fig. 2b). This may provide further support for an accul-
turation model. Alternatively, this similarity in the start dates of the
two industries might be seen as reflecting an AMH authorship for both.
If this were the case, then the distribution of early modern humans
would be wider than expected. Since the physical evidence linking these
industries to different human groups is scarce, these interpretations are
potentially prone to change with new excavation data.

High-precision chronometric data and Bayesian modelling allows
us to map the spatiotemporal relationship between the three techno-
complexes during the period ,45,000–41,000 cal BP as a series of time
slices (Fig. 3 and Supplementary Methods). Since there is little to no robust
evidence for interstratification of the transitional industries within Mous-
terian archaeological layers, we conclude that the chronological overlap
observed must have also involved a degree of spatial separation between
the two populations, regardless of whether Neanderthals were responsi-
ble for the Châtelperronian or not. In turn, this suggests that the dispersal
of early AMHs was initially geographically circumscribed, proceeding
step-wise, with the Uluzzian first and the Aurignacian following a few
millennia later. The transitional industries, including those not analysed
here, may be broadly contemporaneous technocomplexes that remained
spatially distinct from one another. Rather than a rapid model of replace-
ment of autochthonous European Neanderthals by incoming AMHs,
our results support a more complex picture, one characterized by a bio-
logical and cultural mosaic that lasted for several thousand years.

METHODS SUMMARY
AMS radiocarbon dating was undertaken at the Oxford Radiocarbon Accelerator
Unit, University of Oxford. Collagen was extracted using the methods outlined
previously11,25. Shell samples were dated according to the protocol outlined previously26

An acid–base oxidation/stepped combustion (ABOx-SC) method was used for
charcoal13. Radiocarbon ages are given as conventional ages BP as described previously27.
Corrections were made to bone collagen AMS determinations using a laboratory
pre-treatment background subtraction28. Bones analysed range from very well pre-
served (a maximum of 14.9wt% collagen) to poorly preserved (a minimum of ,1.0wt%
collagen). C:N atomic ratios and other analytical parameters were measured to deter-
mine the quality of the extracted collagen. The IntCal13 and Marine13 (ref. 29)
calibration curves and the OxCal4.2 (ref. 20) program were used in the calibration
and Bayesian age modelling. Supplementary Methods contains details of the archae-
ological sites investigated, the samples used, all determinations and the full Bayesian
analysis.
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