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ABSTRACT
Overstocking can be a major issue in the dairy cattle industry, leading to negative
changes in feeding and resting behavior. Additional stress imposed and alterations in
feeding behavior may significantly impact the rumen microbiome. The rumen
microbiome is responsible for the successful conversion of feed to usable energy
for its host. Thus, understanding the effects of stocking density on the rumen
microbiome is imperative for further elucidation of potentially negative
consequences of overstocking in dairy cattle. This study implemented a Latin Square
design accounting for four pens of cattle and four treatment periods so that all
treatment combinations were assigned to every pen during one period of the study.
Two treatment factors, including two levels of physically effective neutral detergent
fiber, achieved with addition of chopped straw, and stocking density (100% vs. 142%)
of freestalls and headlocks, were combined and tested within a factorial treatment
design. Within each pen, three or four cannulated cows (n = 15 total) were sampled
for rumen content on the final day of each treatment period. Each treatment
was randomly assigned to a single pen for a 14-day period. The V1–V3 hypervariable
regions of the 16S rRNA gene were targeted for bacterial analyses. Variables with
approximately normally-distributed residuals and a Shapiro–Wilk statistic of ≥0.85
were analyzed using a mixed model analysis of variance with the GLIMMIX
procedure with fixed effects of feed (straw vs. no straw), stocking density (100% vs.
142%), and the interaction of feed × stocking density, and random effects of pen,
period, feed × stocking × pen × period. Pen was included as the experimental unit in a
given period and the sampling unit as cow. Variables included Shannon’s Diversity
Index, Faith’s phylogenetic diversity index, chao1, observed OTU, and Simpson’s
evenness E as well as most individual taxa. Data were analyzed in SAS 9.4 utilizing
the GLIMMIX procedure to perform mixed model analysis of variance. If data were
not normally distributed, a ranked analysis was performed. No differences were
observed in a-diversity metrics by fiber or stocking density (P > 0.05). Beta diversity
was assessed using weighted and unweighted Unifrac distances in QIIME 1.9.1 and
analyzed using ANOSIM. No differences were observed in weighted (P = 0.6660;
R = −0.0121) nor unweighted (P = 0.9190; R = −0.0261) metrics and R values
suggested similar bacterial communities among treatments. At the phylum level,
Tenericutes differed among treatments with an interaction of stocking density by
feed (P = 0.0066). At the genus level, several differences were observed by treatment,
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including Atopobium (P = 0.0129), unidentified members of order RF39 (P = 0.0139),
and unidentified members of family Succinivibrionaceae (P = 0.0480). Although no
diversity differences were observed, taxa differences may indicate that specific taxa
are affected by the treatments, which may, in turn, affect animal production.

Subjects Agricultural Science, Microbiology, Veterinary Medicine
Keywords Stocking density, Effective fiber, Rumen, Bacteria, Cattle, Microbes

INTRODUCTION
Stocking density can have significant impacts on dairy cattle feeding behavior, feed intake,
as well as comfort of the animals, which ultimately may lead to health issues and reduced
milk production. Competition at feed bunks as a result of overstocking can result in
reduced feed intake, particularly for cows lower in the social hierarchy (Friend, Polan &
McGilliard, 1977; Grant & Albright, 2001; Olofsson, 1999). Reduced feed intake in dairy
cattle has been associated with decreased milk production, particularly in the presence
of multiple health issues (Bareille et al., 2003). Reduced feed intake can also result in
decreased reproductive efficiency, leading to potentially millions of dollars lost in revenue
for producers (Bellows, Ott & Bellows, 2002; De Vries, 2006; Dekkers, Ten Hag &
Weersink, 1998). Understanding the effects of increased stocking density, particularly
in conjunction with various nutritional strategies, is necessary to determine potential
interventions or alternative methods for addressing issues that arise as a result of
overstocking.

In dairy feeding systems, effective fiber is used to reduce the negative effects of
high-grain diets. Easily-fermentable feedstuffs can result in the rapid production of
short-chain fatty acids and lactic acid, causing sharp decreases in rumen pH which may
lead to ruminal acidosis (Enemark, 2008; Enemark, Jorgensen & Enemark, 2002). In order
to alleviate or reduce the risk of ruminal acidosis, physically effective neutral detergent
fiber (peNDF) is incorporated into the diet (Enemark, 2008). Addition of peNDF also
assists in the slowing of feed passage rate through the rumen, allowing for improved
digestion of feeds and nutrient absorption (Jung & Allen, 1995; Zebeli et al., 2012).
Maintaining optimal rumen health and function is critical when determining management
and nutritional programs for high milk production. Yet, little is known about how the
rumen microbial population responds to these stressors.

The rumen microbiome, or the collection of microbial DNA present in the rumen,
provides insight into the dynamics of the ruminal environment. The rumen microbiota
provide vital nutritional resources to the animal by breaking down feedstuffs into usable
energy, proteins, and vitamins that are then made available to the host (Hungate, 1966).
Variation in the rumen microbiome has been associated with changes in the ruminal
environment, such as differences in pH, nitrogen cycling, protein turnover, and metabolite
production (Clemmons et al., 2017; Hungate, 1975, 1966; Mao, Huo & Zhu, 2016; Min
et al., 2002; Petri et al., 2012; Ribeiro et al., 2017). It is estimated that approximately 70% of
glucogenic precursors (Seymour, Campbell & Johnson, 2005) as well as many other
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vitamins and nutrients required by cattle are supplied by the rumen microbiota,
highlighting the importance of their role in animal health and production.

Diet contributes to great variation in the rumen bacterial community composition.
In predominantly forage-based diet, Firmicutes tends to be dominant at the phylum level,
whereas Bacteroidetes tends to be more prevalent in a concentrate- or grain-based diet
(Carberry et al., 2012; Petri et al., 2014; Tapio et al., 2017). At the family level, bacteria that
possess primarily fibrolytic and cellulolytic functions, such as Lachnospiraceae,
Ruminococcaceae, and Fibrobacteraceae, tend to be dominant in animals consuming a
forage-based diet (Thoetkiattikul et al., 2013). However, bacteria that exhibit amylolytic
functions, such as Prevotellaceae and Flavobacteriaceae, are more abundant in animals that
consume more rapidly-fermentable diets (Thoetkiattikul et al., 2013). The addition of
peNDF should alter the rumen bacterial community composition given the effects of diet
on the rumen microbiome; however, the effects of peNDF addition to the diet on the
rumen bacterial community composition are still not well-understood (Shaw et al., 2016).

Microbiomes have significant impacts on their host, beyond the environment of which
they occupy. Variability in microbiome composition and structure has been associated
with various production-relevant phenotypes in cattle, such as the rumen microbes in feed
efficiency (Myer et al., 2015a) and the uterine and vaginal bacterial communities in
reproductive efficiency (Laguardia-Nascimento et al., 2015). Additionally, alterations in
the rumen microbiome resulting in dysbiosis were found to have significant impacts on
overall animal health (McCann et al., 2016; Petri et al., 2013). For example, increased
relative abundances of Streptococcus bovis are often associated with the occurrence of
ruminal acidosis (Khafipour et al., 2009; Russell & Hino, 1985). Given the strong
relationship among the rumen microbiome, production-relevant phenotypes, and animal
health, understanding how certain stressors related to management and nutritional
strategies affect these microbial relationships is imperative to improving production.
Therefore, the objective of this study was to determine the effect of two different stocking
densities with or without straw on the rumen bacterial communities in dairy cows, with the
hypothesis that overstocking would alter rumen bacterial community composition but
additional peNDF would ameliorate this stress.

METHODS
Animal housing and management
Animal care and handling protocols were approved by the William H. Miner Agricultural
Research Institute Animal Care and Use Committee, approval number 2014AUR11.

Twelve multiparous and four primiparous ruminally-cannulated cows were evenly
distributed across and assigned to 1 of 4 pens and housed at the William H. Miner
Agricultural Research Institute (Chazy, NY, USA). The animals were housed in a naturally
ventilated, saw-dust bedded 4-row freestall barn from November 12, 2014 to January 7,
2015. Pens were balanced for parity (2.2 ± 1.1; mean ± standard deviation), days in milk
(DIM; 190 ± 103), and milk production (45.8 ± 8.2 kg/d) prior to the start of the study.
Due to an infection, one primiparous cow was removed from the trial. It is unknown
whether the treatments contributed to or exacerbated this response.
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The ruminally-cannulated cows were used for subsequent rumen bacterial community
analysis. Each pen contained 17 head-to-head freestalls with facility design as described
(Krawczel et al., 2012a). Cows were milked 3 times daily (approximately 13:00 h, 21:00 h,
and 05:00 h) in a double-12 parallel parlor (Xpressway Parallel Stall System; Bou-Matic,
Madison, WI, USA).

Experimental design and treatments
Pens were assigned randomly to treatments in a 4 × 4 Latin square with 14-d periods using
a 2 × 2 factorial arrangement of treatments (Campbell et al., 2015). The first 7 d served as
an adaptation period to the treatment with the additional 7 d serving as the treatment
period as this has been previously shown to induced stress response due to overstocking
(Krawczel et al., 2012b). Two stocking densities (100% or 142%) and two diets (straw; S
and no straw; NS) resulted in four treatments combinations: (1) 100NS, (2) 100S,
(3) 142NS and (4) 142S. Chopped straw was added as an additional source of peNDF
(Table 1). Stocking density was achieved through denial of access to both headlocks and
freestalls (100%, 17 freestalls and headlocks per pen; 142%, 12 freestalls and headlocks
per pen) as previously described (Krawczel et al., 2012b). Dietary forage consisted of 39.7%
corn silage and 6.9% haycrop silage vs. 39.7% corn silage, 2.3% haycrop silage, and
3.5% chopped straw (dry matter; DM basis) for NS and S, respectively. Substitution of
haycrop silage with straw resulted in peNDF content of 23.9 and 25.9% and undigested
240-h NDF (uNDF240) content of 8.5% and 9.7% of DM for NS and S diets, respectively.
Diets were similar in forage composition except that a portion of haycrop silage was
replaced with 3.5% chopped wheat straw (DM basis) for the S diet, which resulted in
differences in peNDF. Each diet was formulated for 46 kg milk/d using NDS Professional©
based on the Cornell Net Carbohydrate and Protein System model (v. 6.1; RUM&N
Sas, Reggio Emilia, Italy) and met metabolizable energy (ME) and metabolizable protein
(MP) requirements. Diets were mixed and delivered once daily at approximately
06:00 h with a Keenan mixing truck (Richard Keenan & Co. Ltd., Warwickshire, UK) and
pushed up approximately 6 times daily. Rumen content was collected via cannula
every 4 h for the final 24 h of each treatment. Rumen samples were collected from the
ventral sac approximately 30 cm below the cannula opening. Rumen content was strained
through a single layer of cheesecloth and frozen at −80 �C. Samples were thawed at
room temperature for approximately 2 h and equal aliquots were removed from each time
point from each cow during each treatment period. Aliquots were then combined to get
one total sample from each cow, and vortexed briefly to mix.

DNA extraction and sequencing
Approximately 0.2 g of sample was then used to extract bacterial DNA. Genomic DNA
was extracted using a modified method described by Yu & Morrison (2004). Samples
underwent both mechanical and chemical lysis using ZR BashingBead Lysis Tubes
(Zymo Research Corp., Santa Ana, CA, USA) using the TissueLyser II system (Qiagen,
Hilden, Germany) for 3 min at 21 Hz with 4% (w/v) sodium dodecyl sulfate (SDS),
500 mM NaCl, and 50 mM EDTA, respectively. Following cell lysis, impurities were
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Table 1 Ingredient composition and analyzed chemical composition (dry matter basis) of TMR
samples for no straw (NS) and straw (S) diets.

Item NS S

Ingredient, % of DM

Conventional corn silage 39.7 39.7

Haycrop silage 6.9 2.3

Wheat straw, chopped1 – 3.5

Citrus pulp, dry 4.8 4.8

Whole cottonseed, fuzzy 3.5 3.5

Soybean meal, 47.5% solvent – 1.1

Molasses 3.2 3.2

Concentrate mix2 41.9 41.9

Chemical analysis, % DM

DM, % 45.9 ± 0.43 47.5 ± 0.5

CP 15.0 ± 0.3 15.1 ± 0.3

Soluble protein, % of CP 32.0 ± 0.8 28.2 ± 1.4

NDICP4 1.1 ± 0.0 1.1 ± 0.0

ADF 20.0 ± 0.3 20.1 ± 0.3

NDF 28.9 ± 0.5 31.7 ± 0.7

ADL 3.8 ± 0.1 3.8 ± 0.1

NFC 43.1 ± 0.4 43.7 ± 0.6

Starch 25.0 ± 0.4 25.3 ± 0.6

Starch digestibility (7-h), % of starch 73.3 ± 1.0 74.3 ± 0.5

Sugar 7.4 ± 0.3 8.1 ± 0.4

Fat 5.9 ± 0.2 5.7 ± 0.2

Ash 6.4 ± 0.2 6.4 ± 0.4

Ca 0.71 ± 0.20 0.72 ± 0.03

P 0.38 ± 0.00 0.38 ± 0.01

Mg 0.41 ± 0.00 0.40 ± 0.00

K 1.22 ± 0.03 1.16 ± 0.02

S 0.26 ± 0.01 0.26 ± 0.01

Na 0.45 ± 0.01 0.44 ± 0.01

Cl ion 0.50 ± 0.02 0.47 ± 0.01

Fe, mg/kg of DM 209 ± 9 212 ± 11

Mn, mg/kg of DM 86 ± 1 83 ± 2

Zn, mg/kg of DM 96 ± 1 94 ± 1

Cu, mg/kg of DM 19 ± 0 18 ±1

Net energy of lactation, Mcal/kg of DM 1.76 ± 0.01 1.75 ± 0.02

Physically effective NDF >1.18 mm, % of
DM5

23.9 25.9

30-h uNDFom, % of DM6 13.1 14.9

(Continued)
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removed using 10 M ammonium acetate and nucleic acids precipitated using isopropanol.
Following nucleic acid precipitation, RNA and proteins were removed using RNAse
and proteinase K. Subsequently, QIAmp columns were used to remove undesired products
and purify DNA from the Qiagen DNA Stool Mini Kit (Qiagen, Hilden, Germany).
Genomic DNA was quantified using Nanodrop 1000 spectrophotometer
(ThermoScientific, Wilmington, DE, USA).

The V1–V3 region of the 16S rRNA hypervariable gene was targeted for amplification
for bacterial analysis using modified universal primers 27F (5′-Adapter/Index/AGAG
TTTGATCCTGGCTCAG) and 519R (5′ Adapter/Index/GTATTACCGCGGCTGCTG)
including TruSeq adapter sequences and indices. AccuPrime Taq high fidelity DNA
Polymerase (Life Technologies, Carlsbad, CA, USA) was used as the DNA polymerase.
Bacterial DNA was amplified using polymerase chain reaction (PCR) with the following
conditions: initial denaturation period of 94 �C for 5 min followed by 22 cycles of a
denaturation period of 94 �C at 30 s, annealing period at 58 �C for 1 min, and elongation
period at 72 �C for 1 min 30 s, with a final elongation period of 72 �C for 10 min. Products
were purified magnetically using AmPure bead purification (Agencourt, Beverly, MA,
USA), confirmed via gel electrophoresis and bioanalyzer (Agilent Technologies, Santa
Clara, CA, USA). Amplicon libraries were sequenced using the 2 × 300, v3 600-cycle kit on
the Illumina MiSeq sequencing platform as prepared per manufacturer protocol (Illumina,
Inc., San Diego, CA, USA) at the University of Tennessee, Knoxville Genomics Core.

Sequence reads and processing
Sequence data is available from the NCBI Sequence Read Archive accession
PRJNA527780. Sequence reads were first trimmed by removing sequences shorter than

Table 1 (continued).

Item NS S

120-h uNDFom, % of DM 9.0 10.2

240-h uNDFom, % of DM 8.5 9.7

Notes:
1 Hay-busted; hammer-mill chopping technique; mo. #H1100, Duratech Industries Inc., Jamestown, North Dakota.
2 Concentrate mix was composed of the following (% of DM): corn meal, finely ground (32.31), soybean meal 47.5
solvent (15.90), AminoMax (Afgritech LLC, Watertown, NY, USA; 14.28), flaked corn (12.72), Berga Fat F100 (Berg +
Schmidt America LLC, Libertyville, IL, USA; 5.65), wheat red dog (4.77), canola meal solvent (3.98), Amino Enhancer
(Poulin Grain Inc., Swanton, VT, USA; 3.88), calcium carbonate (2.39), sodium sesquicarbonate (1.62), salt (0.78),
magnesium oxide (0.55), Meta Smart (Adisseo, Alpharetta, GA, USA; 0.35), trace mineral mix (contained Diamune SE
concentrate (Diamond V; Cedar Rapids, IA, USA)); 58.33%, zinc sulfate, 14.04%, manganese sulfate, 13.64%, calcium
carbonate, 5.50%, 30% ferrous sulfate, 5.40%, 58% Intellibond copper (Micronutrients, Indianapolis, IN, USA; 1.17%,
mineral oil, 1.00%, 3% selenium, 0.53%, cobalt sulfate, 0.29%, and calcium iodate, 0.11%; 0.20), Urea (0.19), Select GH
(Alltech, Inc., Nicholasville, KY, USA; 0.13), Gen 2-AjiPro-L (Ajinomoto Heartland, Inc., Chicago, IL, USA; 0.10),
vitamins A, D and E premix (contained calcium carbonate, 78.77%, vitamin E, 18.00%, vitamin A 1000 kIU and vitamin
D 200 kIU, 2.34%, mineral oil, 0.50%, Vitamin D, 0.14%; 0.06), Smartamine M (Adisseo, Alpharetta, GA, USA; 0.06),
Zinpro Availa 4 (Zinpro Corporation, Eden Prairie, MN, USA; 0.05), vitamin E premix (contained 88.18 kIU vitamin E,
7.08 mg/kg Cu; 0.02), Probios Precise Concentrate (Chr-Hansen, Milwaukee, WI, USA; 0.02), and Rumensin 90
(Elanco Animal Health, Greenfield, IN, USA; 0.01).

3 Mean ± standard error.
4 Neutral detergent insoluble CP.
5 peNDF determined through methods described by Mertens (2002).
6 uNDFom determined through methods described by Tilley & Terry (1963) with Goering & Van Soest (1970) buffer
modifications.
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300 bp as well as removing adapters/indices, and quality filtered at ≥Q25 using the Galaxy
server (Afgan et al., 2018). Further processing was performed in Quantitative Insights
Into Microbial Ecology (QIIME, version 1.9.1) (Caporaso et al., 2010). Chimeric sequences
were identified and filtered using usearch61 (Edgar, 2010). Operational taxonomic
units (OTU) that were identified as Cyanobacteria were removed as these most likely
represent chloroplast and mitochondrial DNA (Gray, 1993; Gray, Burger & Lang, 1999),
as well as singletons. Each sample was randomly subsampled to a depth of 25,000
sequences to avoid sequencing depth bias. Operational taxonomic unit identification was
performed at 97% similarity using UCLUST module in QIIME, and taxonomy assigned
using the Greengenes v13_8 16S rRNA database as a reference (Caporaso et al., 2010;
DeSantis et al., 2006; Edgar, 2010; McDonald et al., 2012). Phylogenetic trees were built
using FastTree (Price, Dehal & Arkin, 2009) for analysis of alpha- and beta-diversity.
Alpha-diversity was assessed using Faith’s phylogenetic diversity index, chao1, observed
OTU, Shannon’s diversity index, and Simpson’s Evenness E, with Good’s coverage
determined to ensure adequate coverage. Good’s coverage was assessed by treatment group
to ensure satisfactory coverage (≥0.98). Beta-diversity was determined using weighted and
unweighted Unifrac distances (Lozupone et al., 2011) and used to generate principal
coordinate analyses (PCoA).

Statistical analyses
Alpha-diversity metrics as well as genus- and phylum-level relative abundances were
assessed for normality using the UNIVARIATE procedure in SAS 9.4 (SAS Institute, Cary,
NC, USA). Alpha diversity metrics were determined to be approximately normal based on
a Shapiro–Wilk value of ≥0.85 as well as visual distribution of data in histogram and
quintiles plot of residuals. Alpha diversity was measured using Faith’s phylogenetic
diversity index, chao1, observed OTU, Shannon’s diversity index, and Simpson’s evenness
E. Alpha diversity metrics were analyzed using a mixed model analysis of variance
(ANOVA) with fixed effects of feed (straw vs. no straw), stocking density (100% vs. 142%),
and the interaction of feed×stocking density, and random effects of pen, period, feed ×
stocking × pen × period. Pen was included as the experimental unit in a given period and
the sampling unit as cow. The statistical model was analyzed using the GLIMMIX
procedure of SAS 9.4. Genus- and phylum-level relative abundances were analyzed for
normality in SAS 9.4. For values that were normally distributed, taxa were analyzed using
the same model as those used for alpha-diversity metrics. Those with a non-normal
distribution were first ranked and then analyzed using the same, previously described
model. This method of analysis allows random effects to be properly accounted for while
performing a ranked analysis, similar to Kruskal–Wallis test. Beta diversity metrics were
analyzed in QIIME (Caporaso et al., 2010) using weighted and unweighted Unifrac
distance matrices as well as ANOSIM with 999 permutations. Beta-diversity was visualized
using PCoA and analyzed using ANOSIM using an OTU-centric approach to compare
phylogenetic variation in the OTU among treatment groups. For all statistical analyses
significance was determined using at P ≤ 0.05.
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RESULTS
Sequencing data
Sixty samples were sequenced, comprising 15 cows from each of the four periods. Bacterial
DNA sequencing resulted in a total of 31,291,696 sequences, with 28,492,337 sequences
present following quality control and chimera removal. With regard to treatment, the
NS100 treatment resulted in a total of 7,891,481 sequences, 4,424,972 total sequences
for S100, 4,652,929 total sequences for NS142, and 10,655,805 total sequences for
S142 with averages and standard errors of the mean of 526,098.73 ± 25,689.00,
294,998.1 ± 45,148.39, 310,195.3 ± 42,931.73, and 710,387 ± 77,008.81 per treatment
sample, respectively.

Alpha- and beta-diversity
A total of 158,618 OTU were identified following binning at 97% similarity.
Alpha-diversity was measured using Faith’s Phylogenetic Diversity, chao1, observed OTU,
Shannon’s diversity index, and Simpson’s evenness E, with Good’s coverage used to
measure and ensure adequate coverage. Alpha-diversity metric averages with SEM are
presented in Table 2. No significant interactions (P > 0.05) were identified among any of
the a-diversity metrics, nor were there any diet or stocking density main effects associated
(Table 2).

Principal coordinate analyses using both unweighted (Fig. 1A) and weighted (Fig. 1B)
Unifrac distances showed no significant grouping by treatment. Analysis of similarity also
confirmed no differences in β-diversity among treatment groups based on unweighted
(R = −0.026; P = 0.919) and weighted values (R = −0.012; P = 0.666).

Taxonomic analyses
Among all treatment combinations, Bacteroidetes was the most dominant phylum, with an
average relative abundance of 44.94 ± 1.42%, followed by Firmicutes (38.89 ± 1.23%),
unassigned taxa (8.55 ± 1.17%), Tenericutes (2.85 ± 0.12%), TM7 (1.52 ± 0.09%), and
Spirochaetes (1.01 ± 0.06%), with all other phyla representing less than 1% relative
abundance. Tenericutes was the sole phylum that differed among treatment groups, with
an interaction of stocking density by feed (P = 0.01). When stocking density was 100%, the

Table 2 Alpha diversity metrics by treatment group.

Alpha diversity metrica NS100b NS142b S100b S142b

Faith’s phylogenetic diversity 62.21 ± 0.65 61.92 ± 0.82 60.57 ± 0.71 62.13 ± 0.70

Chao1 2,977.18 ± 38.23 2,969.98 ± 49.60 2,949.20 ± 61.88 2,962.75 ± 52.76

Observed OTU 2,642.80 ± 50.81 2,634.87 ± 55.11 2,639.00 ± 70.64 2,657.87 ± 59.93

Good’s coverage 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00

Shannon’s diversity index 9.20 ± 0.03 9.20 ± 0.06 9.13 ± 0.08 9.17 ± 0.04

Simpson’s evenness E 0.07 ± 0.00 0.06 ± 0.00 0.06 ± 0.00 0.06 ± 0.00

Notes:
a No statistical significance (P > 0.05).
b Mean ± SEM, NS, no straw; S, Straw; 100, 100% stocking rate; 142, 142% stocking rate.
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relative abundance was 3.13 ± 0.15% in the absence of straw and 2.53 ± 0.12% in the
presence of straw (Table 3). When stocking density was 142%, the relative abundance
of Tenericutes was 2.80 ± 0.09% in the absence of straw and 2.93 ± 0.11% in the presence of
straw (Table 3). Fisher’s LSD groupings are presented in Table 3. A bar chart representing
the relative abundance of phyla by treatment combination is presented in Fig. 2.

Figure 1 Principle coordinate analysis based on unweighted (A; n = 60) and weighted Unifrac
distances (B; n = 60). Blue square is no straw at 142% stocking density, red arrow is no straw at
100% stocking density, green circle is straw at 142% stocking rate, and orange triangle is straw at 100%
stocking rate. Full-size DOI: 10.7717/peerj.9079/fig-1

Table 3 Significant taxa differences by treatment combination, diet, and stocking density.

Taxa level Taxon Treatment group P values

NS100* NS142* S100* S142* Interaction Diet Stocking

Phylum Tenericutes 3.13 ± 0.15A 2.80 ± 0.09AB 2.53 ± 0.12B 2.93 ± 0.11A 0.01 0.07 0.82

Phylum Unassigned 7.70 ± 1.14B 7.66 ± 1.21B 10.80 ± 1.36A 7.94 ± 1.02B 0.07 0.04 0.11

Order RF39 2.26 ± 1.39 ×
10−1,A

1.94 ± 6.14 ×
10−2,AB

1.82 ± 9.64 ×
10−2,B

2.21 ± 1.10 ×
10−1,AB

0.02 0.50 0.88

Family Succinivibrionaceae† 1.79 × 10−2 ±
5.82 × 10−3,A

1.65 × 10−2 ±
6.12 × 20−3,A

8.75 × 10−3 ±
1.59 × 10−3,B

5.52 × 10−3 ±
7.99 × 10−4,B

0.66 0.05 0.22

Family Anaeroplasmataceae 4.46 × 10−2 ± 9.92−3,A 4.80 × 10−2 ±
1.28 × 10−2,A

2.28 × 10−2 ±
6.41 × 10−3,B

2.58 × 10−2 ±
7.75 × 10−3,B

0.82 0.02 0.81

Family Caulobacteraceae 1.79 × 10−2 ±
1.77 × 10−3,A

1.80 × 10−2 ±
2.31 × 10−3,A

1.34 × 10−2 ±
2.09 × 10−3,B

1.27 × 10−2 ±
1.68 × 10−3,B

0.94 0.03 0.85

Genus Atopobium 1.58 × 10−3 ±
6.12 × 10−4,B

4.89 × 103 ±
9.34 × 10−4,A

2.14 × 10−3 ±
5.07 × 10−4,B

2.89 × 10−3 ±
8.54 × 10−4,A

0.19 0.47 0.04

Notes:
* Mean ± SEM, NS, no straw; S, straw; 100, 100% stocking rate; 142, 142% stocking rate.
† P values based on ranked data.
ABWithin-row differences indicate statistically different groups.
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At the genus level, the genera representing ≥1% relative abundance across all treatment
combinations included, Prevotella (25.67 ± 1.32%), unclassified members of the order
Clostridiales (10.00 ± 0.39%), unclassified members of the family Ruminococcaceae
(8.60 ± 0.46%), unclassified members of the order Bacteroidales (7.30 ± 0.28%),
Ruminococcus (6.92 ± 0.75%), unclassified members of the family S24-7 (6.55 ± 0.39%),
unclassified members of family Lachnospiraceae (3.64 ± 0.15%), Butyrivibrio
(2.55 ± 0.12%), unclassified members of order RF39 (2.06 ± 0.10%), unclassified members
of family F16 (1.52 ± 0.08%), unclassified members of the family RF16 (1.51 ± 0.18%),
other members of the family Lachnospiraceae (1.26 ± 0.27%), RFN20 (1.24 ± 0.09%),
and YRC22 (1.02 ± 0.05%). A heatmap of genera illustrating relative abundances by
treatment is available in Fig. 3. Several taxa differed among treatment combination groups.
Average relative abundances with SEM of significantly different phyla and genera are
available in Table 3.

DISCUSSION
This study measured the short-term effects of two different levels of stocking density with
or without the presence of additional straw to represent additional peNDF on the rumen
bacterial community structure and composition. Overstocking can be an issue in the
dairy cattle industry, leading to reduced performance and decreased animal health
(Bareille et al., 2003; Friend, Polan & McGilliard, 1977; Grant & Albright, 2001; Olofsson,
1999). Furthermore, the high grain diet typically fed to dairy cattle can result in negative
physiological responses caused by rapid decreases in pH. Additional peNDF is often

Figure 2 Bar chart of relative abundance of phyla by treatment. S142, straw at 142% stocking density;
NS142, no straw at 142% stocking density; S100, straw at 100% stocking density; NS100, no straw at 100%
stocking density. Full-size DOI: 10.7717/peerj.9079/fig-2
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used in the dairy industry to counteract the negative effects of high grain diets that are
common in the dairy industry by preventing rapid decreases in rumen pH from rapid
fermentation of feeds (Enemark, 2008). Given the significant role of the rumen
microbiome in feed utilization, this study determined the effects of the stocking density on
the rumen at a microbial community level through diversity as well as at taxonomic levels.

In this study, no differences were observed in either a- or β-diversity of the bacterial
communities among treatments. This was unexpected given that different feedstuffs
and their composition, particularly types and levels of forage and starch, have previously
had a significant impact on rumen microbial populations. A study conducted by
Thoetkiattikul et al. (2013) examined the effect of varying levels of dietary fiber and starch
on the rumen bacterial populations of dairy cows (Thoetkiattikul et al., 2013). The authors
found that greater concentrations of either fiber (88% fiber and 2% starch) or starch
(57.5% fiber and 21% starch) resulted in decreased a-diversity metrics, including those
metrics for both richness and diversity, compared with the median diet (76% fiber and 10%
starch) (Thoetkiattikul et al., 2013). This trend has also been observed in other studies,
including those conducted in beef cattle. In a study conducted by Fernando et al. (2010),
animals fed a high-grain (80% grain/20% forage) diet had lower a-diversity as measured
by chao1 and ACE than those on high-forage diets (80% forage/20% grain) (Fernando
et al., 2010). However, these previous studies used much more extreme diets regarding

Figure 3 Heatmap of 0.1%most relative abundant genera for each cow.Organized by treatment (from
left to right—straw at 142% stocking density, no straw at 142% stocking density, straw at 100% stocking
density, and no straw at 100% stocking density). Full-size DOI: 10.7717/peerj.9079/fig-3
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high starch, low fiber vs. low starch, high fiber, and likely contributed to the different
responses. Because no differences in a- or β-diversity were observed in the current study,
these metrics may not be as important for understanding the impacts of stocking density
or additional peNDF on the rumen microbiome. However, lack of diversity could be
attributed to time of last meal or little difference in peNDF. Although the animals were
sampled every 4 h for 24 h, and the samples pooled by day per animal, this greater
variation by day per sample may impact the ability to detect diversity differences. Further,
if animals were exposed to treatment for longer durations of time or a greater number of
animals were used, differences may be observed.

Alternatively, the effect of stocking density was less frequently studied. One of the few
studies that included the effect of any stocking variable, such as stocking intensity, on
rumen bacterial communities was conducted by McCann et al. (2014). The authors
analyzed the effects of different models of residual feed intake (RFI) and stocking intensity
on the rumen bacterial populations in beef bulls (McCann et al., 2014). The results of the
beef bull study concur with the results of the current study, suggesting that stocking
variables may not significantly impact the rumen bacterial diversity (McCann et al., 2014).
However, asMcCann et al. (2014)mentioned, individual animals possess their own unique
rumen microbiomes, and the number of animals used in the study may not have been
enough to overcome the amount of individual animal variation.

Although no differences were observed among treatment groups in bacterial
community diversity, both phylum- and genus-level divergences were measured among
treatment groups by interactions. At the phylum level, Tenericutes was the sole taxon that
differed among treatment groups. Tenericutes are frequently found as a component of the
rumen microbiome in cattle (Creevey et al., 2014; Jami & Mizrahi, 2012; Myer et al.,
2015b), particularly in adult cattle (Jami et al., 2013). Pitta et al. (2014) observed that
relative abundances of Tenericutes changed as a result of diet changes through the
transition period in dairy cattle (Pitta et al., 2014). Tenericutes are small, prokaryotic cells
that do not possess cell walls, allowing them to exhibit flexibility in their morphology
(Brown, 2010). The only class found in Tenericutes is Mollicutes, of which some of the
more notable members are Mycoplasma (Ludwig, Euzéby & Whitman, 2010).
The differences observed in Tenericutes could possibly be the result of normal temporal
fluctuations that occur in the rumen bacterial communities (Clemmons et al., 2019;
Pitta et al., 2014). Additionally, one of the members of Tenericutes, Anaeroplasmataceae,
also varied as a result of treatment group. Further studies assessing stocking density
may reveal more information, especially given that few studies exist investigating the
relationship between stocking density and the rumen microbiome in cattle.

At the genus level, several taxa differed by treatment group. Atopobium, a member
of Actinobacteria, is commonly found in the rumen (Mao et al., 2013; Petri, 2013; Šuľák
et al., 2012). Although the specific role of Atopobium in the rumen is not well known
(Šuľák et al., 2012), it does appear to be associated with diet variation, particularly with
greater-concentrate diets and instances of ruminal acidosis (Mao et al., 2013; Petri, 2013).
Abundance of Atopobium in the present study does not appear to be associated with
presence or absence of sufficient peNDF, but may be a result of overstocking, based on the
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average relative abundances by treatment. Similarly to ruminal acidosis, overstocking may
represent a source of stress on the animal (Krawczel et al., 2012a; Webster, 1983). Indeed,
greater stocking rates may provide a source of subclinical stress and, when combined
with an additional stressor such as low fiber content in the diet, could result in altered
rumen microbiomes (Campbell et al., 2015). Relative abundances of Atopobium may
increase in response to physiological or environmental stress (Mao et al., 2013); however,
more research needs to be conducted to confirm this theory.

Unclassified members of the order RF39 also varied by treatment. Members of order
RF39 appear to be present in the rumen (Jami & Mizrahi, 2012) as well as the gut
microbiomes of other species (Goodrich et al., 2014; Lin et al., 2013). In a study conducted
by Jami & Mizrahi (2012), the authors attempted to interrogate the relationships among
the rumen microbiome, feed efficiency, and milk production in dairy cattle (Jami &
Mizrahi, 2012). The authors found a tendency for positive correlation between an
unclassified genus of RF39 and RFI, a measure of feed efficiency, suggesting that even at
lower abundances this taxon may contribute to host physiological variation (Jami, White &
Mizrahi, 2014). Additional studies support the positive relationship between RF39 and
RFI in dairy cattle (Jewell et al., 2015). Greater RFI is considered less efficient because
animals are consuming more feed than would be expected given their metabolic body
weight and average daily gain (Koch et al., 1963). Although stocking density is intuitively
different than feed efficiency, the presence and abundance of RF39 in dairy cattle may
suggest a less efficient or even maladaptive rumen microbiome. Although this specific
trend was not necessarily observed in this study, greater number of animals and longer
exposure to overstocking may reveal the relationship among RF39 and stocking density.

The third genus-level taxon that differed by treatment was unclassified members of
family Succinivibrionaceae. Members of Succinivibrionaceae are Gram-negative,
succinate-producing bacteria commonly found in the rumen of livestock ruminants
(Stackebrandt & Hespell, 2006). Bacteria from Succinivibrionaceae are most often found in
greater abundance in the rumen of animals fed diets with greater amounts of starch, or
more readily fermentable feed (Bryant et al., 1958; Bryant & Small, 1956; Wozny et al.,
1977). These results support the observations in the current study, in which relative
abundances of unclassified members of the family Succinivibrionaceae were greater in the
diets that did not contain the additional straw and greater peNDF content. Additionally,
in the current study, relative abundances of Succinivibrionaceae numerically decreased
with greater stocking density in both diet treatments. A study conducted by McCabe et al.
(2015) analyzed the effects of feed restriction on bulls fed high-grain diets. The authors
found that members of Succinivibrionaceae decreased following feed restriction (McCabe
et al., 2015). Although increased stocking density does not necessarily result in decreased
feed intake for all animals, it could result in an altered feed intake pattern or stress on
the animal, resembling the effects of feed restriction (Huzzey et al., 2006; Keys, Pearson &
Thompson, 1978). The combination of stocking density and fiber content in the diet
could explain differences observed in relative abundance of unclassified members of
Succinivibrionaceae; however, the effects of this reduction on the ruminal environment or
animal performance are unknown and warrant further investigation.
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Members of Caulobacteraceae, which belong to the phylum Proteobacteria, also differed
significantly as a result of differences in peNDF. In the present study, cows supplemented
with straw to provide greater peNDF had lower relative abundance of Caulobacteraceae
than cows not supplemented with additional straw. Members of Caulobacteraceae are
typically found in aquatic environments and in the gut of different animals and other
organisms (Poindexter, 1964). Greater relative abundances of members of Proteobacteria
in the gut are sometimes associated with diseased states (Auffret et al., 2017; Shin, Whon &
Bae, 2015). A study conducted by Auffret et al. (2017) analyzed the effect two different
diets, one on pathogenicity and antimicrobial resistant genes in the rumen of cattle.
That study found that cattle consuming more concentrate had greater abundances of
Proteobacteria, suggesting greater potential for pathogenicity in cattle consuming
high-grain diets (Auffret et al., 2017). This has been supported by other research in
cattle (Khafipour et al., 2016). The addition of straw to increase peNDF in the present
study may have resulted in decreased Caulobacteraceae. This may result in decreased
microbial-derived stress-response genes, suggesting that the addition of peNDF ameliorates
the negative effects of high-grain diets (Auffret et al., 2017; Khafipour et al., 2016).

CONCLUSIONS
The hypothesis of this study was that greater stocking density would result in an altered
rumen bacterial community composition, and would be affected by presence or absence
of straw, resulting in greater or lesser peNDF. Stocking density with or without the
inclusion of straw did not have an apparent effect on bacterial community diversity;
however, differences were observed at both the phylum and genus level. Greater stocking
has a demonstrated negative impact on dairy cattle behavior, including decreased time
spent at the feed bunk, particularly immediately following milking (Krawczel et al., 2012a),
as well as lying time (Krawczel et al., 2012a). Changes in feeding behavior as a result of
stocking density may have negative impacts on the rumen microbiome, as previous studies
have found that decreased feed intake or feed restriction can alter the rumen microbial
populations and communities (Firkins et al., 1987;McCabe et al., 2015). Although negative
effects of overstocking can be observed on the behavior of dairy cattle within one to 2
weeks (Krawczel et al., 2012a), more time may be needed to observe more dramatic effects
of stocking density on the rumen microbiome, as other research suggests that at least 6
weeks is required to observe transition to stable bacterial community composition
(Clemmons et al., 2019). Alterations in the rumen microbiome of dairy cattle undergoing
overstocking could have negative effects on feed efficiency and milk production (Jami,
White & Mizrahi, 2014); thus, additional analyses with animals exposed to treatments for
longer durations of time may yield more extensive changes to the rumen microbiome.
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