
Boca Raton New York

Auerbach Publications is an imprint of the
Taylor & Francis Group, an informa business

Chris Ford
Ido Gileadi

Sanjiv Purba
 Mike Moerman

AU5334.indb 3 11/19/07 7:48:10 AM

Auerbach Publications
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487‑2742

© 2008 by Taylor & Francis Group, LLC
Auerbach is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Printed in the United States of America on acid‑free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number‑13: 978‑1‑4200‑5334‑0 (Hardcover)

This book contains information obtained from authentic and highly regarded sources. Reprinted
material is quoted with permission, and sources are indicated. A wide variety of references are
listed. Reasonable efforts have been made to publish reliable data and information, but the author
and the publisher cannot assume responsibility for the validity of all materials or for the conse‑
quences of their use.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.
copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC)
222 Rosewood Drive, Danvers, MA 01923, 978‑750‑8400. CCC is a not‑for‑profit organization that
provides licenses and registration for a variety of users. For organizations that have been granted a
photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and
are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data

Patterns for performance and operability : building and testing enterprise
software / by Chris Ford ... [et al.].

p. cm.
Includes bibliographical references and index.
ISBN 978‑1‑4200‑5334‑0 (alk. paper)
1. Computer software‑‑Development. 2. Computer
software‑‑Specifications. 3. Debugging in computer science. I. Ford, Chris

(Christopher B.)

QA76.76.D47P3768 2008
005.1‑‑dc22 2007030244

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the Auerbach Web site at
http://www.auerbach‑publications.com

AU5334.indb 4 11/19/07 7:48:10 AM

�

Dedications

To my wonderful mother Susan; and my equally wonderful wife Emily
	 —Chris Ford

To my two bright daughters, Madelaine and Nicole; and to my father Eliezer,
who inspired me to write, and my mother Lucy, who inspired my creativity

	 —Ido Gileadi

To my wife Kulwinder, my son Naveen, my son Neil, and my daughter Nikhita
	 —Sanjiv Purba

To my daughter Aderyn and my wife Avideh
	 —Michael Moerman

AU5334.indb 5 11/19/07 7:48:11 AM

vii

Contents

Dedications..v
The Purpose of This Book..xv
Acknowledgments..xvii
About the Authors...xix

1	 Introduction..1
Production Systems in the Real World..1

Case 1—The Case of the Puzzlingly Poor Performance.......................2
Case 2—The Case of the Disappearing Database................................5

Why Should I Read This Book?..7
The Non-Functional Systems Challenge...8
What Is Covered by Non-Functional Testing...9
Planning for the Unexpected..10
Patterns for Operability in Application Design...11

Ensuring Data and Transaction Integrity..11
Capturing and Reporting Exception Conditions in a Consistent

Fashion...11
Automated Recovery from Exception Conditions..............................14
Application Availability and Health...14

Summary..14

2	 Planning and Project Initiation..17
The Business Case for Non-Functional Testing...17

What Should Be Tested...17
How Far Should the System Be Tested?...19
Justifying the Investment...20
Negative Reasoning...21

Scoping and Estimating..22
Determining the Scope of Non-Functional Testing...........................22
Estimating Effort and Resource...26
Estimating the Delivery Timeline..29

AU5334.indb 7 11/19/07 7:48:12 AM

viii  n  Contents

Test and Resource Planning..33
Test Types and Base Requirements..33
Test Environments...36
The Test Team...37

Communication Planning..39
Setting Expectations..39

Summary... 40

3	 Non-Functional Requirements..41
What Are Non-Functional Requirements?..43
Do I Need Non-Functional Requirements?..43
Roles and Responsibilities.. 44
Challenging Requirements..45
Establishing a Business Usage Model... 46

Quantifying Human and Machine Inputs.. 46
Expressing Load Scenarios...54

Non-Functional Requirements...56
An Important Clarification..56
Performance Requirements..58
Operability Requirements..62
Availability Requirements... 64
Archive Requirements..65

Summary..67

4	 Designing for Operability...69
Error Categorization...70
Design Patterns...71

Retry for Fault Tolerance...71
Software Fuses...74

Software Valves...75
System Health Checks...78

The Characteristics of a Robust System.. 80
Simple Is Better.. 80
Application Logging..81
Transparency: Visibility into System State...83
Traceability and Reconciliation.. 84
Resume versus Abort...86
Exception Handling..87

Infrastructure Services..91
Design Reviews...91

The Design Checklist..91
The Operability Review..92
Summary..94

AU5334.indb 8 11/19/07 7:48:12 AM

Contents  n  ix

5	 Designing for Performance...95
Requirements..95

The “Ilities”..95
Architecture..101

Hotspots..101
Patterns...102

Divide and Conquer..102
Load Balancing..102
Parallelism...103
Synchronous versus Asynchronous Execution..................................107
Caching...109

Antipatterns..112
Overdesign.. 114
Overserialization.. 114
Oversynchronization... 117
User Session Memory Consumption.. 118

Algorithms.. 119
Technology...120

Programming Languages...120
Distributed Processing...123
XML	 ...125

Software..126
Databases...127
Application Servers..129
Messaging Middleware..129
ETLs	 ...132

Hardware Infrastructure...134
Resources...134

Summary..136

6	 Test Planning..139
Defining Your Scope...140

System Boundaries...140
Scope of Operability..142
Scope of Performance..145

Load Testing Software..145
Product Features..146
Vendor Products..147

Additional Testing Apparatus...149
Test Beds..150

Test-Case Data..150
Test Environments.. 151

Isolation... 151

AU5334.indb 9 11/19/07 7:48:13 AM

�  n  Contents

Capacity.. 153
Change Management..154

Historical Data...154
Summary..157

7	 Test Preparation and Execution..159
Preparation Activities.. 159
Script Development..160

Validating the Test Environment...164
Establishing Mixed Load...164
Seeding the Test Bed...167
Tuning the Load..167

Performance Testing...171
Priming Effects..172
Performance Acceptance..173
Reporting Performance Results...176
Performance Regression: Baselining..177
Stress Testing...181

Operability Testing...181
Boundary Condition Testing...182
Failover Testing...183
Fault Tolerance Testing..186

Sustainability Testing...188
Challenges..192

Repeatable Results...193
Limitations..193

Summary..194

8	 Deployment Strategies..195
Procedure Characteristics...196
Packaging...197

Configuration..197
Deployment Rehearsal..198
Rollout Strategies..198

The Pilot Strategy..198
The Phased Rollout Strategy..199
The Big Bang Strategy...199
The Leapfrog Strategy... 200

Case Study: Online Banking... 200
Case Study: The Banking Front Office...202
Back-Out Strategies... 204

Complete Back-Out.. 204
Partial Back-Out... 204

AU5334.indb 10 11/19/07 7:48:14 AM

Contents  n  xi

Logical Back-Out... 204
Summary..205

9	 Resisting Pressure from the Functional Requirements Stream.......... 207
A Question of Degree.. 208
Pressures from the Functional Requirements Stream............................... 209
Attention..212

Human Resources...212
Hardware Resources..213
Software Resources..213
Issue Resolution...213

Defining Success...213
Setting the Stage for Success...214

Framework... 215
Roles and Responsibilities..216
Raw Resources Required by the Non-Functional Requirements

Stream..216
Performance Metrics..221
Setting Expectations... 222
Controls.. 222
The Impact of Not Acting..223

Summary..223

10	 Operations Trending and Monitoring...225
Monitoring...225

Attributes of Effective Monitoring...227
Monitoring Scope... 228
Infrastructure Monitoring.. 230
Container Monitoring...233
Application Monitoring...238
End-User Monitoring..239

Trending and Reporting...241
Historical Reporting..241
Performance Trending...241

Error Reporting..243
Reconciliation... 244
Business Usage Reporting..245

Capacity Planning..245
Planning Inputs...245
Best Practice..248
Case Study: Online Dating...248
Maintaining the Model...255
Completing a Capacity Plan..255

AU5334.indb 11 11/19/07 7:48:15 AM

xii  n  Contents

Summary..256

11	 Troubleshooting and Crisis Management...257
Reproducing the Issue...257
Determining Root Cause..258
Troubleshooting Strategies..259

Understanding Changes in the Environment...................................259
Gathering All Possible Inputs..261
Approach Based on Type of Failure...263
Predicting Related Failures..265
Discouraging Bias... 268
Pursuing Parallel Paths... 268
Considering System Age..269
Working Around the Problem...269

Applying a Fix..270
Fix versus Mitigation versus Tolerance...270
Assessing Level of Testing..271

Post-Mortem Review..272
Reviewing the Root Cause...272
Reviewing Monitoring...272

Summary..275

12	 Common Impediments to Good Design...277
Design Dependencies... 277
What Is the Definition of Good Design?..279

What Are the Objectives of Design Activities?.................................279
Rating a Design...281

Testing a Design.. 286
Contributors to Bad Design...287

Common Impediments to Good Design..287
Confusing Architecture with Design.. 288
Insufficient Time/Tight Timeframes.. 288
Missing Design Skills on the Project Team..................................... 288
Lack of Design Standards... 288
Personal Design Preferences...289
Insufficient Information...289
Constantly Changing Technology...289
Fad Designs...290
Trying to Do Too Much..290
The 80/20 Rule..290
Minimalistic Viewpoint...290
Lack of Consensus...291
Constantly Changing Requirements..291

AU5334.indb 12 11/19/07 7:48:16 AM

Contents  n  xiii

Bad Decisions/Incorrect Decisions..291
Lack of Facts..291
External Impacts..291
Insufficient Testing..291
Lack of Design Tools...292
Design Patterns Matter..292
Lack of Financial Resources...292

Design Principles..292
Summary..293

References...295

Index...297

AU5334.indb 13 11/19/07 7:48:16 AM

xv

The Purpose of This Book

Considerations for application performance and operability, two key non-functional
requirements, are frequently neglected and postponed to the later phases of the devel-
opment lifecycle on systems projects that produce enterprisewide software. High-
quality software must meet business needs for performance, operability, and other
non-functional requirements that typically also include the following: availability,
maintainability, expandability, and throughput.

This book is designed to provide a practical approach to readers for address-
ing non-functional requirements—specifically, performance and operability—on
systems projects. Our focus is on design, testing, and certification of applications
for their target production environments. The key to successful system implemen-
tation is to specify the non-functional requirements early in a system development
lifecycle and give them as much attention as functional requirements traditionally
experience.

Delivering a highly available software solution means incorporating perfor-
mance and operability considerations into every phase of the software lifecycle.
This book is structured to follow the software lifecycle, providing advice and exam-
ples-based instruction at each phase. You can read this book from start to finish,
or you may want to go directly to those chapters that interest you most. Whatever
approach you choose, you will learn:

The importance of early consideration and planning for performance and
operability in the early phases of the project development lifecycle
How to define and document comprehensive non-functional requirements
for any software system
How to incorporate performance and operability activities into each phase of
the project development lifecycle
How to execute non-functional tests and report results clearly and
effectively
Patterns for defensive software design in common software scenarios and pat-
terns for software design that support high performance and scalability

n

n

n

n

n

AU5334.indb 15 11/19/07 7:48:17 AM

xvi  n  The Purpose of this Book

How to implement tracking mechanisms in the operations phase to ensure
high system availability and rapid response for managing and troubleshoot-
ing during a production crisis
Strategies for resisting pressures from the functional requirements stream that
typically distract from the non-functional stream of activities

Functional and non-functional requirements, such as performance and oper-
ability, must all be met for any real-world application to be successful. This book
provides the tools and techniques for making this happen.

Intended Audience
This book is intended for anyone who has a lead architectural, design, or busi-
ness role on a systems project, including those working on the projects, the project
sponsors, or those directly benefiting from the results. It also encompasses a wide
range of roles and responsibilities, including project sponsors, executives, directors,
project managers, program managers, project leaders, architects, designers, lead
developers, business users, consultants, leads and testers, and other resources on a
project team.

This book can be read and applied by beginners or experts alike. However, we do
assume that the reader has some knowledge of the basic project development lifecycles
and concepts of both functional and non-functional requirements.

Organization of the Book
This book contains 12 chapters that describe the incorporation of performance,
operability, and other non-functional requirements into a project development life-
cycle. The sequence of the chapters mirrors the phases in the standard development
lifecycle (SDLC).

Chapters 1 through 8 focus on planning through deployment phases. Chapter
9 examines pressures experienced on most projects that cause teams to deviate from
the advice presented in this book. Chapters 10 and 11 look at the project monitor-
ing and rapid response to non-functional problems typically experienced when an
application is placed into a production environment. Chapter 12 concludes with
an examination of impediments to good design that can limit performance, oper-
ability, and other non-functional requirements.

n

n

AU5334.indb 16 11/19/07 7:48:17 AM

xvii

Acknowledgments

This book represents the authors’ accumulated experience and knowledge as tech-
nology professionals. Tackling difficult problems is thoroughly enjoyable when it is
in the company of passionate and talented colleagues. Accordingly, we acknowledge
the following individuals who have unknowingly contributed to this book: Andrew
Adams, Daniil Andryeyev, Poorna Bhimavarapu, Neil Bisset, Lucy Boetto, Debi
Brown, Dave Bruyea, Ryan Carlsen, Steve Carlson, Cono D’Elia, Olivie De Wolf,
David Dinsmore, Bruno DuBreiul, Marc Elbirt, James Fehrenbach, Peter Fer-
rante, Oleg Fonarev, Kenny Fung, Michael Gardhouse, Wayne Gramlich, Frank
Haels, Michael Han, Mark Harris, John Hetherington, Eric Hiernaux, Steve Hill,
David Howard, Steve Hu, Hiram Hsu, Anand Jaggi, Tommy Kan, John Krasnay,
Andre Lambart, Marcus Leef, Robert Lei, Clement Ma, Richard Manicom, Ron-
nie Mitra, Odette Moraru, Shankara Narayanan, Nader Nayfeh, David Nielsen,
Rich O’Hanley, Kevin Paget, Alex Papanastassiou, Ray Paty, Cris Perdue, Neil
Phasey, Betty Reid, Adam Scherer, Sean Shelby, Dan Sherwood, Manjit Sidhu,
Greg Smiarowski, David A. Smith, Gilbert Swinkes, Chris Tran, Brent Walker,
Mark Williamson, John Wyzalek, Bo Yang, Eric Yip, and George Zhou. We also
acknowledge the talents of Richard Lowenburg in Toronto, Ontario for his contri-
bution to the illustrations in this book.

AU5334.indb 17 11/19/07 7:48:17 AM

xix

About the Authors

Based in Toronto, Ontario, Chris Ford has extensive experience providing hands-
on technical and strategy consulting services to large organizations throughout the
United States and Canada. Chris is currently a managing principal with Capital
Markets Company (Capco) (http://www.capco.com/), specializing in highly avail-
able software systems for the financial services industry. He is a graduate of the
University of Waterloo’s Systems Design Engineering program.

Based in Toronto, Ontario, Ido Gileadi is an experienced information technology
executive with specialization in delivery of large technology implementations for
the financial services and manufacturing sectors. Currently a senior partner and
executive vice president for global delivery at Capital Markets Company (Capco)
(http://www.capco.com/), Ido has delivered key strategic implementations at large
financial institutions and high-tech manufacturing firms. Prior to working with
Capco, Ido was the chief information officer at BCE Emergis and a senior manager
at Deloitte Consulting.

Sanjiv Purba is a partner with Infomaxium, Inc., a Toronto-based information
technology management consulting firm (www.infomaxium.com). He has more
than 20 years of industry and consulting experience with organizations such as
Blast Radius, Cognos, Deloitte Consulting, Goldman Sachs, IBM, Microsoft, and
TD Waterhouse. He has managed projects that range from small six-person teams
to those that include hundreds of employees, dozens of vendors, and hundreds of
consultants. He has written more than 15 books and hundreds of articles for such
newspapers as the Globe and Mail and the Toronto Star.

Michael Moerman is a managing principal with Capital Markets Company
(Capco) (http://www.capco.com/). He specializes in designing the architecture,
building, and delivering large-scale projects for financial institutions. Over the past
ten years he has delivered large, complex solutions across Asia, Europe, and North
America. Prior to joining Capco, Michael was chief technology officer (CTO) of
eGlutek Ltd.

AU5334.indb 19 11/19/07 7:48:18 AM

�

Chapter 1

Introduction

Performance and operability are two prominent categories of non-functional
requirements. Application implementations can rarely be considered a success if
either performance or operability is not satisfying some minimal metrics. Surpris-
ingly, these and other non-functional requirements are still very much an after-
thought on most information technology (IT) projects, while attention is focused
on addressing functional requirements.

Non-functional requirements typically address the system needs dealing with
availability and performance—e.g. operations. In addition to performance (e.g.,
response time) and operability, other non-functional requirements include areas
such as: extensibility, flexibility, scalability, availability, maintainability, reliability,
usability, and robustness. Quality and cost can also be considered non-functional
requirements.

Production Systems in the Real World
Performance and operability considerations are often overshadowed by the focus
that business and application development teams place on richness of functionality.
Yet, significant challenges faced by production applications are due to non-func-
tional aspects of the systems. Rich functionality is of little value to end users if sys-
tem performance or availability is so poor that users cannot access the application.
We illustrate this statement with two case studies drawn from the real world in the
following section.

AU5334.indb 1 11/19/07 7:48:19 AM

�  n  Patterns for Performance and Operability

Case 1—The Case of the Puzzlingly Poor Performance

A major banking application carefully designed for rich functionality was launched
for approximately 5,000 branch and back-office users. The application platform con-
sisted of leading edge J2EE technology. During the two-month application rollout,
users were gradually introduced to the new platform on a branch-by-branch basis.
Application performance was satisfactory in the first few weeks following rollout.

Several weeks after the rollout, users started complaining about intermittent
incidences of highly degraded performance. Business operations that were previously
taking 2–5 seconds were now being reported to take 20–30 seconds. This inconsis-
tency in performance led the technology team to identify the specific functions and
data being used to execute the problematic operations. Unfortunately, the technol-
ogy team was unable to correlate any common functional denominator.

In a technology management meeting, the vice president (VP) of technology
asked, “Did we successfully complete performance testing prior to deployment? Did
our testing simulate a business load equivalent to 5,000 end users?” The technology
team assured the VP that they had indeed conducted these tests successfully.

As the application rollout continued, the performance became unbearable.
Many business operations were consistently taking 30 seconds to complete. An
intermittent problem had become a sustained and severe problem. Users were
becoming increasingly frustrated in their efforts to use the application.

With growing pressure on the technology team, the VP of technology did what
seemed very natural to her after many years of technology delivery: she shifted the
focus to infrastructure issues. She suggested that this must be a network or system
capacity issue. “This is the only reasonable explanation for why performance was
fine when we first rolled out the application,” she said, clearly believing that this
could not be an application issue.

The infrastructure team had considerable experience as the focus for technology
issues that were later shown to be application related. As a result of this experience,
they had developed a set of discrete tests, capable of exercising each element of
the infrastructure to establish its status. The infrastructure organization promptly
ran these tests and was pleased to report the results to management. A bounty of
evidence indicated no capacity or health issues could be identified affecting the
infrastructure, including network, CPU (central processing unit), storage, cluster-
ing, memory, or I/O (input/output). Everything looked very normal from an infra-
structure standpoint.

It was time to escalate the issue and bring in the expert team. Someone had to
take the heat, and the VP of technology was starting to feel uncomfortably warm.
The team was brought in to solve the problem with a mandate to resolve the issue
as quickly as possible. Due to the criticality of the problem, all of the assets of the
organization were to be made available to the expert SWAT team.

Soon after being engaged, the consulting team made the following observations:

AU5334.indb 2 11/19/07 7:48:19 AM

Introduction  n  �

Based on performance test results, the application code itself was capable
of supporting the expected performance assuming the required systems
resources were available.
Performance degradation was continuing over time. However, there was no
indication as to whether the degradation was correlated to time itself or to the
rollout to additional bank branches.
Performance degradation was sporadic at first but had become more and
more consistent over time.
At the start of the day, performance appeared to be generally within the
required range, but quickly worsened over the course of the day.
Based on the infrastructure test results, the organization was correct in con-
cluding that the infrastructure itself did not appear to be at fault.

Based on the preliminary assessment, the team decided to profile the J2EE
application container for key application resources including memory, threads,
connection pools and other internal resources. In doing so, the following observa-
tions were quickly captured:

The application container (in this case, a Java virtual machine) was executing
full garbage collections at a much higher than expected frequency. A garbage
collection is a memory management service that is performed by the applica-
tion container.
Each time a full garbage collection was executed, all application threads were
put on hold. In other words, all business processing was paused until the
completion of the memory management task.
Garbage collection operations were taking an average of 20 seconds to
complete.

Based on this new information, the team was confident that they had identified the
culprit. In collaboration with the development team, the expert team was able to do
some fine-tuning of memory parameters and peace was restored to the organization.

Everyone thanked the technology team for their heroic efforts, late nights, and
congratulated them for solving the problem. Only a few questions loomed; fore-
most amongst them, could this incident have been avoided? What was missing
in the test-case coverage that did not identify this issue in advance of production
deployment? How does the root cause explain the chronology of events observed
in production?

In answering these questions, we begin to see the need for a structured approach
to non-functional design and implementation.

n

n

n

n

n

n

n

n

AU5334.indb 3 11/19/07 7:48:19 AM

�  n  Patterns for Performance and Operability

	 1.	How does one explain the events that were observed in production?

Table 1.1  Case Study Observations and Explanations

Event Observed in Production Explanation

System resources were not strained.
More specifically, the problem was
memory exhaustion yet there was
abundant memory on the server.

Application containers allocate a certain amount
of system resources including memory, threads,
and connection pools. Applications running
within a container cannot use more resources
than have been allocated. Ample system
memory is of no use to an application running
inside an application container that imposes
limits.

Performance was initially good or at
acceptable levels.

The memory usage profile changed dramatically
with the introduction of more users to the
system. More specifically, as time elapsed,
objects were accumulating in memory with a life
span of many days. This problem intensified with
the introduction of additional users.

Performance testing with 5,000
simulated users did not show any
performance degradation.

This is due to the fact that while conducting
short term tests, even with a large number of
simulated users, the state of the memory is fairly
clean. When the system is used over a long
period of time without restart, the memory
saturates and there is a need for frequent full
garbage collection (assuming the memory heap
size was not set appropriately to begin with).

Performance was not consistent. In the production architecture, there were several
server load balancing user requests. If one of the
servers was restarted, response time would
return to normal for a short period until full
garbage collections would resume at a high
frequency.

	 2.	What was missing in the test coverage that would have allowed us to see this
problem in advance of production deployment?

			 Despite good performance test coverage, the project team did not fully
simulate production conditions. In this case, the impact of long system
uptime under heavy user operation was not factored into the test plan. Later
in this book, we will formally introduce the concept of sustainability test-
ing, which is designed exactly to avoid this type of incident. Sustainability
tests simulate long periods of system operation under various loads to observe

AU5334.indb 4 11/19/07 7:48:20 AM

Introduction  n  �

the effect on internal application resource and performance over a period of
time.

	 3.	Could this condition have been averted? The answer is a resounding YES. As
noted above, a test can be designed such that the resource usage over time can
be monitored under load and resource management issues can be surfaced at
testing. In fact it is highly recommended that a sustainability test be designed
for every system to closely simulate production behavior.

It is worth mentioning that an accurate simulation of production conditions is
usually difficult to achieve because of the large number of permutations in usage
patterns and data. Accordingly, avoiding an outage in production should not rely
entirely on testing the systems in advance. A good set of monitoring tools and
health checks can provide the technology operation team with forewarning of sys-
temic issues that are brewing in the system.

In this case, assuming that the appropriate level of monitoring of memory man-
agement inside the container existed, the technology operation team would have
detected frequent garbage collections well in advance of the rollout to additional
branches. This would have allowed the project team to resolve the problem well
before it had escalated to the level of consistent 20- to 30-second response time.

The case above clearly demonstrates the need for sound planning and appropri-
ate test coverage as part of the delivery of any mission critical software system. It is
interesting to note that this example did not include any fundamental design flaw
in the deployed application.

Case 2—The Case of the Disappearing Database
A large financial institution deployed an application that relied heavily on database
technology to maintain its process state and data. The application was deployed to
production after extensive performance, sustainability, and functional testing.

The application was designed to take advantage of multiple failover technolo-
gies with clustering at the application server, database server, and Web server layers
as well as load balancing between servers to take full advantage of the computing
potential of all servers available. The institution had decided to host the application
internally, and for that purpose had built an internal infrastructure and technology
operation organization to service the applications.

As with any new organization, the newly created infrastructure team was hav-
ing some challenges hiring and training skilled engineers, establishing robust pro-
cesses and controls, and instilling the right level of operational discipline across the
organization. Good progress had been made but there was still a long way to go.

Shortly after the application was deployed to production, the primary database
server failed completely for hardware reasons. Failover did not succeed as expected
and the secondary server did not automatically service the application. The applica-
tion was faced with a catastrophic event whereby it had no access to its database to

AU5334.indb 5 11/19/07 7:48:20 AM

�  n  Patterns for Performance and Operability

record the state of its processes or retain its data. The infrastructure team worked
diligently to correct the issue and was able to restore service on the secondary data-
base server in less than 4 hours.

During the 4-hour outage, users were frantically trying to assess the state of
their transactions. In doing so, in some cases they had manually posted transac-
tions through to the book of records system outside of the normal application-
driven process.

Once the application had been restored, it became clear that many of the trans-
actions that were initiated prior to the outage were now in an indeterminate or
broken state. In other words, business users were unable to continue processing
in-flight transactions. The business operations team was forced into the unenviable
position of having to investigate each transaction individually. In many cases, a
labor-intensive manual process was required to complete the transaction outside of
the application. The full recovery became a very slow and painful exercise for both
business and technology operations as technology was required to produce a variety
of ad-hoc reports.

In the next four weeks, the database server infrastructure failed an additional
4–5 times due to a combination of human error and system configuration issues.
Not surprisingly, business operations demanded that the technology team develop
applications that were resilient. Resilient applications were defined as applications
that can recover from a major infrastructure failure in a consistent way, mostly
automated (a few manual exceptions were allowed).

The development team was faced with a challenging new requirement for which
they had no prior experience. They had always assumed that the infrastructure
would be there to support the application, based on the extensive investment that
had been made in the highly available, fault-tolerant infrastructure. Ultimately
the team met the challenge in two ways. First, they developed a set of recovery
procedures and tools that would improve the efficiency and accuracy of any busi-
ness recovery in the event of an application outage. Second, they enhanced the
application design such that transactions would reliably transition to a state from
which they could be recovered by the previously mentioned recovery procedure
and tools.

The combination of these two efforts resulted in a system that was resilient to most
types of failures, meaning that recovery would be automated and transparent to busi-
ness users in most cases. The development approach leveraged the following technolo-
gies and approaches:

Review and correction of transaction boundaries for all asynchronous mes-
saging operations.
Introduction of a dedicated “frozen” state for transactions that are impacted
by a failure. Transactions that transition to this frozen state must be able to
successfully resume processing if they are “unfrozen.”

n

n

AU5334.indb 6 11/19/07 7:48:21 AM

Introduction  n  �

Introduction of transaction-level error reporting accessible by both business
and technology.
Additional scripts for monitoring application failure conditions and exposing
these conditions to an operator console.
Automated retry and rehandling capability for many transaction types.
Introduction of an extensive application health-check capability that allows
operations to quickly verify critical application and system dependencies.
Enhancements to the business workflow such that manual application tasks
are automatically initiated when an automated task cannot resolve a failure.
Implied timeout conditions that raise manual tasks or alerts.

This concerted effort yielded an application that was resilient to infrastructure
as well as application components failures.

The case above demonstrates that there was a deficiency in the definition of
non-functional requirements. It also demonstrates that when designing an applica-
tion to run in a production environment the only assumption that project teams
should make is that things will eventually go wrong. Mission-critical applications
must be designed with failover, operability, and recovery requirements in mind.

Why Should I Read This Book?
Having read the above two real-life cases, it is likely that you were reminded of times
in your experience where lack of specification, planning, design, testing, and moni-
toring for performance and operability have caused you grief. Unfortunately, such
experiences are all too common. Non-functional issues frequently result in major out-
ages and challenges for technology executives, managers, architects, and developers.

This book provides a comprehensive guideline, complete with examples and
actionable templates for specifying, planning, designing, testing, and monitor-
ing systems and applications for their non-functional characteristics. It provides a
broad discussion on topics regarding a variety of non-functional aspects of applica-
tion development, including the definition and the rationale for consideration of
these topics.

The authors of this book are themselves IT practitioners with considerable
cumulative experience. The content of this book is an aggregation of over 60 years
of practical experience. Consequently, we hope that you will find this book very
practical. We have tried to provide a balanced and pragmatic view of planning,
design, and testing coverage that can provide maximum value with reasonable
investment. As IT practitioners, we understand and frequently reference the con-
straints and limitations faced by most projects.

In the remaining chapters of this book, we share proven strategies and practices
for avoiding the following serious pitfalls:

n

n

n
n

n

n

AU5334.indb 7 11/19/07 7:48:21 AM

�  n  Patterns for Performance and Operability

Infrastructure that cannot scale
Applications that cannot scale
Limited ability to diagnose problems in real-time
Unexpected production behavior patterns
Applications that exhaust available hardware capacity
Failure of the automated failover systems that result in outages
Sudden degredation of applicaiton performance
Low availability—reduced service
Complex operation—software systems that can only be operated by a large
and highly skilled team of specialized resources

This book is designed with the software development lifecycle in mind. Our
hope is that you will be able to use it throughout your implementation as a reference
and guide for achieving highly available systems.

The Non-Functional Systems Challenge
Production environments are very different from the typical functional test envi-
ronments. These differences are due to the following occurrences in production:

Unexpected user behavior
Unexpected user inputs
Unexpected volumes
Unexpected usage over time (i.e., spikes) that is seasonal and/or related to the
time of day
For enterprise systems, functional environments that are usually not on the
same scale as the production environment
Functional test environments often omit or compromise on certain infra-
structure components for reasons of cost
Unexpected system performance issues due to network, database, and other
non application-specific factors, particularly in a shared services environment
Unlike test systems, production systems are subjected to use over a long
period of time

It is common practice in most systems-delivery projects to include a User Accep-
tance Test (UAT) phase, which allows representatives of the target user community
to verify and sign off on the functionality of the application. Yet when the appli-
cation is placed in production we often find that performance, outages, memory
leaks, and other non-functional issues become a serious impediment to the usage
of the application.

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

AU5334.indb 8 11/19/07 7:48:22 AM

Introduction  n  �

Let us examine the shortcomings of the UAT as it pertains to testing the
non-functional aspects of the system. User acceptance tests do not address the
following:

Load testing—The test is usually conducted by a small number of users with a
small subset of transactions, far from simulating the usage model in production
Failover testing—The test is conducted in a controlled environment with
little interruption; very often component failure conditions do not occur, and
if they do the system is restarted and the test continues at that point
System capacity—The technical infrastructure used for the UAT environ-
ment is in many cases very different than the target production environment,
and as such, capacity cannot be predicted based on the usage during the
UAT
Production configuration—The target production environment configu-
ration is sufficiently different, which does not allow verification of the final
configuration

In summary, while the UAT is well designed to verify and accept the func-
tional aspect of an application, it is not designed to test and verify any of the key
non-functional aspects of the application. This translates into the need for a set of
dedicated environments for the sole purpose of testing for non-functional require-
ments and certification. At a minimum the requirements would be to have a project
non-functional test environment and a non-functional certification environment.
We will discuss the characteristics of these environments in more details in the
chapters ahead.

The key challenges when designing and executing non-functional tests are:

The tests are executed in an environment that is not the final target environ-
ment and as such needs to predict the behavior of the target environment.
Some of the tests are designed to test for unforeseen conditions in produc-
tion. These need to be simulated to the best of our ability.
The scope and characteristics of the tests are based on a predicted business
utilization model that may or may not accurately predict the real usage of
the application.

What Is Covered by Non-Functional Testing
Given unlimited time and budget, one can continuously increase the scope of non-
functional testing. While more testing is always desired, unlimited budget and
time is not a reality. Frequently, you will need to make judgment calls on the level
of risk and the return on investment that is gained by minimizing that risk through
non-functional testing.

n

n

n

n

n

n

n

AU5334.indb 9 11/19/07 7:48:22 AM

10  n  Patterns for Performance and Operability

When determining the scope of non-functional testing we will observe that
some tests are fundamental and must be included within scope of the activities.
Such categories of testing are as follows:

Performance tests for online and offline key activities (such activities to be
defined).
Capacity test, to allow for a reasonable capacity plan.

Other tests are optional; their inclusion in scope is determined by examining
specific requirements and then weighing the estimated level of risk against the cost
of testing. These will include but are not limited to the following:

Component failover tests
Sustainability tests (to observe application behavior over time)
Operability tests (this covers a wide range of what-if scenarios that may be
encountered in a production context)

In the following chapters we will cover the requirements, planning, execution,
and implementation of systems for best non-functional performance and opera-
tion. Table 1.2 includes an inventory of non-functional tests that are candidates for
execution in any enterprise software system delivery project.

Planning for the Unexpected
Even if we execute all of the tests described in this book, we should still expect
that unforeseen events may occur in production for which we have not tested the
system and for which the application behavior is unexpected. In this book we intro-
duce three primary strategies to minimize the business impact of this challenge, as
follows:

	 1.	Establish a comprehensive non-functional test suite to minimize the set of
unexpected system conditions (i.e., the set of conditions for which applica-
tion behavior is not known based on test results).

	 2.	Enhance the application design to gracefully handle unexpected events.
	 3.	Create a set of diagnostic tools to monitor and alert when an application is

encountering exception conditions so that intervention and resolution can be
swift and efficient.

n

n

n

n

n

AU5334.indb 10 11/19/07 7:48:23 AM

Introduction  n  11

Patterns for Operability in Application Design
Application design should always consider the environment in which the applica-
tion will be deployed and operated. The design should provide for the key design
patterns that would support operability in such environments. Designing for oper-
ability means observing the following key design principles:

Data and transactions must never be lost or corrupted.
Exception conditions (expected or unexpected) must be captured and reported
in a consistent fashion.
The application must recover in an automated fashion once the exception
condition is removed.
Applications must provide visibility into the availability and health of their
various components, with hooks to monitor the health of the application as
well as quickly detect and correct any issues.

Examples of some more detailed design patterns that draw on the above prin-
ciples are listed below. This topic will be covered in further detail in Chapter 4,
“Designing for Operability.”

Ensuring Data and Transaction Integrity

Given the potential failure points in most applications, it is crucial to ensure data
and transaction integrity. Here are several activities that should be followed to
accomplish this:

Understand and employ database transaction management, rollback and
integrity services.
Ensure that the backup and recovery system is robust and tested.
Utilize two phase commit and distributed transaction management to ensure
transaction integrity when multiple resources are involved in a transaction.
Build the necessary compensating transactions to allow for a scenario where
external systems have to be partially updated.
Clearly define transaction boundaries to make sure the transactions rollback
to a clean state from which the system can cleanly recover.

Capturing and Reporting Exception
Conditions in a Consistent Fashion

Exception condition reporting is relevant for debugging and fixing problems as
they occur. Here are some suggested approaches

n
n

n

n

n

n
n

n

n

AU5334.indb 11 11/19/07 7:48:23 AM

12  n  Patterns for Performance and Operability

Ta
b

le
 1

.2
 

N
o

n
-F

u
n

ct
io

n
al

 T
es

t I
nv

en
to

ry

Te
st

 T
yp

e
D

es
cr

ip
ti

o
n

Ex
p

ec
te

d
 O

u
tc

o
m

e
C

o
m

m
en

ts

U
se

r O
nl

in
e

Pe
rf

or
m

an
ce

Te
st

in
g

of
 o

nl
in

e
re

sp
on

se
 ti

m
e

as

ob
se

rv
ed

 b
y

a
us

er
 o

f t
he

ap

pl
ic

at
io

n.

Fo
r e

ac
h

te
st

 c
as

e
w

e
w

ou
ld

 m
ea

su
re

th

e
av

er
ag

e,
 m

ax
im

um
, m

in
im

um
, a

nd

90
th

 p
er

ce
nt

ile
 re

sp
on

se
 ti

m
es

.

Ty
pi

ca
lly

 m
ea

su
re

d
as

 th
e

tim
e

it
ta

ke
s

th
e

ap
pl

ic
at

io
n

to
 re

nd
er

 th
e

ne
xt

 p
ag

e
of

 th
e

ap
pl

ic
at

io
n.

Sy
st

em
 O

nl
in

e
Pe

rf
or

m
an

ce
Te

st
in

g
of

 o
nl

in
e

sy
st

em
-t

o-
sy

st
em

 re
sp

on
se

 ti
m

e
(i.

e.
, t

he

tim
e

it
ta

ke
s

on
e

sy
st

em
 to

re

sp
on

d
to

 a
 re

qu
es

t b
y

an
ot

he
r

sy
st

em
).

Fo
r e

ac
h

te
st

 c
as

e
w

e
w

ou
ld

 m
ea

su
re

th

e
av

er
ag

e,
 m

ax
im

um
, m

in
im

um
, a

nd

90
th

 p
er

ce
nt

ile
 re

sp
on

se
 ti

m
es

.

Th
e

re
qu

es
t c

an
 b

e
sy

nc
hr

on
ou

s
or

as

yn
ch

ro
no

us
; i

n
b

ot
h

ca
se

s
th

e
tim

e
fo

r t
he

 c
om

p
le

te
 re

sp
on

se
 to

 a
rr

iv
e

w
ill

 b
e

m
ea

su
re

d.

O
ffl

in
e

Pe
rf

or
m

an
ce

Te
st

in
g

of
 a

n
offl

in
e

ac
tiv

ity
, w

hi
ch

co

ul
d

be
 a

 b
ul

k
op

er
at

io
n

th
at

ha

pp
en

s
du

rin
g

th
e

av
ai

la
bi

lit
y

w
in

do
w

 o
r a

 b
at

ch
 o

pe
ra

tio
n

th
at

ta

ke
s

pl
ac

e
ou

ts
id

e
of

 th
e

av
ai

la
bi

lit
y

w
in

do
w

.

A
ve

ra
ge

 ti
m

e
to

 c
om

pl
et

e
th

e
fu

ll
op

er
at

io
n

(b
ul

k
or

 b
at

ch
) a

nd
 a

 p
ro

fil
e

of

th
e

pe
rf

or
m

an
ce

 o
f e

ac
h

co
m

po
ne

nt
 o

f
th

e
offl

in
e

op
er

at
io

n.

In
 m

os
t c

as
es

, t
he

 b
at

ch
 o

pe
ra

tio
n

w
ou

ld
 b

e
br

ok
en

 in
to

 s
ub

co

m
po

ne
nt

s
pr

ofi
lin

g
ea

ch

co
m

po
ne

nt
 fo

r p
ot

en
tia

l
im

pr
ov

em
en

ts
.

C
om

p
on

en
t

Fa
ilo

ve
r

Te
st

in
g

of
 th

e
sy

st
em

re

co
ve

ra
b

ili
ty

 w
he

n
cr

iti
ca

l
co

m
p

on
en

ts
 a

re
 fa

ile
d

ov
er

 to
 th

e
re

du
nd

an
t c

om
p

on
en

t.

Fo
r e

ac
h

co
m

p
on

en
t w

e
ex

p
ec

t t
o

se
e

th
e

sy
st

em
 re

co
ve

r w
ith

 n
o

da
ta

 o
r

tr
an

sa
ct

io
n

lo
st

. W
e

ob
se

rv
e

an
d

m
ea

su
re

 th
e

tim
e

to
 re

co
ve

r,
nu

m
b

er
 o

f
er

ro
rs

 re
p

or
te

d,
 a

nd
 a

ny
 lo

ss
 o

f d
at

a
or

tr

an
sa

ct
io

n.

A
ll

cr
iti

ca
l r

ed
un

da
nt

 c
om

p
on

en
ts

sh

ou
ld

 b
e

te
st

ed
. S

om
e

ex
am

p
le

s
ar

e
m

es
sa

ge
 b

ro
ke

r,
da

ta
b

as
e

se
rv

er
,

ap
p

lic
at

io
n

se
rv

er
, a

nd
 d

is
k

vo
lu

m
e.

—
co

nt
in

ue
d

AU5334.indb 12 11/19/07 7:48:23 AM

Introduction  n  13
Ta

b
le

 1
.2

 
N

o
n

-F
u

n
ct

io
n

al
 T

es
t I

nv
en

to
ry

Te
st

 T
yp

e
D

es
cr

ip
ti

o
n

Ex
p

ec
te

d
 O

u
tc

o
m

e
C

o
m

m
en

ts

C
ap

ac
it

y
Te

st
in

g
of

 th
e

sy
st

em
 c

ap
ac

it
y

re
qu

ire
m

en
ts

 a
t p

ea
k

vo
lu

m
es

w

ith
 tr

an
sa

ct
io

n
an

d
us

er

vo
lu

m
es

 th
at

 a
re

 b
as

ed
 o

n
th

e
b

us
in

es
s-

ut
ili

za
tio

n
m

od
el

 a
s

st
at

ed
 in

 th
e

no
n-

fu
nc

tio
na

l
re

qu
ire

m
en

ts
.

W
hi

le
 th

e
ap

p
lic

at
io

n
is

 ru
nn

in
g

at
 p

ea
k

vo
lu

m
es

 fo
r a

 p
er

io
d

of
 a

t l
ea

st
 a

n
ho

ur

(fo
r s

ta
b

ili
za

tio
n)

 w
e

m
ea

su
re

 th
e

sy
st

em
 re

so
ur

ce
 u

til
iz

at
io

n
su

ch
 a

s
m

em
or

y,
 C

PU
, d

is
k,

 a
nd

 n
et

w
or

k
b

an
dw

id
th

 o
n

al
l a

p
p

lic
at

io
n

tie
rs

.

Th
e

re
qu

ire
m

en
ts

 s
ho

ul
d

in
cl

ud
e

a
p

ro
je

ct
io

n
fo

r a
 p

er
io

d
of

 a
t l

ea
st

 o
ne

ye

ar
 to

 a
llo

w
 fo

r a
ll

vo
lu

m
es

an

tic
ip

at
ed

 a
 y

ea
r i

n
ad

va
nc

e.
 T

hi
s

te
st

 is
 g

re
at

ly
 fa

ci
lit

at
ed

 b
y

m
on

ito
rin

g
to

ol
s

su
ch

 a
s

H
P

O
p

en
Vi

ew
 o

r M
er

cu
ry

 to
 c

ap
tu

re
 a

nd

re
co

rd
 re

so
ur

ce
 u

sa
ge

 d
ur

in
g

th
e

ex
ec

ut
io

n
of

 th
e

te
st

.

Su
st

ai
na

b
ili

ty
Te

st
in

g
of

 a
p

p
lic

at
io

n
re

so
ur

ce

m
an

ag
em

en
t b

eh
av

io
r o

ve
r t

im
e.

M
on

ito
r t

re
nd

in
g

of
 re

so
ur

ce

av
ai

la
b

ili
ty

 a
nd

 a
p

p
lic

at
io

n
se

rv
er

b

eh
av

io
r o

ve
r t

im
e.

 F
or

 e
xa

m
p

le
, w

e
w

ou
ld

 m
on

ito
r t

he
 fo

llo
w

in
g

da
ta

b
as

e
co

nn
ec

t p
oo

l/
th

re
ad

s/
M

Q
 c

on
ne

ct
io

n
fa

ct
or

y;
 fu

ll
an

d
m

in
or

 g
ar

b
ag

e
co

lle
ct

io
n

fr
eq

ue
nc

y
an

d
du

ra
tio

n;

m
em

or
y

re
co

ve
ry

 o
ve

r t
im

e;
 a

nd
 s

o
on

.

Th
is

 te
st

 w
ou

ld
 a

llo
w

 u
s

to
 o

b
se

rv
e

b
eh

av
io

r t
ha

t w
ou

ld
 o

cc
ur

 in

p
ro

du
ct

io
n

w
he

n
th

e
sy

st
em

 is
 n

ot

re
cy

cl
ed

 fo
r a

 le
ng

th
y

p
er

io
d

of
 ti

m
e.

W

e
ca

n
ob

se
rv

e
m

em
or

y
le

ak
s,

co

nn
ec

tio
n

le
ak

s,
 m

em
or

y
tu

ni
ng

re

qu
ire

m
en

ts
, c

on
ne

ct
io

n,
 a

nd
 th

re
ad

p

oo
ls

 c
on

fig
ur

at
io

n
(h

ig
h-

w
at

er

m
ar

ks
).

O
p

er
ab

ili
ty

Th
is

 is
 a

 b
ro

ad
 c

at
eg

or
y

of
 te

st
in

g
th

at
 m

ea
su

re
s

th
e

sy
st

em

b
eh

av
io

r u
nd

er
 a

 v
ar

ie
ty

 o
f

m
is

ce
lla

ne
ou

s
co

nd
iti

on
s.

 A

ty
p

ic
al

 e
xa

m
p

le
 is

 b
ou

nd
ar

y-
co

nd
iti

on
 te

st
in

g
in

 w
hi

ch
 th

e
sy

st
em

 is
 s

ub
je

ct
ed

 to
 h

ig
hl

y
un

ex
p

ec
te

d
in

p
ut

s
ou

ts
id

e
th

e
fu

nc
tio

na
l r

an
ge

 to
 e

ns
ur

e
th

at

av
ai

la
b

ili
ty

 is
 n

ot
 c

om
p

ro
m

is
ed

.

Fo
r e

ac
h

de
fin

ed
 te

st
 c

as
e

w
e

ob
se

rv
e

th
e

ap
p

lic
at

io
n

fo
r e

rr
or

s
b

ei
ng

re

p
or

te
d,

 p
ot

en
tia

l d
at

a
an

d
tr

an
sa

ct
io

n
lo

ss
, a

nd
 re

co
ve

ra
b

ili
ty

on

ce
 th

e
co

m
p

on
en

t i
s

av
ai

la
b

le
 a

ga
in

.

Th
e

ch
al

le
ng

e
w

ith
 th

is
 ty

p
e

of

te
st

in
g

is
 to

 id
en

tif
y

th
e

cr
iti

ca
l

el
em

en
ts

 th
at

 s
ho

ul
d

b
e

te
st

ed
. T

he

nu
m

b
er

 o
f p

er
m

ut
at

io
n

of
 te

st
 c

as
es

th

at
 c

an
 b

e
cr

ea
te

d
is

 ty
p

ic
al

ly
 v

er
y

la
rg

e,
 a

nd
 c

ar
ef

ul
 s

co
p

in
g

an
d

ra
tio

na
le

 m
us

t b
e

ap
p

lie
d.

AU5334.indb 13 11/19/07 7:48:24 AM

14  n  Patterns for Performance and Operability

Centralize and standardize error logging.
Classify exceptions for the purpose of monitoring, alerts, and reporting.
Actively push exceptions to operations and application users teams with
defined set of actions.
Provide for application generated exceptions that are based on specific events
as well as catch all scanners that would identify system exception conditions
that are not associated with a specific trigger event.

Automated Recovery from Exception Conditions
The following list offers several suggestions for enabling automated recovery follow-
ing the occurrence of exceptions:

Automatically recover when exception conditions no longer exist
Audit all stages of the automated recovery
Create additional exception alerts if automated recovery fails
Provide tools for manually triggered systemic recovery
Provide clear documentation for manual recovery

Application Availability and Health
The list below provides some suggestions for monitoring and checking on the health
of the application:

Define and provide an availability service for all major components.
Design a comprehensive health check with the capability to provide an over-
all health status as well as drill down to all components.
A health check should be extensible to allow for additional plug-in probes for
new application components.

Summary
While the functional-requirements side of software engineering has evolved and
improved over the years, non-functional requirements are still very much an after-
thought on most IT projects. In many cases it would seem that the scope of non-
functional requirements and testing is limited to performance and load testing,
excluding critical elements of non-functional requirements such as capacity plan-
ning, operability, monitoring, system health checks, failover, memory manage-
ment, and sustainability, among others.

More than ever, technology executives, managers, and professionals are aware
of the gap in the definition, design, testing, and implementation of systems’ non-

n
n
n

n

n
n
n
n
n

n
n

n

AU5334.indb 14 11/19/07 7:48:24 AM

Introduction  n  15

functional requirements. Such a gap has consistently been the cause for significant
system outages and loss of credibility for IT organizations.

User and business communities have become better at defining their functional
requirements, but are clearly not able to articulate the non-functional characteris-
tics of the system in more than broad terms. It is up to the technology community
to build the tools, templates, and methodologies needed to extract the correct level
of detailed requirements, challenge the business as to their real requirements, design
applications with operability in mind, ensure sufficient non-functional test cover-
age, and implement ongoing monitoring tools that will guarantee high availability.

This book addresses the development of scope, requirements, design patterns,
test strategies, and coverage and deployment strategies for system non-functional
characteristics. It can also be used to provide a detailed implementation guide for
technologists at all levels. The book can also serve as a conceptual guide for the
business and user communities in order to better develop and educate those com-
munities on the importance of a system’s non-functional requirements and design
activities.

The detailed material provided in the chapters ahead is based on years of experi-
ence in designing, building, tuning, and operating large complex systems within
demanding mission-critical environments. This book is filled with practical exam-
ples and advice that can be leveraged immediately to assist your current projects.

AU5334.indb 15 11/19/07 7:48:25 AM

17

Chapter 2

Planning and
Project Initiation

The Business Case for Non-Functional Testing
What Should Be Tested
Non-functional testing is a wide-ranging topic that covers many different aspects
of systems behavior. Some of the most common non-functional tests that are rou-
tinely identified and conducted are performance, failover, and capacity tests, yet
many projects neglect to test additional non-functional characteristics of the sys-
tems they implement, such as sustainability/soak test, operability and recovery, to
name a few.

The range of non-functional behavior exhibited by an application and system
combination is vast and further complicated by the unexpected nature of events
taking place in the target production environment. In an ideal world we would
have a complete set of non-functional requirements that identifies all elements of
application behavior in a given environment and systems combination under a vari-
ety of usage patterns. The reality is that, at best, project teams are faced with a bare
minimum set of requirements that identify the expected response time for a set
of critical online functions, a batch processing window, and high-level availability
requirements. Clearly an approach different than the traditional functional require-
ments gathering and specification is required to compile a list of non-functional
requirements. Chapter 3 of this book suggests an approach to address this difficult

AU5334.indb 17 11/19/07 7:48:25 AM

18  n  Patterns for Performance and Operability

task in detail. For the moment let us just say that a different approach, based on
observation and prediction of usage patterns as well as a decomposition of all sys-
tem components for availability analysis will be required to identify the scope of
testing.

At a minimum, projects teams should perform the following non-functional
tests:

Online Performance

Test and report all critical functions identified in the requirement
documentation
Test for online response anomalies (responses that are well above an accept-
able range)
Test response time for the above tests under simulated load

Batch Performance

Test and report the overall batch processing time as well as each individual
component of the batch process
Test the recovery time for failure during the batch processing window

Capacity Test

Run the application/systems for a minimum period of one hour with full
simulation of one- to two-year projected utilization at peak usage
Observe system resource utilization during the test (including central pro-
cessing unit [CPU], memory, execution threads, database [DB] connections,
etc.)
Overlay resource utilization results on top of a current production baseline
and report overall system resource capacity requirements
Determine any additional resource requirements based on the results of this
test

Failover Test

Analyze all key failure points in the system
Initiate failover condition under load, based on a predicted utilization model
to generate representative range of in-flight transactions during the test
Fail component by component, and observe failover functionality and num-
ber of transactions impacted
Confirm that all in-flight transactions are recovered on the failover system

n

n

n

n

n

n

n

n

n

n
n

n

n

AU5334.indb 18 11/19/07 7:48:26 AM

Planning and Project Initiation  n  19

In addition to the minimum set of tests above, there are many additional tests
that are critical to understanding and verifying the non-functional behavior of your
application and system. These are discussed extensively throughout this book and
are highly recommended. However, it is expected that projects will have different
areas of focus and criticality of functions, which will dictate the necessity for cer-
tain additional tests.

How Far Should the System Be Tested?

Non-functional testing is not limited to a pass-or-fail test case, as is the case in
functional testing. There are always additional test conditions that can be executed.
Consider for a moment that you are testing for the response time to a database
query. You could compile a test that would demonstrate the time it takes to execute
the query with no load on the system. You might then add load on the system and
test again to verify that performance is still acceptable. That in itself would be a
good test; however, consider the following factors that may impact your test results
and therefore should be considered in your test cases:

Data set being used for the queries
Number of users running inquiries on the same data objects
Other DB activity, such as bulk operations
Response time during batch processing (if required)

It is clearly not feasible to test every condition and permutation. It is also not
feasible to test all possible data combinations. We therefore are presented with the
question, “How far should we test?”

The answer to this question is governed by the following parameters and the
amount of flexibility or degree of freedom you can exercise on each:

Delivery schedule (i.e., time available for testing)
Risk associated with not testing certain conditions
Potential mitigations if associated risk does materialize
Funding and resources (people and systems) required to conduct additional
tests
Ability to create data sets and loads that would accurately simulate real life

For instance, if there is a very unique type of data set that is very difficult to cre-
ate and has the risk of not performing as well as required, one may opt to mitigate
that risk by observing the very low occurrence of this data set in production and
by monitoring production performance to implement any additional fine-tuning
as needed. This may save considerable time and money for a large implementation
effort.

n
n
n
n

n
n
n
n

n

AU5334.indb 19 11/19/07 7:48:26 AM

20  n  Patterns for Performance and Operability

Another common question is, “How much load should be put on the system
during testing?” One can argue that adding increasing load to the point of system
failure may be interesting to graph, such that management is aware of the load
under which the system will break. While this could be a useful test, the value it
adds is marginal as it would typically be sufficient to test the system under peak
anticipated projected load and two times that load for the event of a failover condi-
tion. Again, testing the extreme condition—while satisfying some need to know
on the part of management—may be a costly exercise in getting information that
might never be proven useful.

In summary, the extent to which one should conduct non-functional testing
should be entirely driven by the level of risk assumed by not testing a given test
scenario and the cost to execute such a test. You may find that management, faced
with the cost of executing a certain test and the real risk of it actually happening in
production, may be less inclined to invest the funds.

Justifying the Investment
Project teams and sponsors intuitively understand the need for performance testing
as part of normal systems delivery. Unfortunately, this understanding is not always
afforded to the other type of non-functional testing. The challenge the technology
team is faced with is to educate and convince sponsors and management of the need
for a multitude of test environments, some of which can be very expensive due to
their production-like nature.

The investment in resource, environments, and time and effort can be justified
based on the following arguments:

Multifunctional use of the environments (e.g., a production-like certi-
fication environment that can be used for disaster recovery [DR] as well as
certification)
By relating specific types of error conditions (memory leak, resource over-
consumption, etc.) to specific outages that have occurred in the past or may
occur in the future, a dollar value can be associated with the prevention of
such outages
Once the system is implemented there would be a regular need to upgrade the
underlying infrastructure, systems software, and application with a variety of
patches and updates. The certification environment would be critical to verifying
these update patches and ensuring that they do not create production outages
Some components of the non-functional test environments can be shared
across multiple projects to reduce cost
Performance and automation test tools can be shared with other projects and
are required for ongoing maintenance of the environment
Investment in automation scripts and simulators can provide an immediate
return on reduction of manual functional regression testing

n

n

n

n

n

n

AU5334.indb 20 11/19/07 7:48:27 AM

Planning and Project Initiation  n  21

Overall, it is important to recognize that non-functional test environments
require a different set of characteristics than functional test environments. These
environments require failover software and appropriate clustering/secondary sys-
tems to be installed. They require production-like configuration to test the inter-
action between application and systems, and for some of the tests they require
production-size servers to confirm performance and capacity targets.

Non-functional test environments should be isolated from functional test envi-
ronments to allow for:

Accurate measurement
Reduction in functional test interruption
Production simulation (size, capacity, performance, operability)
Certification with exact production-like configuration
Flexible scheduling of tests in parallel with other testing activities

Successful completion and ongoing operation of systems-delivery projects is
highly dependent on making the investment in the appropriate set of environ-
ments and tools up front to allow for on-time delivery and solid production-ready
systems.

Negative Reasoning

In the event that all the reasoning and business casing for non-functional test
investment falls on deaf ears, it is useful to document all the risks to which the
business will be subjected due to lack of investment in non-functional testing. This
can be used to achieve the following goals:

Clearly communicate the risk and potential issues that have a high probabil-
ity to occur in production
Create a sense of accountability with management for any future potential
issues
Potentially reverse the decision not to invest based on the two previous
points
Ensure that the technology team had done all in its power to alert manage-
ment of the risks the project is about to undertake

Clearly communicating the risks and documenting these risks for management,
business, and sponsors has, more often than not, influenced the decision to invest
in non-functional testing.

n

n

n

n

n

n

n

n

n

AU5334.indb 21 11/19/07 7:48:27 AM

22  n  Patterns for Performance and Operability

Scoping and Estimating
Determining the Scope of Non-Functional Testing
The scope of the non-functional testing is determined using the following artifacts
and methods:

The Non-Functional (or in Some Cases,
Functional) Requirements Document

This document may contain useful information regarding the following:

Response time for critical functions
Definition of the application critical functions
Expected availability
Implied service level with internal and external clients
Batch processing windows
Expected recovery time
Data retention requirements and archive specifications

The Business Utilization Model (BUM) Document
This document may not exist for your project. If it does not, it is highly recom-
mended that the business analysis team sit down with the business users and create
this document. The information contained in this document should include the
following:

Number of users that would use the application
Number of users that would use each key function concurrently
Peak usage times and estimated usage at peak times
Expected growth in users and volume of transactions over the next 2–3
years
Sequence of functionality usage
Other applications that are used by the same user community
Methods of access (i.e., network, branch, browser type, etc.)
Bulk operations usage patterns
Batch process volumes and projected growth

The Service Level Agreement (SLA) Document

This document may already exist, particularly where a service is being offered to an
external customer. This document can be a very useful tool for the technology team
to help derive a set of availability, operability, and performance requirements. One
would expect to find the following information in an SLA:

n
n
n
n
n
n
n

n
n
n
n

n
n
n
n
n

AU5334.indb 22 11/19/07 7:48:27 AM

Planning and Project Initiation  n  23

Response time for key functions and in some cases a broad statement regard-
ing online response time
Expected delivery time for reports, files, or other periodic artifacts that are
routinely generated by the application
Expected system availability time (i.e., system uptime)
Acceptable maintenance windows
DR and BCP (business continuity plan) requirements
Key reporting metrics on which the service level is measured
Penalties associated with not meeting certain service levels

Using the above documents, the technology team can provide a statement of
non-functional testing scope that will describe the following.

Performance Testing

Key functions to be tested and reported for response time, including expected
response time ranges
List of bulk and batch processes and the expected time to execute each
Transaction volumes average and peak
User volumes average and peak
Transaction and user volumes at peak and peak × 2 under which the system
will be tested

Capacity Testing

“Transactions-per-minute” requirement for each transaction type to be
executed
Number of users logged on to the system
Number of concurrent users executing a variety of key functions
Duration of the test
System resources to be monitored
Approach to measurement of baseline

Failover Testing

List of all components to be tested
Expected failover results (automated versus manual, number of retried
transactions)
Criticality of automated failover per component

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

AU5334.indb 23 11/19/07 7:48:28 AM

24  n  Patterns for Performance and Operability

Operability Testing

List of critical system functions to be tested
Operability conditions to be tested against each system function
Expected results and system alerts, report and recovery
Automated versus manual recovery
Expected time for recovery
Expected transactions state for each test

Sustainability Testing

Duration of test
Volume of users and transactions to be run during the test
Data setup requirements
Key metrics to track and report on (i.e., memory profile, threads,
connections)

Certification Testing

Which tests are included in certification
Scope of configuration management (i.e., application only or including sys-
tem configuration)
Code drop to be used for final certification
Certification criteria—gating criteria for production deployment

Scoping and planning for appropriate non-functional test coverage is essential
to ensure proper, expected system behavior in production. However, the nature of
non-functional issues or defects that are identified through non-functional testing
are often complex—and in some cases require code or systems redesign. Being
faced with the need to redesign a component of the system or application at a late
stage of the project would have far-reaching implications for delivery timelines and
costs to the project.

Clearly one must employ an approach to identifying critical non-functional
issues at the early stages of the project lifecycle. The following is a list of example
actions and approaches that can be used to allow for early detection.

Architectural and Design “Hotspots”

Identify non-functional “hotspots” during the architectural and design review of
the application and system. These hotspots are identified as the areas most likely to
create performance, operability, or failover challenges. During the development of

n

n

n

n

n

n

n

n

n

n

n

n

n

n

AU5334.indb 24 11/19/07 7:48:28 AM

Planning and Project Initiation  n  25

the system conduct initial tests and proof of concepts to verify that the non-func-
tional behavior around these “hotspots” is as expected.

Unit Testing of Application Non-Functional Behavior

The development team should design unit tests that will simulate volume through
to the specific components they are developing. There are several open-source tools
in the market used by developers to achieve this such as Jmeter, Jprobe, and oth-
ers. These tools allow the developer with minimum effort, to generate through-
put to their component of work and observe the system and application behavior.
They will also allow detection of potential performance bottlenecks and issues with
transaction management and recovery. This is one of the most effective ways of
achieving early detection of non-functional issues—in particular when coupled
with a specific focus around the “hotspots.”

Investment in Simulators and Injectors

While the development teams are busy developing and unit testing their applica-
tions, the non-functional test team should be developing the necessary simulators
and injectors that will assist in simulating load, as well as any external systems
interfaces. These simulators and injectors can be used early on to test the non-func-
tional behavior of the system in advance of it being fully functional and ready to
be formally tested.

Code and Data Review

Code design and implementation, as well as structured query language (SQL) state-
ments and data model designs, should all be reviewed with performance and oper-
ability in mind. This can be done effectively by either the application architects or
the non-functional engineering team. The reviews should be focused on the follow-
ing elements of design and implementation:

Memory management
Transaction management and boundaries
Code efficiency
SQL code design for performance
Data model simplification and design for performance (based on key high-
volume queries)
Error and exception management
Recovery code after failure events

n

n

n

n

n

n

n

AU5334.indb 25 11/19/07 7:48:29 AM

26  n  Patterns for Performance and Operability

All of the above early detection methods should be considered for inclusion in
the scope of the overall non-functional work to be conducted by the development
teams and the non-functional engineering team.

Estimating Effort and Resource
Once the scope of testing has been determined, the project management team will
be faced with the task of estimating the effort and resources required to complete
all work within the defined scope. The key cost elements that should factor into the
estimate are as follows.

People Resources

This category will include the non-functional engineering test team as well as any
additional effort that is required by the development and project test teams. In
addition, it is good practice to include any additional professional services and
infrastructure implementation costs for net new infrastructure for new test envi-
ronments as well as professional services associated with installation and configura-
tion of test and monitoring tools.

Test Tools

This category includes software tools that are required to simulate load, create and
execute test scripts, and report on test results. It also includes any required system
resource monitoring tools for observing, measuring, and trending system resource
utilization during capacity, sustainability, and failover testing.

Infrastructure Cost

This category includes all the hardware (HW) and software (SW) that is required
to construct the required non-functional test environments.

The exact estimates will be driven by the actual scope of non-functional work
defined for the project; however, the following guidelines and advice can be used
for high-level estimates.

AU5334.indb 26 11/19/07 7:48:29 AM

Planning and Project Initiation  n  27

People Cost

Table 2.1  Non-Functional Effort Estimation

Function
Full-Time Equivalent
Resource

Starting in
Phase (Plan/
Design/
Build/Test) Comments

Team Lead 1: All project sizes Design Should preferably be
involved in the original
estimation.

Test-Case Scripter 1: Small projects
2–3: Average-sized
projects
3–5: Large projects

Build Should have specific
skills for the selected
test tools.

Deployment
Engineer

0.5: Small to average-
sized projects
1: Large projects

Build Assumes the existence
of a formal application
deployment team that
is responsible for
formal deployments.

Test Automation
Execution Engineers

None: Small projects
1–2: Average-sized to
large projects

Test These are resources
that are familiar with
the operation and
reporting function of
the automated test
tools.

Troubleshooting
Engineers

1: Small to average-
sized projects
2: Large projects

Build These resources will be
building the
simulators/injectors
and will troubleshoot
the application during
deployment and during
test execution. They
would also conduct
some of the code and
data reviews.

AU5334.indb 27 11/19/07 7:48:30 AM

28  n  Patterns for Performance and Operability

Test Tools

Many organizations make central investments in enterprise-wide software tools. In
such cases, the project may benefit from existing licenses or may have to only be charged
brown dollars (via internal allocation) rather than spend money on new licenses. It is
important to review the set of tools existing within the organization and ensure that
these will satisfy the requirements for non-functional testing for the project.

In the event that test tools are not already available, the project may elect to
commit to a long-term investment in industrialized products that would benefit
the organization post-project or go with open-source tools to minimize direct cost
to the project.

In general, the number of licenses required should be calculated based on the
expected transation rate and the concurrent user load required to satisfy the appli-
cation’s business utilization models.

Infrastructure Cost

This is the cost associated with the construction of the necessary non-functional test
environments. Later in this chapter we will discuss the various non-functional test
environments, the characteristics of each environment, and the conditions under
which these environments are required. Table 2.2 is a list of environments for non-
functional testing, their intended use, and basic cost considerations.

A common oversight is to forget the cost associated with running, supporting,
and maintaining these environments. Make sure to include all resource costs for
support and batch operation for these environments as well as deployments, cur-
rency updates, and software licensing costs.

Table 2.2  Non-Functional Test Environments

Environment Intended Use Cost Considerations

Performance Testing performance
characteristics of the
application and systems
being implemented.

This environment needs to allow for
extrapolation to production sized
environment.It must be built with the
same clustering and configuration as
production but can be sized at half or
quarter of the capacity. Depending
on the level of activities and timeline,
there may be a need for more than
one of these environments. There
may be a need for a separate batch
performance environment given the
length of testing duration for batch
operations.

AU5334.indb 28 11/19/07 7:48:30 AM

Planning and Project Initiation  n  29

Estimating the Delivery Timeline

The scope of the non-functional testing would clearly drive the delivery timeline;
however, there are many other constraints that also drive the timeline, including
the following.

Code availability—Initial testing can be done with early versions of the
code, but final certification must be conducted with the final (or close to
final) code to be deployed in production.
Code and configuration fixes—When an issue is identified in non-func-
tional testing, in most cases it will require a code fix or configuration change,
some of which will require the development team to produce.
Environment shakedown and troubleshooting—Once a non-functional
environment is deployed, it needs to be shaken down for functional verifica-
tion. In the event that the scripts cannot execute there may be a reliance on
the development team to assist in troubleshooting the environment.

n

n

n

Table 2.2  (continued)

Failover Testing failover and
recovery of all identified
failover points and
components.

This environment must be isolated
with all its components to allow for
destructive and failure condition
testing without impacting any of the
other nonproduction environments.
It must contain all the components
participating in the failover testing in
a configuration that is similar to
production. The size of the
environment can be much reduced
because the test scope would not
include a large volume of
transactions.

Certification Certifying performance,
capacity requirements, and
sustainability testing in a
productionlike
environment.

The environment must be identical to
production (to the best degree
possible). It must have data that
simulates production volumes. It can
be used as a DR environment to
reduce overall cost.

AU5334.indb 29 11/19/07 7:48:31 AM

30  n  Patterns for Performance and Operability

Sc
op

in
g

an
d

pl
an

ni
ng

D
es

ig
n

Bu
ild

Pr
oj

ec
t t

es
t

In
te

gr
at

ed
 te

st
U

se
r a

cc
ep

ta
nc

e
te

st
Pr

od
uc

tio
n

cu
t-

ov
er

Ro
ll

ou
t a

ct
iv

iti
es

N
FT

 S
co

pe
 a

nd
 p

la
n

- s
tr

at
eg

y
N

FT
 R

eq
ui

re
m

en
ts

N
FT

 S
cr

ip
t b

ui
ld

Pe
rf

or
m

an
ce

 u
ni

t t
es

t
D

es
ig

n/
co

de
 re

vi
ew

s
Pe

rf
or

m
an

ce
 -

in
iti

al
 te

st
Fa

il-
ov

er
 te

st
s

O
pe

ra
bi

lit
y

te
st

s
Ca

pa
ci

ty
 te

st
s

Ce
rt

ifi
ca

tio
n

te
st

s
M

on
ito

r p
er

fo
rm

an
ce

 &
 o

pe
ra

bi
lit

y

Su
st

ai
na

bi
lit

y
te

st

Pr
oj

ec
t A

ct
iv

it
y

N
on

-F
un

ct
io

na
l A

ct
iv

it
ie

s

M
on

th
 1

M
on

th
 2

M
on

th
 3

M
on

th
 4

M
on

th
 5

W
ee

k
1

M
M

T
T

F
F

S
S

T
T

T
T

T
T

T
T

T
T

T
T

W
W

M
F

S
S

W
M

F
S

S
W

M
F

S
S

W
M

F
S

S
W

M
F

S
S

S
S

W

W
ee

k
2

W
ee

k
3

W
ee

k
4

W
ee

k
5

W
ee

k
6

W
ee

k
7

Fi
gu

re
 2

.1
 

A
gg

re
ss

iv
e

no
n-

fu
nc

ti
on

al
 t

es
t

sc
he

du
le

 a
nd

 t
im

el
in

es
.

AU5334.indb 30 11/19/07 7:48:34 AM

Planning and Project Initiation  n  31

Knowledge gathering—The development of scripts and simulators requires
some level of functional knowledge of the application; once again, this results
in a dependency on the development team

In light of the preceding dependencies, the planning for non-functional testing
must be aligned with the overall testing schedule in the program/project.

Below you can find two views for planning. The first view represents an ideal
plan in the event that time is not a hard constraint or that you are early enough
in the planning cycle to allow you to influence the overall project timelines. The
second view is an aggressive delivery-minded view that is achievable but high risk
in terms of meeting the deadlines. Both views must be aligned with the test sched-
uled, which also drives the delivery timelines for non-functional testing.

The aggressive delivery view is shown in Figure 2.1. The schedule shown in
Figure 2.1 is designed to maximize the opportunity to conduct parallel activities,
thereby reducing the overall schedule. It is, however, quite aggressive from a time-
line standpoint and could easily be thrown off schedule if any of the key assump-
tions are not met, such as:

Early code review and architectural reviews for non-functional aspects of the
application had been conducted successfully
Early non-functional unit testing had been successfully executed and reported
by the development team
The application code entering the integrated testing cycles is sufficiently sta-
ble to allow for non-functional testing
No major redesign is required based on the results of the non-functional
tests
Multiple environments are in existence to support both functional and non-
functional test activities

The key areas of parallelism that are accomplished by the above plan are as
follows:

Failover and operability tests are conducted in parallel with integrated func-
tional testing; early code and architectural reviews will ensure that the devel-
opment team has invested the right level of focus and effort into making the
application operable and respondent to failover conditions.
Final capacity testing is conducted in parallel with the first cycle of user-accep-
tance testing (UAT); this is supported by an early cycle of capacity testing that
will confirm that the required system resources are available.
Sustainability test is conducted in parallel with UAT, leveraging the code that
had been frozen as entry criteria into UAT. A potential code refresh can be
considered upon start of the second cycle of UAT.

n

n

n

n

n

n

n

n

n

AU5334.indb 31 11/19/07 7:48:35 AM

32  n  Patterns for Performance and Operability

Sc
op

in
g

an
d

pl
an

ni
ng

D
es

ig
n

Bu
ild

Pr
oj

ec
t t

es
t

In
te

gr
at

ed
 te

st
U

se
r a

cc
ep

ta
nc

e
te

st
Pr

od
uc

tio
n

cu
t-

ov
er

Ro
ll

ou
t a

ct
iv

iti
es

N
FT

 S
co

pe
 a

nd
 p

la
n

- s
tr

at
eg

y
N

FT
 R

eq
ui

re
m

en
ts

N
FT

 S
cr

ip
t b

ui
ld

Pe
rf

or
m

an
ce

 u
ni

t t
es

t
D

es
ig

n/
co

de
 re

vi
ew

s
Pe

rf
or

m
an

ce
 -

in
iti

al
 te

st
Fa

il-
ov

er
 te

st
s

O
pe

ra
bi

lit
y

te
st

s
Ca

pa
ci

ty
 te

st
s

Ce
rt

ifi
ca

tio
n

te
st

s
M

on
ito

r p
er

fo
rm

an
ce

 &
 o

pe
ra

bi
lit

y

Su
st

ai
na

bi
lit

y
te

st

Pr
oj

ec
t A

ct
iv

it
y

N
on

-F
un

ct
io

na
l A

ct
iv

it
ie

s

M
on

th
 1

M
on

th
 2

M
on

th
 3

M
on

th
 4

M
on

th
 5

W
ee

k
1

M
T

T
F

S
S

W
M

T
T

F
S

S
W

M
T

T
F

S
S

W
M

T
T

F
S

S
W

M
T

T
F

S
S

W
M

T
T

F
S

S
W

M
T

T
F

S
S

W
M

T
T

F
S

S
W

M
T

T
F

S
S

W
W

ee
k

2
W

ee
k

3
W

ee
k

4
W

ee
k

5
W

ee
k

6
W

ee
k

7
W

ee
k

8
W

ee
k

9

Fi
gu

re
 2

.2
 

A
 le

ss
 r

is
ky

 s
ch

ed
ul

e
fo

r
no

n-
fu

nc
ti

on
al

 t
es

ti
ng

.

AU5334.indb 32 11/19/07 7:48:38 AM

Planning and Project Initiation  n  33

Certification testing is conducted in parallel to the second cycle of UAT and
during the production cut-over week. This assumes that there are little to no
changes (code fixes or configuration changes) between the first and second
cycle of UAT.

The less risky plan for non-functional testing is shown in Figure 2.2.
The key differences from the preceding schedule are as follows:

Addition of an extra week of integrated testing to allow for any work required
based on the findings from performance, operability, and failover testing.
Addition of an extra week of UAT to allow for the certification tests’ first (and
most likely final) cycle to complete prior to the end of UAT.
Extension of failover, operability, and capacity testing schedules as well as
allowing an extra week for certification.

If time permits you may want to consider moving the certification testing for
post-UAT activity, thereby ensuring that certification is the last testing activity and
is conducted on a fully frozen code and configuration.

Test and Resource Planning

Test Types and Base Requirements

The following is a short description of each of the non-functional test types and the
key considerations when designing and executing these tests. Subsequent chapters
of this book include a detailed discussion regarding planning and executing of
these tests.

Operability Testing

This is a test of likely production conditions that may affect the application/system
in an unpredictable way. The objective of the test is to identify the key operability
test cases with the highest potential impact to the system and the business using the
system, and test the application behavior under such conditions. Some examples of
operability tests include:

Behavior of the application when an external system interface is not
available
Recovery from outage conditions
Application handling of bad data (ill-formatted)

n

n

n

n

n

n

n

AU5334.indb 33 11/19/07 7:48:38 AM

34  n  Patterns for Performance and Operability

Failover Testing

This is a test designed to verify the failover design, configuration, and process by
simulating failover conditions. The objective of the test is to ensure that the systems
can failover as designed under load with full in-flight transactions recovery and to
ensure that the failover detection is triggered appropriately. Key considerations for
this test include:

Ensuring that the test is conducted in an environment that is identically con-
figured like production
Run a sufficiently varied load through the system to observe transaction
recovery
Measure success by accounting for all initiated transactions on the failover
server/component and the continued service availability on the secondary
server
Cover as many triggering failover events as possible (application shutdown,
OS failure, hardware failure, etc.); failover may behave differently depending
on the triggering event

Capacity Testing

This test is intended to confirm and validate the capacity model that is developed
by the non-functional engineering team based on business utilization information
provided by the business requirements teams. The objective of the test is to run a
simulated production load for a sustained duration and monitor the utilization of
all relevant system resources. This test will finalize the hardware sizing require-
ments (i.e., the CPU, memory, disk, etc.); it would also confirm any additional
configuration of resource allocations. Key considerations for this test include:

Ensuring application resources are being monitored (i.e., connection pools,
thread pools, memory utilization inside the container, etc.)
Capture all base system resource utilization (CPU, memory, disk, I/O)
Overlay the usage measured during the test with the current production
usage (especially for shared environments)
Ensure capacity test is run in isolation on an infrastructure that is identical or
that can be projected to the production environment
Run a mixed load at peak levels during the test to ensure capacity will be suf-
ficient to sustain peak volumes and user levels
Ensure that measurement tools are instrumented only for the key metrics
you are looking to measure, such that the tool itself does not add load to the
system

n

n

n

n

n

n

n

n

n

n

AU5334.indb 34 11/19/07 7:48:39 AM

Planning and Project Initiation  n  35

Performance Testing

This test is intended to test the performance of online response as well as bulk
and batch operations. The objective of the test is to measure response time under
load and verify that it meets user requirements. For batch and bulk operations, the
objective is to test full data-load execution within the processing window defined in
the non-functional requirement. Key considerations for this test include:

Invest in scripting of the test cases for consistency in execution, data buildup,
and measurement
Invest in tools that provide for scripting and execution/results capture
Test performance under simulated peak load
Test and monitor performance in a sustained environment (environment that
has been running for a sustained period)
Invest in preparing a data bank that would simulate 6–12 months of produc-
tion buildup

Sustainability Testing

This test is intended to measure and observe resource utilization in the application
and the infrastructure environment over a sustained period of time during which
daily load is simulated. The objective of the test is to identify any anomalies in
resource utilization over time or any trending utilization information that may sug-
gest a potential issue (such as memory leak, thread, or connection leak, etc.). Key
considerations for this test include:

Conduct the test in an environment that is replicating the production
configuration
Identify the sustained period to run the test, by considering processing cycles
and availability requirements
Ensure that there is a good coverage of the various business operations based
on the detailed business utilization model

Certification Testing

This test is intended to verify all configuration settings in a production-like envi-
ronment. At a minimum this test would include a subset of the performance test
cases and a complete set of failover tests. In some cases the scope of a certification
test would also include a capacity test to ensure that capacity is calculated based on
production identical infrastructure. Key considerations for this test include:

n

n

n

n

n

n

n

n

AU5334.indb 35 11/19/07 7:48:39 AM

36  n  Patterns for Performance and Operability

Test to be conducted in a controlled environment which is identical to
production
Configuration of the application stack and the infrastructure must be
identical to production as the prime objective of the test is to test such
configuration
Include the execution of documented procedures in your test as part of the
recovery, failover, or any other manual activity

Test Environments
Table 2.3 lists the test types, and the target environments in which these should
be executed. In addition, the table states the minimum requirements for such test
environments.

n

n

n

Table 2.3  Test Types and Target Environments

Environment Requirements Test Types

Performance
Development

Capacity to run all test scripts from
a CPU, data, and disk standpoint.
Tools for load and automated
testing available.

Script verification testing
Performance execution
test run

Performance
(Online and batch may
be separate
environments)

Full capacity to run load testing.
Tools for load and automated
testing available.
Architecture is identical to the
production environment but
configuration may be smaller in
size.

Online performance
Batch performance
Operability
Failover test run

Certification Identical replication of the
production environment. Same
capacity, size, and configuration as
production. Controlled
environment fitted with
monitoring tools for obtaining test
results.

Certification
Sustainability

AU5334.indb 36 11/19/07 7:48:39 AM

Planning and Project Initiation  n  37

The Test Team

The test team consists of several key roles; some of these roles can be fulfilled by the
same set of individuals. The roles and their descriptions are as follows.

The Non-Functional Test Lead

The non-functional test lead provides overall management for the team and is the
key planner and interface to the rest of the project teams. Included in the scope of
this person’s work is:

Non-functional test strategy
Review and sign-off on non-functional requirements
Definition of non-functional test scope

n

n

n

Table 2.3  (continued)

Development
Integration Test

Base requirement to allow for
deployment of end-to-end
functionality.
No need for capacity, load, failover,
or any other production-like
configuration.

Development
integration test

Integrated Functional
Test

Deployment of full complement of
applications end to end. Include
interaction with test environments
for external systems.
Minimal capacity, no need for
failover or other production-like
configuration.

Integrated functional
test

User-Acceptance Test Controlled environment to ensure
change control is proper.
Deployment of full compliment of
applications end to end. Include
interaction with test environments
for external systems.
Minimal capacity, no need for
failover or other productionlike
configuration.

User acceptance test.
Ensuring that functional
application behavior
meets the functional
requirements

AU5334.indb 37 11/19/07 7:48:40 AM

38  n  Patterns for Performance and Operability

Non-functional test plan
Test-results reporting for management

Code Deployment Engineers

Code deployment engineers are responsible for the deployment of all applications
and simulators as well as setting up test data banks for all non-functional environ-
ments. Included in the scope of their work is:

Manual deployments to test environments
Scripting of automated deployment
Automated deployment to test environments
Troubleshooting of deployments
Data backup and restore as well as test data initialization

Test Case Scripters

This group of individuals is responsible for building the test scripts for performance,
sustainability, operability, and failover. Included in the scope of the group’s work
is the:

Design of test cases
Scripting of test cases
Verification of test scripts

Test Automation Execution Engineers

This group is responsible for executing the tests and reporting the results. Included
in its scope is:

Test script execution in various target environments
Troubleshooting of script execution
Collecting and reporting the raw results

Simulator Developers

This group is responsible for the development of all simulators and injectors that
are required to simulate external systems behavior and to seed data into the appli-
cations or generate load. The team would typically have a good code development
background, with specific knowledge of databases, messaging systems, Web ser-
vices, and other interface methods.

n
n

n
n
n
n
n

n
n
n

n
n
n

AU5334.indb 38 11/19/07 7:48:40 AM

Planning and Project Initiation  n  39

The Test Data Manager

The test data manager is responsible for developing a plan and managing test data
throughout the test execution, and would be responsible for the following:

Defining test data requirements
Sourcing the data required for testing
Managing the data for each test environment
Establishing the backup and restore procedure for test data

Troubleshooters

Though this group is sometimes forgotten, its function is key to ensuring the smooth
execution of the test pack. Typically the project teams are too busy to provide any
significant support for troubleshooting non-functional test environments. Having a
troubleshooter on the team that can dissect the problem and pinpoint the area where
the issue resides will allow the team to move forward, bypassing the issue or getting
more focused help from the project team.

Communication Planning
Setting Expectations
As with any delivery-based work, setting the expectations up front is a key to suc-
cess. The non-functional test team must invest in setting the expectation right from
the start with two distinct groups; the project teams and the management/steering
committee of the program.

Project Team Expectations

It is important to set the expectations regarding the required inputs from the proj-
ect teams, as well as the expected outputs, and reporting back to the project team.
The project team should be aware of the following:

The project team will be required to produce a detailed non-functional require-
ment based on a template provided by the non-functional test team
The project team will be required to develop a business utilization model along
with the business users that will help drive the volume calculations
The project team will be required to assist in troubleshooting of the applica-
tion in the test environments on occasion
The non-functional test team may identify non-functional defect with the
application that may require some redesign or tuning of the application

n
n
n
n

n

n

n

n

AU5334.indb 39 11/19/07 7:48:41 AM

40  n  Patterns for Performance and Operability

Defect may be identified late in the delivery cycle due to the nature of
testing
The project team is expected to identify and test performance hotspots early
in the development test cycles
The non-functional test team may conduct code review and make recom-
mendations for tuning and code performance improvements
The non-functional test team will require its own environment that cannot be
shared with the functional testing activities

Steering Committee and Executive Expectations

This group has to be communicated with in a very clear fashion regarding the fol-
lowing items:

Scope of testing: what is in and what is out
Risks associated with elements that would not be tested and the mitigations
for such risks
Budget required for all non-functional testing
Review of all test environments to make sure management clearly under-
stands the need for multiple environments
Schedule and plan for non-functional testing and the gating criteria for test-
ing of the application
The potential for late defect discovery
The size of team and the individual functions within the team

Summary
This chapter demonstrates the need to advance the scope and planning of the non-
functional activities that are often overlooked when a project is initially business
cased and budgeted. The planning required is extensive, and includes elements of
budgeting, business casing cost and risk, determining scope, sizing the team(s),
determining the required environments and schedules for testing.

Engaging the technology leads early in the planning process will ensure that
all the considerations mentioned in this chapter are addressed head-on and will
provide for accurate planning and budgeting for execution.

n

n

n

n

n
n

n
n

n

n
n

AU5334.indb 40 11/19/07 7:48:41 AM

41

Chapter 3

Non-Functional
Requirements

Many software projects fail as a result of flawed functional requirements. Defining
a complete set of requirements for a complex system is difficult. People have been
building software for decades but it is still common for projects to falter during
this critical phase. Defining an effective set of functional requirements requires
prescience for how the completed system will function and operate.

Functional requirements, however, only define part of the overall puzzle. Fail-
ing to capture accurate non-functional requirements exposes your project to the
same risks that the failure to document a complete set of functional requirements
does. We begin this chapter with a set of observations that are common for many
software projects:

Many projects omit to define non-functional requirements
Many projects do not correctly understand what is meant by non-functional
requirements
Many projects fail to define the full scope of non-functional requirements
Many projects leave non-functional requirements definition too far into the
development lifecycle

For projects where these observations are applicable, non-functional requirements
are not determined correctly and system quality in this area is left to the best efforts
of the implementation team. This usually means that performance is an afterthought,
and features such as operability are built into the system on a priority basis once the
support team begins escalating the difficulties they are experiencing to management.
A reactive approach to development builds bad blood between the user community,

n
n

n
n

AU5334.indb 41 11/19/07 7:48:41 AM

42  n  Patterns for Performance and Operability

the support organization, and the development team. It can also introduce sloppy
errors and vulnerabilities into a system. Reacting to crisis after crisis in your produc-
tion environment is not an efficient way to build or maintain software, and will end
up costing your organization money, resources, and possibly its reputation.

Consider a scenario in which end users and the development team proceed
under the optimistic belief that the software will perform to an acceptable level.
But what is acceptable? What if the development team confidently releases software
that performs a given business operation in 2 seconds but the business is accus-
tomed to 0.5 seconds for the same operation? The day after you launch a new system
is not a good time to reconcile differing expectations.

From an end-user perspective, it is self-evident that the software must run fast,
that it must never crash, and that it must be free from any and all defects. In the
real world, we know that systems rarely meet these requirements with perfect effi-
cacy. Like any engineering activity, all system characteristics need to be specified
in writing to ensure that they are implemented and tested as part of the solution.
Documenting non-functional requirements serves the following critical benefits:

	 1.	Serves as a basis for constructing a robust System Design: During design
and development, the implementation team knows exactly what behavior is
expected from the system.

	 2.	Serves as a prerequisite for Non-Functional Testing: Non-functional
requirements give the QA (quality assurance) organization clear objectives
and the input it needs to generate representative test cases. Like any require-
ment, a non-functional requirement cannot be considered met until it has
been thoroughly tested.

	 3.	Defines a Usage Contract with the End Users: The business users under-
stand that the system is tested and rated to meet requirements for a desig-
nated load. If the end users triple the number of people using the system, then
they can no longer expect the same level of service if that load is outside of the
documented usage parameters.

	 4.	Provides a Basis for Capacity Planning: Depending on your application,
your system may or may not accommodate increasing volumes over time. For
many business applications, the level of usage is expected to increase as the
business itself expands. In these situations, capacity planning will need non-
functional requirements as input to infrastructure planning activities.

In this chapter we will define the types of requirements that are included in the
non-functional realm and we will look at how these requirements are derived from
business inputs. Important considerations will be illustrated using the example of
an online banking system. We will also visit the topic of roles and responsibilities,
where we see how an organization should approach the formulation of non-func-
tional requirements. At the end of this chapter, you will be familiar with the scope,
definition process, and terminology required to write meaningful non-functional
requirements.

AU5334.indb 42 11/19/07 7:48:42 AM

Non-Functional Requirements  n  43

What Are Non-Functional Requirements?
Before we continue, we will take a moment to review some of the content that was
presented in the introduction to this book. Non-functional requirements describe
the behavior of your system across the following categories:

Performance requirements specify the throughput capacity and response
times of your system. Performance requirements are only meaningful in the
context of expected usage or load as we shall see later in the chapter.
Operability requirements indicate robustness features and required behav-
ior under specific failure scenarios.
Availability requirements define the service level that the system must meet
in order to support the business usage for the system.
Security requirements provide guidance on authentication, access control,
and privacy measures necessary to satisfy business concerns. Security is a
topic deserving of a book unto itself. Accordingly, the authors have chosen to
omit coverage of security-related topics in this book.
Archive requirements specify the retention period for data that is generated,
collected, and stored by the system.

In this chapter we shall see that non-functional requirements need to be docu-
mented by producing two different artifacts: the business usage model and the non-
functional requirements narrative. The business usage model establishes key metrics
for the usage of the system, including load volumes and usage distribution over
time. In the context of the business usage, the narrative defines concrete objec-
tives for the system. For example, a performance requirement for a specific business
operation may be stated as an average time response of two seconds. This require-
ment is only meaningful if we understand how often that business operation will be
executed and under what circumstances. As we will see, the usage model establishes
the circumstances under which non-functional requirements are valid.

Do I Need Non-Functional Requirements?
In the introduction to this book we committed to being pragmatic in determining
what is and is not mandatory. In the real world, software systems serve a variety of
functions and user communities. If you are building a software system that sup-
ports ten users who rarely use the system concurrently, you may decide that the cost
of formulating non-functional requirements is not justified for your application. If
the system you are building is supported by other redundant systems, then non-
functional requirements and testing may not be justified in your budget. If your
end users can tolerate a prolonged period during which the application is not avail-

n

n

n

n

n

AU5334.indb 43 11/19/07 7:48:42 AM

44  n  Patterns for Performance and Operability

able without this having a significant business impact, you may decide to be more
selective in documenting non-functional requirements.

In this chapter we make the assumption that your system meets most or all of
the following criteria in order to illustrate a formal, structured approach to defining
non-functional requirements:

Your system functionality and technology base is complex. As such, it includes
a variety of human interfaces and/or to software that interfaces directly to
other systems.
Your system is business critical and outages entail significant financial or
reputation impact to your business.
Your system has a large user population and usage fluctuates with time of day
and season.
Your system supports a large set of different, unrelated business operations.
The end users for your system have demanding performance requirements.
The projected usage for your system is expected to change over time.

Roles and Responsibilities
Building a software system is a team effort requiring both business and techni-
cal participants. Traditionally, business participants define the requirements while
technical resources implement a solution that meets those requirements. Unfortu-
nately, expressing non-functional requirements in a way that can be implemented
and tested is a non-intuitive activity that requires close collaboration within your
team.

In order for your requirements phase to produce a meaningful output, we
strongly recommend the following role designations:

	 1.	Designate a Business Analyst as the Non-Functional Requirements Lead:
Preferably, this person is an individual with previous experience in this role.
If you do not have such a person available, ensure that the designated person
invests some time in understanding the materials in this book or another
comparable reference.

	 2.	Designate a Technical Non-Functional Test Lead: If you do not have a
technical resource who can participate in non-functional test cycles, the tech-
nical lead from the development team is usually the best candidate. This
person will work with the business analyst to ensure that business inputs are
properly translated into requirements that can be tested and implemented.
This can be a technical architect or a designer that is able to take a higher view
of the project’s overall requirements.

The business analyst will be responsible for producing non-functional require-
ments documentation; the technical test lead will work closely with the business

n

n

n

n
n
n

AU5334.indb 44 11/19/07 7:48:43 AM

Non-Functional Requirements  n  45

analyst to vet the documentation to ensure it is complete. The technical test lead
has additional responsibilities as follows:

Coaxing variations in the business usage out of the business analyst, i.e., ask-
ing leading questions to populate detail into the business model
Challenging the defined requirements to ensure that realistic targets are being
proposed for the application
Helping the business analyst to understand where details are important in
order to properly test the system
Helping to provide detailed content for the business analyst to include in the
requirements documents

Challenging Requirements
Requirements are generated by analysts who do their best to document what users
want, but users may not always know what they want—or they may change their
mind after seeing a product. Furthermore, analysts do not always ask the right ques-
tions, nor do they always interpret the responses they receive accurately. Subject mat-
ter experts and consultants, in general, are notorious for imposing a view of the world
on users who may or may not fully agree with the picture that is being presented.

Requirement swapping is a term invented by one of the authors after many years
of trying to implement badly formulated requirements. There were many times
when a requirement clearly expressed intent in a way that was technically complex
to implement. An implementer could offer an alternative that would satisfy the
user’s intent but not necessarily meet their requirement verbatim. For cases like this,
a proposal to swap a complex requirement for a simple, more natural requirement
that in many cases the user likes even better can build consensus. In many circles
this activity is part of a broader activity referred to as requirements engineering.

If you take the time to review requirements with the technical team, you will
usually avoid future disconnects that result in wasted effort. In general, the amount
of time that the technical team spends implementing a requirement should be
proportional to the value of the requirement. Performance requirements can be
great illustrations of this concept. A business user may arbitrarily decide that log-
in should take no more than one second for any request. In the technical design,
there is a robust, reusable log-in service available from another system but it only
supports a two-second response time. In talking to the sponsor, most users will log
in once or twice a day at most. Users are internal, so we don’t have to worry about
a competitor offering a faster login. In this case it should be easy to convince the
sponsor to relax the one-second login requirement, especially if the technical team
is willing to commit to a faster response time for another part of the system that is
more frequently accessed.

n

n

n

n

AU5334.indb 45 11/19/07 7:48:43 AM

46  n  Patterns for Performance and Operability

In some instances you may have to explain to the users what it is exactly they
are asking for. We have encountered situations in which the users were expecting
a thousand people to use the system concurrently and therefore expected the sys-
tem to have the capacity to handle a thousand transactions per second. It is only
after explaining to the user community that each user had to fill in a lengthy form
for each transaction—which would take them at least a minute and therefore was
physically impossible for them to submit one transaction per second—that everyone
agreed to a more realistic requirement of 16 transactions per second (1,000/60).

Non-functional requirements can be expensive to test and accommodate in the
technical design. It is prudent to ensure that all parties with a stake in the system
understand the effort and expected benefit for each requirement.

Establishing a Business Usage Model

Quantifying Human and Machine Inputs

Human behavior can be unpredictable. If you ask people to describe how they
think they will use a system in the future, what they describe will be at best a rough
approximation of their actual behavior based on what they are currently doing—or
think they should be doing.

If you are going to test software systems against non-functional requirements,
your foundation is your usage model. The usage model specifies the number of
users who have access to the system and an estimation of the types of activities
in which they will engage. For systems that are replacing or upgrading existing
systems, there is often an opportunity to measure usage directly. For example, a
new software solution that replaces an existing system likely means there will be an
opportunity to report on historical transaction volumes and use these numbers as
the basis for usage estimates.

Consider an online banking application for an established bank. If the bank is
upgrading their current solution, they can expect similar initial volumes to the legacy
system when they again “go live.” The number of people who check their account
balance online each day is unlikely to change when the new solution is implemented.
For B2C (business-to-consumer) applications, on the other hand, customer usage
is often difficult to predict. Will online banking users enthusiastically adopt the
enhanced online banking solution? Will customers use the system more as a result
of the enhancements? Will users tell their friends about the improved banking
experience, spurring new customers to begin using the system? Will additional
customers be attracted to the new system and switch banks to take advantage of
the enhanced banking platform? These questions cannot readily be answered by
technologists or business users, but they will impact the load profile of the system.

AU5334.indb 46 11/19/07 7:48:44 AM

Non-Functional Requirements  n  47

If you are introducing a new software product or service, you may have no
empirical basis whatsoever for establishing a usage model. In this case, the usage
model is entirely theoretical and based on predicted adoption and usage.

Some aspects of human usage are very difficult to estimate without actual
observation of users on the new system. If you give users two buttons to press that
perform slight variations of the same function, which button will they press? If
you give users a suite of new functionality based on a consultative requirements
gathering process, which features will they actually use and in what proportions?
Users themselves can only tell you how they think they will use a software system.
To make matters worse, the users who participate in your requirements gathering
may or may not represent the perspective of the majority of end users. If consultants
or management have the majority influence in the functional specification of the
system, they may totally misrepresent the behavior of the user community when
the system is actually in production. Malcolm Gladwell, in his book Blink, makes
convincing arguments that in a very large number of situations, users make totally
inaccurate predictions of their own behavior.

The subtleties of human interaction with a user interface are difficult to antici-
pate; however, the number of business transactions that users will initiate is usually
measurable—or, at least, more readily predictable. We consider business transac-
tions as coarse inputs in the usage model. The number of times that users click a
button or the number of times that users encounter validation failures is incidental
to the number of coarse inputs. If a customer is using an online banking system to
pay a bill, each bill payment is a good example of a coarse input. A coarse input is
a high-level functional activity. It includes all the nuances of how each customer
pays a bill.

Software systems often have nonhuman inputs. Machine inputs to your system
are equally important aspects of your usage model. Many complex systems func-
tion based on a combination of human and machine inputs. Machine inputs can
be continuous feeds or can come in batches. Continuous feeds are requests or data
inputs that arrive on a continuous and unscheduled basis. Batch inputs are a bulk
series of requests or inputs that usually arrive and are processed as a single unit of
work. Batch inputs are often, but not necessarily, scheduled interactions with your
system. The characteristics of batch inputs may be predictable or unpredictable in
nature. Consider a scenario in which an insurance company must process car insur-
ance applications and make approval recommendations on a nightly basis. Such a
system may involve the collection of application requests from multiple channel
front-end systems. Will the number of applications be constant over time? Will the
number of applications be subject to seasonal or time-of-month variations? In the
real world it is likely that the size of the batch input to the system will vary with
time. Again, this variation needs to be accounted for in your model. A usage model
that fails to anticipate a surge in insurance applications at month-end is not a rep-
resentative usage model.

AU5334.indb 47 11/19/07 7:48:44 AM

48  n  Patterns for Performance and Operability

The first step in establishing your business usage involves quantifying it for both
human and machine inputs. This can be done by answering the following questions:

Human Inputs

For human inputs, what is the operations window for the software system?
For each class of user, how many users are in the user population now? Pro-
jected in one year? Projected in five years?
For each class of user, how many coarse inputs do we expect on average and
as a maximum in the operations window?
For each class of user, what is the distribution of coarse inputs in the opera-
tions window?
In particular, what is the busiest interval for the system with respect to the
creation of coarse inputs?

Machine Inputs

For machine inputs, what is the operations window for the software system?
How many interfaces support the input of machine inputs?
For each interface, what is the expected and maximum number of coarse
inputs now? Projected in one year? Projected in five years?
For each interface, what is the distribution of coarse inputs in the operations
window?
In particular, what is the busiest interval for the system with respect to the
creation of coarse inputs?

We can consider an online banking solution as an example application to illus-
trate how these requirements might be documented. We will start with human
inputs.

The operations window and user community parameters can be expressed as
follows. Because this system offers services to retail customers, it is not surprising
to see that the system is expected to be available 365 days a year and 24 hours a
day. The user volumes could become considerably larger than the current ones.
The bank has built an aggressive business strategy to attract customers to its
lower-cost Internet channel. The one- and five-year projections represent signifi-
cant increases over the current numbers. Customers are divided between retail
and business clients, with retail customers enjoying a significant majority over
business clients.

Table 3.1 shows example requirements against the usage attributes for the items
in this example.

n

n

n

n

n

n

n

n

n

n

AU5334.indb 48 11/19/07 7:48:45 AM

Non-Functional Requirements  n  49

Based on historical business reporting for the legacy online system, coarse
inputs for each class of user are expected to be as shown in Table 3.2. The data is
shown by month.

In scrutinizing historical data, it is clear that there is seasonal variation for a
number of coarse inputs. Logins remain constant throughout the year, but bill
payments are highest in January and lowest in July and August. Not surprisingly,
it appears that people are on holiday during the summer and pay bills most actively
following the busy Christmas shopping season, in January.

In looking at the weekly volumes, it also appears that peak usage is from 12:00
pm (noon) to 1:00 pm during the day. During this interval, 30% of the daily volumes
are typically completed. The busiest day of the week is Friday, as this corresponds to
the day following Thursday, when many employees receive weekly paychecks. This
one-hour period qualifies as our busiest interval in the business usage for human
input. Non-functional design and testing is all about worst-case scenarios. If the
bank’s systems can accommodate the busiest hour of the busiest day of the year,
then we can be confident that it will handle all other intervals. We add this param-
eter, the busiest interval, to the business usage (as shown in Table 3.3).

To the best of our abilities we have adequately quantified the usage of the sys-
tem based on human interactions. However, we are not done yet. We must also
describe the system in terms of machine inputs. The new online banking platform
is expected to have at least three interfaces that will accommodate machine coarse
inputs. A nightly job is expected to extract a report that captures all online cus-
tomer actions for business analytics. Further, another job is expected to produce an
extract file that captures all bill payments made on the online banking platform for

Table 3.1  Example Requirements for Usage Attributes

Usage Attribute Requirement

Operations window 12:00 am to 11:59 pm, Monday to Sunday

Number of users by class Personal banking: 3,250,000
Business banking: 420,000

Number of users by class, one year from
now

Personal banking: 3,850,000
Business banking: 675,000

Number of users by class, five years from
now

Personal banking: 6,380,000
Business banking: 1,120,000

AU5334.indb 49 11/19/07 7:48:45 AM

50  n  Patterns for Performance and Operability

Ta
b

le
 3

.2
 

Ex
am

p
le

 C
o

ar
se

 In
p

u
ts

 b
y

M
o

n
th

: O
n

lin
e

B
an

ki
n

g
 S

ys
te

m

C
o

ar
se

 In
p

u
t

Ja
n

Fe
b

M
ar

A
p

r
M

ay
Ju

n
e

Ju
ly

A
u

g
Se

p
O

ct
N

ov
D

ec

Lo
gi

n
65

,6
45

65
,6

56
66

,5
47

6,
87

5
45

,3
53

47
,7

65
76

,5
76

65
,4

74
76

,5
86

56
,3

63
47

,5
74

74
,5

47

A
cc

ou
nt

In

qu
ir

y
4,

53
5

45
,4

35
52

,4
51

52
,5

34
75

,6
76

76
,5

75
76

,5
76

75
,7

66
76

,7
57

65
,6

56
65

,4
63

45
,6

54

Bi
ll

Pa
ym

en
t

45
,3

45
56

,4
33

36
,3

63
64

,4
63

74
,7

56
45

,3
56

65
,5

33
5,

64
6

65
,4

65
5,

35
3

45
,6

45
63

,6
35

Fu
nd

s
Tr

an
sf

er
63

,4
63

53
,6

46
5,

34
6

6,
34

6
36

,3
61

63
,4

46
63

,3
56

63
,5

35
36

,6
35

65
,3

63
65

,3
46

43
,2

13

AU5334.indb 50 11/19/07 7:48:46 AM

Non-Functional Requirements  n  51

fulfillment. Finally, a backend system is loading customer-specific marketing mes-
sages that are displayed to users when they login to the application.

We capture parameters for the model for each machine input, starting with
the nightly reporting extract. All business reporting is constrained to run during
periods of lesser user activity (i.e., at night). In this case, the report is expected to
run at 02:00 am each morning, seven days a week.

In this case, we derive the expected and maximum number of coarse inputs
from the human inputs. For each human coarse input there will be a record in the
output report. Consequently, we calculate the average and maximum coarse inputs
for this machine event as 1,304,309 and 6,029,309, respectively. In other words, on
a Friday in January, the busiest day of the banking year, the business analytics report
will extract 6,029,309 records. Table 3.4 shows the machine input usage attributes
for our example.

The bill-payment fulfillment job is similar in its characteristics to the busi-
ness analytics report. This job also runs off-hour; however, this job needs to run
and be complete no later than 10:00 pm in order to meet the cutoff imposed by
the backend fulfillment system. It is required that customers be able to pay bills
up until 6:00 pm. All bill payments made up until 6:00 pm must be fulfilled that
night. At this point, the requirement says only that the job cannot start until 6:00
pm and can be complete no later than 10:00 pm. In this case, the job schedule will
be derived during design and testing based on performance results and failed job-
recovery procedures. For now, we can record the requirements in as much detail as
we have available (as shown in Table 3.5).

The last machine input is more difficult to describe. We expect marketing mes-
sages to be sent to the application, but we don’t have details for how this require-
ment will be met in the implementation. Because marketing messages will be

Table 3.3  The Busiest Interval

Usage Attribute Requirement

Busiest Interval 12:00 pm to 1:00 pm, Friday; 30% of heaviest
day’s business volumes

Login 2,309,039

Account Inquiry 1,209,049

Bill Payment 529,143

Funds Transfer 210,985

AU5334.indb 51 11/19/07 7:48:46 AM

52  n  Patterns for Performance and Operability

available continuously from the source system, we will designate the machine input
as continuous. The source system only operates from 7:00 am to 10:00 pm daily,
Monday to Friday. The source system enjoys a maintenance window nightly from
10:00 pm to 7:00 am and on weekends.

The business analyst has met with the customer marketing organization, and
they have provided the expected and maximum number of marketing messages as a
percentage of the total number of users. On a typical day, they will forward market-
ing messages to the system for 5% of the registered customer base. On a busy day,
they will send messages to the online banking platform for 20% of the registered
customer volume (as shown in Table 3.6).

Table 3.5  Example Batch Input: Online Banking System (Fulfillment)

Usage Attribute Requirement

Machine Input Bill payment fulfillment

Input Type Batch

Operations Window Must start after 6:00 pm and complete
successfully before 10:00 pm, Monday to
Sunday

Typical Coarse Input 687,095

Maximum Coarse Input 4,687,095 (third Friday in January)

Table 3.4  Example Batch Input: Online Banking System
	 (Business Reporting)

Usage Attribute Requirement

Machine Input Business reporting

Input Type Batch

Operations Window 02:00 am, Monday to Sunday

Typical Coarse Input 1,304,309

Maximum Coarse Input 6,029,309 (third Friday in January)

AU5334.indb 52 11/19/07 7:48:47 AM

Non-Functional Requirements  n  53

An important aspect of the usage model is the number of human users who will
be active on the system. We have just finished a discussion in which we divided load
between human and machine inputs. Consider a login scenario in which 30% of
the peak daily login volume constitutes 692,712 login operations in a single hour.
What does this really mean? Does it mean that a single person is serially logging in
to the application 692,712 times? Or does it mean that 692,712 people are logging
in to the application once? Or is it somewhere in between? Or does it even matter?

The purpose of a usage model is to accurately reflect the expected production
usage of your system. The usage model will drive the load scenarios that you use for
testing most of the non-functional requirements for the system. In reality, for many
systems the number of users executing business operations is just as important as
the number of operations that are executed. For stateful systems, and any system
requiring authentication is stateful to some extent, the number of active concurrent
users is highly meaningful to the accuracy of the test. Many systems maintain state
information as part of a user session. Each concurrent user will have a correspond-
ing user session. The true performance characteristics of the system can only be
measured if we are executing business operations with a representative number of
concurrent users.

Let’s introduce the notion of user volumes as an additional attribute of our
usage model (as shown in Table 3.7). The business is asked to provide a statistical
view of this attribute for the busiest day of the year over a 24-hour period.

As we will see, user volumes are an important attribute when we go to apply
load to the system to achieve the target rate of business operations.

Table 3.6  Example Business Input: Online Banking System
	 (Marketing Messages)

Usage Attribute Requirement

Machine Input Customer marketing messages

Input Type Continuous

Operations Window 7:00 am to 10:00 pm, Monday to Friday

Typical Coarse Input 115,451

Maximum Coarse Input 461,807 (third Friday in January)

Busiest Interval 12:00 pm to 1:00 pm, Friday; 30% of heaviest
day’s business volumes

AU5334.indb 53 11/19/07 7:48:47 AM

54  n  Patterns for Performance and Operability

Expressing Load Scenarios
Once you have quantified the usage of your software system, you will need to
design scenarios that emulate the actual usage of the system in order to conduct
testing. We call these load scenarios. The objective of these scenarios is to achieve a
load profile that accurately reflects the expected usage of the system. In designing
load scenarios, the subtleties of human usage become important. If a load scenario
describes the submission of an online request to a system, the number of validation
errors that a typical user is expected to encounter is a meaningful aspect of the sce-
nario. The load scenarios must achieve the target number of coarse inputs without
over- or underemphasizing any aspect of the system behavior.

When defining functional requirements, a common practice is to document use
cases to express the functional behavior of the system. Use cases describe a compre-
hensive interaction between actors and the system, and they typically specify every
aspect of the system functionality. The non-functional equivalent of use cases are
load scenarios. Load scenarios as defined in business usage are the business analyst’s
estimation of how coarse inputs are generated in the system. In many cases, load
scenarios will be equivalent to the normal flow for use cases defined in the func-
tional use case requirements.

In documenting load scenarios, it is acceptable to refer to use cases in the func-
tional requirements, supplementing the use case with additional information where
required. Load scenarios are not a comprehensive description of system capabilities,
but they are an important component of the non-functional business usage.

Load scenario definitions are required for both human and machine inputs. The
following elements are required for each load scenario of either type:

Human Inputs

Which coarse input(s) are achieved in this load scenario?n

Table 3.7  User Volumes

Usage Attribute Statistics

Maximum Concurrent Users 5,100

Minimum Concurrent Users 300

Average Concurrent Users 1,800

Busiest One- Hour Interval 12:00 pm to 1:00 pm, Friday

AU5334.indb 54 11/19/07 7:48:48 AM

Non-Functional Requirements  n  55

What variety of data/input is critical to this load scenario?
How much time does it take on average to input the data (also referred to as
“think time”)?
What explicit steps are required to emulate this load scenario?

Let’s continue our example of an online banking application. A typical load
scenario can be found in Table 3.8.

The number of load scenarios is defined in response to the following
considerations:

How many unique scenarios are required to achieve the total number of
coarse inputs?
Are specific scenarios required to certify specific performance requirements?
What are the cost and budget constraints that will impact the number of load
scenarios that are devised?

n

n

n

n

n

n

Table 3.8  Example Load Scenario: Online Banking System

Parameter Setting

Coarse Inputs Login:
Balance inquiry
Bill payment

User Classes Customers:
• personal
• business

Explicit Steps Login:
• 10% of users have one failed password attempt
Select primary account for balance inquiry
Select bill payment:
• 20% of users initiate a bill payment for amount varying
between $50 and $200 from primary account
• 20% of users initiate a bill payment for amount varying
between $50 and $200 from primary account
•10% of users cancel operation without making a bill
payment
Logout:
• 50% of users abandon session
• 50% of users actually logout

AU5334.indb 55 11/19/07 7:48:48 AM

56  n  Patterns for Performance and Operability

Albert Einstein is renowned for the statement that “everything should be made
as simple as possible, but no simpler.” This very much applies to the specification of
load senarios. The objective is to provide enough detail to accurately model the sys-
tem, but detail for the sake of detail offers diminishing returns. Too much detail will
be difficult to implement and maintain. At the same time, an oversimplified view of
your system will increase the likelihood of real problems going undetected.

In many situations, performance requirements may require the specification
of additional load scenarios. We will discuss this topic in more detail later in this
chapter.

As you increase the number and complexity of load scenarios in your usage
model, you will also increase your costs. When you are generating the load profile,
it is preferable to describe the business usage in as much detail as possible. When
it comes time to test, you will usually take a practical view of your load scenarios
and adjust them. We will discuss this activity further when we describe testing
approaches in Chapters 6 and 7.

Non-Functional Requirements

An Important Clarification

We have been using the term non-functional as an adjective since the first chap-
ter of this book. On the topic of requirements, there is an important clarification
that we must make. For many people, there is a perception that non-functional
requirements are technical requirements. However, this is a misleading and inac-
curate perspective.

Non-functional requirements are still business requirements. Like any other set
of requirements, the technology team will interpret and translate non-functional
requirements into a concrete implementation. Non-functional requirements need
to be defined by a business analyst as part of the same exercise as functional require-
ments. We will illustrate the distinction between good and bad non-functional
requirements with some examples. The following requirements may sound appeal-
ing, but are out of context in a non-functional requirements document.

	 1. 	The system must verify the integrity of all file outputs that are generated
for customers by inspecting the first and last record in the file.

	 2. 	The system must log the username and time for each user login to the
system to a file.

	 3. 	All application code must include in-line documentation for support
purposes.

	 4. 	Performance testing must be conducted for a sustained period of at least
eight hours at 200% peak load.

AU5334.indb 56 11/19/07 7:48:48 AM

Non-Functional Requirements  n  57

Each of these requirements is trying to express a valid consideration in the
design and implementation of a system. Let’s look at each of these requirements in
detail to understand how they are flawed.

The first requirement sounds appropriate; verifying the integrity of files that
will be transmitted to customers sounds entirely reasonable. The problem with this
requirement is that it is overspecified: this requirement expresses a business con-
cern and a technical recommendation. Our statement has been that non-functional
requirements are business requirements and we need to adhere to that here. By
instructing the technical team to meet the requirement in an overly restrictive way,
the business is actually attempting to design the system. Software design is best left
to the development and design teams who have training and experience in this area.
Overspecified requirements are restrictive and will often lead to inferior systems.
This requirement is more appropriately phrased as, All system outputs must be veri-
fied for compliance with agreed upon output formats before transmission to customers.
This wording is superior because it allows the technical team to select the most
appropriate means of verification. We have also recast the requirement to reference
system outputs rather than files. This is a more inclusive requirement that better
reflects the business concern.

The second requirement in this example is also overly restrictive. It is actually a
functional requirement for audit purposes that is better aligned with the underly-
ing business concern when it is reworded as, The system must record audit informa-
tion for every user authenticating to the system. In this new wording, the technology
team can implement an audit feature using a database that is more secure and offers
more flexibility with respect to reporting.

The third requirement in this example makes a reference to the level and type of
documentation that is required for the solution. Again, the business requirement is
that the solution be documented so that it can be efficiently maintained. Depend-
ing on the platform, in-line documentation may or may not be appropriate; conse-
quently it is better to leave this type of decision to the implementation team.

Many organizations maintain enterprise-wide development and coding stan-
dards. These types of standards typically describe coding best practices, documen-
tation standards, and other maintainability concerns. There is tremendous business
value to organizations that create common standards. Such standards ensure con-
sistent quality and readability across different systems. Among other benefits, stan-
dards make it easier for employees to learn and support new applications when they
are based on practices with which they are already familiar. Improvements to the
wording of the example might be expressed as either All aspects of the solution must
adhere to the company’s enterprise development and coding standards or in the absence
of an existing standard, Technical documentation must accompany the solution suf-
ficient for the application to be supported.

The last requirement in our example is inappropriate because it does not
describe the end state of the solution itself, but the means by which specific non-
functional requirements are to be verified. As we will see in Chapter 6, the test

AU5334.indb 57 11/19/07 7:48:49 AM

58  n  Patterns for Performance and Operability

strategy and plan is the appropriate place for describing the detailed test case
composition. Adding this type of requirement to your scope will convolute the
intent of your requirements. Furthermore, stakeholders who sign off on non-
functional requirements are seldom in a position to evaluate your detailed test
strategy. For this part of the example, our recommendation is to omit the require-
ment completely.

As you can see, there is a temptation to make non-functional requirements
a broad, all-encompassing container for requirements that don’t seem to fit any-
where else. The scope of non-functional requirements should be limited to true
business requirements that reflect genuine performance, operability, and availabil-
ity concerns. It is not efficient to communicate other topics like testing, delivery
process, or technical design in what is supposed to be a business requirements docu-
ment. There are more appropriate vehicles for this content such as test strategies,
project charters, and technical design documents in which business participants
can be asked to provide sign-off if required.

Performance Requirements

Performance requirements are usually the most prominent type of non-functional
requirement in a software implementation. Users readily understand that systems
that perform slowly will keep them waiting. More than likely, users have firsthand
experience with systems that perform badly and are anxious to avoid similar experi-
ences with any new system.

Performance requirements specify what should happen and how long it should
take. Describing this in a meaningful way is usually more difficult than it sounds.
We usually refer to “how long it takes” as the response time and “what should hap-
pen” as a transaction. This type of requirement will vary greatly depending on the
type of application.

For an animation or graphics-intensive application, performance requirements will
usually be expressed in terms of the refresh rate of the screen. The human eye can dis-
tinguish 1,300 frames per second. In general, anything faster than this will be accept-
able to end users. In this case, each frame refresh is considered to be a transaction.

For Internet-based applications, the screen refresh rate is typically based on the
amount of time it takes for a server component to generate a new screen and send
it over the network to the end user. Users are accustomed to Internet applications
and a threshold of under two seconds is usually acceptable for screen refreshes for
applications of this type. For this example, the time it takes to request and then
fully render a Web page is considered to be a transaction.

If a system is responsible for generating a complex report, users may be comfort-
able waiting hours for the report to be available. The generation of the report in this
example can be referred to as a transaction.

AU5334.indb 58 11/19/07 7:48:49 AM

Non-Functional Requirements  n  59

For transaction processing systems, requirements may be a function of service
levels with external systems. For example, a system that brokers health insurance
claims on behalf of insurers may be contracted to respond within one second in
order to meet front-end user requirements on the insurer’s administrative systems.
The service of this request on behalf of the insurer is a transaction.

Despite the differences in these types of performance requirements, there are
some unifying characteristics across each of them. First, a performance require-
ment must be statistically defined. By this we mean that the acceptable transac-
tion response time must be expressed in terms of average, maximum, or percentile
performance. The average is taken as the measured performance across all inputs
in an interval. For most applications this is the most common type of performance
requirement. Our online banking application may require that the average user
login take an average of two seconds or less. If there are 2,000 logins in a day to
the online banking application in one hour and the average response time is 1.2
seconds, then the system meets the requirement. This is simple enough.

Next, let’s consider the worst-case or maximum accepted performance for the
system. In some cases, users may specify a maximum acceptable response time. For
the online banking application, the business sponsors may decide that under no
circumstances should any screen response take longer than ten seconds. In some
cases this requirement is driven by user experience, and in other cases this is a hard
requirement imposed by other systems. For example, in our insurance adjudication
example from the last paragraph, the insurer may impose a timeout of ten seconds
on all requests to the system. A consequence of this is that any request that takes
longer than ten seconds will mean that the requestor has stopped waiting for the
response and has reported an error to the user.

For some systems, an average by itself is not a sufficiently strict requirement to
ensure acceptable user experience. It is common for users to demand performance
results based on a percentile. A requirement of this type states that 90% of all
transactions must have a response time of three seconds or less. From your sponsor’s
perspective, this requirement ensures that 90% of their customers will never have
to wait longer than three seconds for a transaction to complete.

We now look at example requirements for the online banking application (in
Table 3.9). This is a retail customer-facing application, so performance is a critical
factor for the business sponsors.

In general, it is not productive or recommended during the requirements phase
to specify requirements for individual transactions based on your best guess at sys-
tem performance. For applications where response times need to be assigned for
individual transactions, it is preferable to create categories. See Table 3.10 for an
example of such classifications.

Light transactions are transactions that are critical and expected to perform at
the highest service level. Medium and heavy transactions are reserved for less fre-
quent transactions or complex transactions where users are more willing to tolerate
additional latency.

AU5334.indb 59 11/19/07 7:48:50 AM

60  n  Patterns for Performance and Operability

Using this approach, all transactions are classified as either light, medium, or
heavy. This is easy to understand and avoids confusion during the testing and vali-
dation phase of the software development lifecycle.

In assigning transactions to categories, you must agree on the range of inputs
for which these performance requirements will be met. From a user’s perspective,
viewing account details is the “same” type of request for every user. From a technol-
ogy point of view, rendering account information may vary significantly depending
on any one of the following factors:

The number of accounts that the customer possesses
The type of accounts that the customer possesses
The last time that the user accessed their account view
The type of customer (retail or business)

Before you decide that an account inquiry is of medium weight for all users, you
may consult the technical team and determine that the weights shown in Table 3.11
are more appropriate.

n
n
n
n

Table 3.9  Transactions

Transaction Average 90th Percentile Maximum

Login 2 seconds 3 seconds 5 seconds

Account Inquiry 1 second 3 seconds 5 seconds

Bill Payment 2 seconds 3 seconds 5 seconds

Funds Transfer 2 seconds 3 seconds 5 seconds

Table 3.10  Transaction Classifications

Transaction Average 90th Percentile Maximum

Light 1 second 2 seconds 5 seconds

Medium 2 seconds 3 seconds 7 seconds

Heavy 3 seconds 5 seconds 10 seconds

AU5334.indb 60 11/19/07 7:48:50 AM

Non-Functional Requirements  n  61

Does this mean that we are done? No; we are missing a critical piece. Perfor-
mance requirements are only meaningful in the context of load. A response time
of one second may be met easily if only one person is using a system. Meeting
the one-second requirement becomes much more difficult if there are hundreds or
thousands of requestors accessing while attempting the same transaction simulta-
neously. Fortunately, we completed the business usage model for this application
earlier in this chapter. Users will expect performance requirements to be met under
all circumstances. Accordingly, we must select the most strenuous interval in the
business usage and use that as the basis for our performance acceptance.

In the previous section, we identified the interval in the business usage as
from 12:00 to 1:00 pm on the third Friday in January as the busiest interval. This
means that we will test for our performance requirements using this load profile.
In order to be more specific, we calculate a transaction rate for the load profile. The
transaction rate can be expressed as transactions per minute or transactions per
second depending on the volumes for your system.

The busiest interval for our banking application processes 3,400 bill payments in
one hour. We can then calculate the transaction rate for bill payments as follows:

	
Transaction Rate Transactions

Interval
 ,

= =
3 400
33600

0 94
s

TPS= .

We refer to the transaction rate for the busiest interval as the peak transaction
rate. Assuming we conduct a similar exercise for each of the other transactions for
which performance requirements are specified, our example requirements evolve as
shown in Table 3.12.

Table 3.11  Classification Weights

Transaction Classification

Log-in Light

Account Inquiry:
Fewer than Five Accounts

Light

Account Inquiry:
Five Accounts or More

Medium

Bill Payment Medium

Funds Transfer Medium

AU5334.indb 61 11/19/07 7:48:53 AM

62  n  Patterns for Performance and Operability

When combined with the load scenarios defined in the business usage, we are
well positioned to prepare test cases and conduct performance acceptance for this
application from a requirements perspective. We will see more of the testing chal-
lenge in Chapter 6 and 7.

Operability Requirements

Business users do not specify the majority of operability requirements. Not surpris-
ingly, the stakeholders for most operability requirements are the operators of the
system. These types of requirements take into consideration the ease, robustness,
and overall availability requirements of the software solution.

Component Autonomy

Complex systems are often implemented as a set of dependent components. Sys-
tems may also have dependencies on external systems. Robust, highly available
systems typically meet the following minimum requirements:

If an infrastructure component is unavailable, services provided by depen-
dent components should only be impacted insofar as they depend on the
unavailable component. If a Web-based portal application serves as a gateway
to four independent subsystems, if one of the subsystems becomes unavail-

n

Table 3.12  Target Transaction Rates

Transaction Classification

Target Transaction Rate
(in transactions per
second)

Login Light 1.06 TPS

Account Inquiry:
Fewer than Five Accounts

Light 1.87 TPS

Account Inquiry:
Five Accounts or More

Medium 0.30 TPS

Bill Payment Medium 0.94 TPS

Funds Transfer Medium 0.71 TPS

AU5334.indb 62 11/19/07 7:48:53 AM

Non-Functional Requirements  n  63

able, there should be no impact to the portal itself or a user’s ability to access
the other three subsystems.
If a component needs to be restarted, re-deployed, or otherwise taken out of
service, it should be possible to reintroduce that component without having
to restart, re-deploy, or alter any other components in the system. Consider
the example of an enterprise service that provides securities pricing infor-
mation to a number of applications at an investment firm. If the enterprise
service is taken out of service and then reintroduced, there should be no need
to restart any of the dependent applications.

Trace Logging

Problems that arise in production environments are often difficult to troubleshoot
because processing can be distributed across many disparate systems. If different
systems are responsible for different components, it is difficult for any one support
organization to reproduce the problem. When an external system does not respond
in an expected way, it is critical to be able to provide a log of the request and response
from that system. The exchange of data between systems can be logged at the level
of the database and/or the file system. In most cases, the performance trade-off
of this logging is well worth the increased visibility that it provides. Systems that
include good trace capability are easier to test and support. If performance must
trump operability for your application, consider asking for a configurable switch
that enables trace logging selectively for specific components. In this way, logging
can be introduced when a problem is suspected or in (quality assurance) environ-
ments only.

Communicating Outages and Maintenance Windows

Software systems are expected to be available during their operations window. In
the real world, applications do not always meet their service level agreement (SLA).
It is to your advantage to define how the system should react when it is unavailable.
For example, a Web-based application can be manually configured during an out-
age to present all users with an error page. This informs the user that the service
provider knows there is an issue and is working in all haste to correct the problem.

If an unscheduled outage occurs, you will want to prevent users from using
the system. If the system is failing, additional user load will usually make matters
worse; it can also delay recovery of the system. There is also no guarantee that the
system will process user requests in the same way a healthy system would. For some
applications, this can have grave results. For machine interfaces to other systems, it
is also important to evaluate whether interfaces should be similarly disabled during
unscheduled outages. It is usually better to reject new requests than to accept them

n

AU5334.indb 63 11/19/07 7:48:53 AM

64  n  Patterns for Performance and Operability

when there is a risk that they will not be processed. The appropriate behavior can
only be determined in the context of the application.

A variation of this same capability will be required when the system is being
upgraded and/or maintained. In this case, the communication should tell the user
when the system will once again become available.

Exception Logging

From a requirements point of view, every system should log exceptions with enough
detail that the cause of the failure can be investigated and understood by technical
resources. Error logging can be a critical aspect of production monitoring for the
system. It is also desirable for the error to be presented to the user in a way that can
be tied to additional technical logging at the level of the file system. We will look at
exception handling and logging in more detail in Chapter 4.

Failover

Availability is achieved by increasing quality and redundancy of software and infra-
structure components in your system. In the real world, even the best quality hard-
ware will fail, and it is critical that you discuss the implications of such failure with
your users. In the event of a failover, is it sufficient that service is still available for
the initiation of new requests? Or is there a more stringent requirement for in-flight
requests to be processed successfully. Is it sufficient for the request to be processed
when the failed component is recovered, or does a redundant component need to
recognize the failure and stand in to continue processing?

The behavior during a failover will depend on the criticality of your system and
the sensitivity of the users that are using it. Consider the example of an end user
who must complete a multi-screen form process that required input of over 200
fields. If a system component fails when the user is inputting the 199th field, is it
acceptable for the user to have to start the process over? Depending on the system,
there will be a cost to implementing failover for this scenario and it may or may
not be warranted for your application. Before stipulating failover requirements, it
is recommended that you consult with the technologists who will be designing the
system. It is quite likely that these types of requirements were already factors in the
infrastructure and software decisions that were made in the planning phase of the
project. If the target platform for your system does not provide support for failover,
then it is unwise to allow your users to specify requirements for this feature.

AU5334.indb 64 11/19/07 7:48:54 AM

Non-Functional Requirements  n  65

Fault Tolerance

Fault Tolerance requirements describe what the system should do when it encoun-
ters a failure. In many cases, these requirements should be described as alternative
flows in your use case documentation.

Availability Requirements
Availability is typically expressed as a percentage of time that the system is expected
to be available during the operations window. It is usually documented as a critical
metric in the SLA with the user community. Availability is a function of applica-
tion inputs, application robustness, and infrastructure availability. If your magnifi-
cently designed application runs on servers that are only available 80% of the time,
then your application will be available, at best, 80% of the time. Conversely, you
can invest in the most redundant, fail-safe hardware the market has to offer, but if
your application is fragile you will not meet your availability targets.

Like so many things, quality comes at a price. As you invest in both infra-
structure and software quality, you will asymptotically approach 100% availability.
However, no seasoned engineer will ever expect or promise 100% availability. At
best, the “five nines” are touted as the highest possible availability: a system at this
level is available 99.999% of the time. For a 24-hour application that operates 365
days a year, this means that the application is meeting its SLA if it experiences less
than 5.256 seconds of unscheduled downtime in a year. There are very few applica-
tions that require this level of availability, and you should speak candidly with your
user community to discuss the cost/benefit trade-offs associated with availability
at this level. In later chapters, we will look at infrastructure, software, and test-case
design to support availability requirements. Table 3.13 illustrates typical availabil-
ity for common system profiles.

Archive Requirements
End users rely on business systems to access information, and depending on the
nature of the business, there will be a requirement for how long that data must
be accessible to them. Some data must be available for the life of the software
system. As an example, most businesses require customer profile information to
persist forever. Alternately, some business data has a more short-lived requirement.
Transactional data is data that accumulates steadily over the life of the system; it is
required over the course of the business transaction and may be required for report-
ing purposes in the future. In general, transactional data is transient in nature and
there is no requirement for business users to have access to it historically. As data
accumulates in the system, this introduces ongoing storage costs and can degrade
performance over time. As a result, it is important for non-functional requirements

AU5334.indb 65 11/19/07 7:48:54 AM

66  n  Patterns for Performance and Operability

Table 3.13  Service Availability and Typical Applications

Availability Description Examples

99.999% Full hardware and software redundancy for
all system components.
Full-time dedicated monitoring and
application support infrastructure.
Support response time is 15 minutes or less
for all incidents.

Securities trading systems.
High availability customer
self-service portal.

99.9% Hardware and software redundancy for
most system components.
Full-time dedicated monitoring and
application support infrastructure.
Support response time is 15 minutes or less
for all incidents.

Midrange availability
customer self-service
portal.

98% Hardware and software redundancy for
some system components.
Unattended monitoring and application
support infrastructure.
Support response time is 30 minutes or less
for all incidents.

Enterprise back-office
operations platform.

95% Full hardware and software redundancy for
some system components.
Unattended monitoring and application
support infrastructure.
Support response time is 4 hours or less for
all incidents.

Noncritical business
intelligence reporting
platform.

Table 3.14  Archiving Requirements

Data Accessible through the
Application

Archived to Long-Term
Storage

Supplier Profile Database Indefinitely After 1 year

Invoice Database For 13 months After 7 years

Audit Log For 13 months After 3 years

Materials Database Indefinitely After 1 year

AU5334.indb 66 11/19/07 7:48:55 AM

Non-Functional Requirements  n  67

to specify the retention period for the different types of data in the system. An
example set of retention requirements is provided in Table 3.14.

In this example, these archive requirements are for a procurement system used
by a manufacturer. From a business perspective, there are different retention peri-
ods for different types of business data. The supplier database is a permanent record
of all organizations that supply the manufacturer with materials.

Summary
In this chapter we’ve seen that the definition of non-functional requirements
encompasses many different topics spanning performance, operability, availability,
and expected business usage. We’ve also seen that different projects have different
needs in terms of the scope and depth of non-functional requirements. Pairing an
experienced business analyst with a technical resource is the recommended staffing
approach during requirements formulation. As we move forward, we will next look
at how non-functional considerations influence software design.

AU5334.indb 67 11/19/07 7:48:55 AM

69

Chapter 4

Designing for Operability

In the previous chapters we examined the initial phases of the software develop-
ment lifecycle—namely (1) the planning phase; and (2) the requirements phase. In
this chapter we turn our attention to software design, which traditionally follows
the first two phases, and is often driven out subsequent to software architecture
within the same high-level phase.

Software design has been raised to the level of high art by many who prac-
tice it. Good software design accomplishes many things including quality, flex-
ibility, extensibility, and development efficiency, many of which are non-functional
requirements or characteristic of these.

Over the years, there have been major enhancements in the process and approach
to software design. Notable milestones include object-oriented and pattern-based
design. Pattern-based design was introduced to a wide audience by the famous
“gang of four”—authors Erich Gamma, Richard Helm, Ralph Johnson, and John
M. Vlissides—in their book Design Patterns: Elements of Reusable Object-Oriented
Software.

Design patterns are powerful because they are language-independent approaches
that apply to recurring scenarios in software development. Many design patterns are
so indoctrinated with developers they expect to see common patterns in each others’
code. Software is easier to understand when it has been designed using a mutually
understood set of concepts and terminology.

In this chapter we make our own contributions to the growing catalog of avail-
able design patterns. We will illustrate our patterns using current technologies and
demonstrate how they are useful in achieving non-functional objectives. If you are
a developer, you may find these techniques useful in writing quality software. If
you are a manager or architect, you may find that these examples help you to chal-
lenge your development team to write better and more defensive code.

AU5334.indb 69 11/19/07 7:48:56 AM

70  n  Patterns for Performance and Operability

Error Categorization
As part of any software design activity, you should agree on standard error severi-
ties. Too often this decision is left until late in the implementation, after individual
developers have agreed on an assortment of error severities, each having their own
unique understanding of what this means.

Every project has its own unique needs, but the authors of this book have found
the following categorizations (shown in Table 4.1) to be useful and widely adopted.

Table 4.1  Widely Used Error Severities

Error
Severity

Context Implication

Fatal A core component, service, or
resource is failing. Developers should
assign this error level to events that
are expected to impact an entire
application or suite of functionality.

Indicates service is down and likely
not available. Immediate and urgent
resolution is required.

Error An individual transaction or unit of
work has failed for an unexpected
reason. Error events may occur as a
result of a fatal event in the
infrastructure in which case a single
fatal event will correlate to many
error events.

In general, error events will not
trigger immediate investigation by
support. However, a high frequency
of independent error events may be
escalated into a fatal event by the
monitoring infrastructure.

Warn A configured threshold or assertion
has been reached and a problem may
be imminent.

Warning events do not reliably reach
the attention of operations but are
useful in development and QA
(quality assurance) environments.

Info An event occurred in the system that
although not critical to the system
warrants informational output.It may,
for example, be useful to log the
attempt of someone to transfer an
amount of money larger than what
they are allowed to transfer. If this
pattern is found repetitively in the
logs this may warrant investigation.

Informational messages are not
meant for operations but can be
used by log scrapers to detect
unexpected usage patterns or by the
support team to determine the
cause of a problem.

AU5334.indb 70 11/19/07 7:48:56 AM

Designing for Operability  n  71

Many people may recognize these severity levels as standard for many vendor
software products and source-code frameworks. What is not standard is the mean-
ing and implication of each of these error severities. As we will see in a later chapter
in this book (Chapter 9), standardization of error types is especially important
from a monitoring and operations point of view.

Design Patterns
One of the candidates for this book’s title was Designing Software that Breaks Prop-
erly. Despite our fondness for this title, we decided on a broader one that reflected
the full scope of the book. Nonetheless, this title is highly appropriate to the con-
tent in this chapter. The basis for operability design patterns is that they anticipate
and design for problems. When problems happen, these design patterns ensure that
the software breaks in a predictable and acceptable way.

Retry for Fault Tolerance

When an error condition is detected, you have two reasonable choices as a devel-
oper: you can return an error to an end user or you can log an error to an interface
that is being monitored. Developers sometimes opt for a third choice: ignore the
error or log an obtuse error message. On rushed implementations that lack code
review procedures, this undesirable third choice can become very popular.

When an error occurs it is important for system operators to be notified in near-
real time so that appropriate action can be taken. Once someone has been alerted,
that person can investigate the health of the infrastructure, inquire on the health
of third-party systems and validate the state of the application itself. However, this
process is expensive. The person who must investigate an error may need to involve
numerous other people to inspect resource health. The operator may need to con-
tact third parties to confirm availability of other systems.

In the end, a series of communications may result (as shown in Figure 4.1). All
of these communications may involve numerous people and multiple iterations.
The point we are trying to make is that it is expensive and time-consuming to respond
to application errors. This reality is not always fully appreciated during software
design and development.

An obvious perspective on this scenario would be to correct the defect that
caused the error event in the first place. Unfortunately, this perspective will only
apply to a subset of scenarios. Consider an example in which a transaction pro-
cessing system is asynchronously posting a message to a third-party system. It is
possible that the software cannot post the message because of a system defect that
causes the system to fail for specific message contents. It is also possible that the
software cannot post the message because the third-party system is unavailable. In

AU5334.indb 71 11/19/07 7:48:56 AM

72  n  Patterns for Performance and Operability

this case, there is no opportunity to fix a defect and avoid the problem, but there is
an opportunity to introduce a feature.

Retry capability is not a novel or new concept. Most network protocols use retry
extensively when sending data over a physical network. If an acknowledgment is
not received within a specified time threshold, the message is re-sent until a config-
ured maximum number of send attempts. A slow network is often a network that
is experiencing frequent packet loss, requiring multiple send attempts for a good
portion of the packets. Such a network is slow but working, which most users will
prefer to a network that is not working at all.

This concept is also appropriate for many software scenarios, also, but in some
cases will require more effort on the part of the software developer. Wherever your
application initiates complex, asynchronous processing, it is worthwhile to consider
a retry capability as part of the solution. The most obvious example is when your
system is completing work in tandem with a third-party system. In such a scenario,
you need to consider the following before you embark on such a scheme:

	 1.	Is the third-party system capable of processing duplicate requests? If
you are attempting to send the same request multiple times, you are assum-
ing a risk that the destination system will receive the message more than
once. Depending on the system, this may entail duplicate processing, which
usually has adverse business consequences. For systems that cannot man-
age duplicate submissions, there may be an opportunity to selectively retry
processing depending on the error type that is detected. If the error is clearly
part of the communication to the external system (e.g., obtaining or testing a
connection) then you may want to permit retries for errors of this type only.

	 2.	Is your operations window large enough to allow for multiple retry
attempts? What are the business requirements for processing? If the business
is expecting you to process the message within one minute or less, it may not

1 Operator is
Noti�ed

Error Event Occurs

DBA Veri�es
Database

Application
Support is Paged

2 3

4 5

1. System generates alert
2. Operator contacts DBA to verify database health
3. Operator contacts UNIX resource to verify infrastructure
4. Operator pages application support to inspect error
5. Application support contacts business user communities to
 ask if there are user-facing symptoms.

User Community
is Consulted for
Business Impact

Figure 4.1  Operations response to an application alert.

AU5334.indb 72 11/19/07 7:48:58 AM

Designing for Operability  n  73

be helpful to retry delivery of the message. In fact, the business may expect
the message to be discarded as its contents will expire if it is not delivered
within this window. On the other hand, if the business is willing to wait 48
hours for processing to complete, then your scenario is a good candidate for
retry processing.

Assuming that your scenario is appropriate for retry processing, you will need
to answer the following questions.

	 1. 	What time interval makes sense between retry attempts? This is a deci-
sion with two opposing factors. The smaller the retry interval, the more likely
you are to process successfully with a minimum level of delay. However, if
your system is processing high volumes, you may flood the system to which
you are posting. If the system is not acknowledging replies or appears to be
unavailable, you may be compounding its difficulties by resending at a high
frequency.

	 2. For how long should you retry? Business requirements will factor heavily
in choosing this setting. The retry window should be as long as your users
can tolerate without experiencing business impact minus some contingency
during which you can manually process if the retry capability is not effective.
If a business user is expecting a transaction to be processed in no longer than
48 hours, and the message is still not processed after 24 hours, it is likely that
you need to escalate and manually intervene.

We illustrate this thinking with the following equation, which indicates that
the allowable retry period should be the sum of the maximum system recovery and
expected manual recovery.

	 Time Retry Period = Time Maximum System Recovery + Time Manual Recovery

It is also worth mentioning that these settings should be configurable and exter-
nalized from your application code. Once your system is in use, you may decide to
fine-tune these settings to provide a higher level of service. You may in fact need to turn
the retry capability off completely if you discover that a third-party destination system
cannot handle duplicate requests, as originally believed.

Once you have determined the conceptual retry characteristics for your system,
conceptually you will need to implement a mechanism (as shown in Figure 4.2).
Figure 4.2 shows that there is a clear separation between the source application, the
fulfillment service with retry, and the third-party service.

If the invoking application requires an immediate initial response, then the
queuing service can be implemented to invoke the fulfillment service directly. In
this case, the queuing service would log the request to the queue as completed. As
we will see later in this chapter, it is often important to have a trace of request/
response messages for troubleshooting and reporting purposes.

AU5334.indb 73 11/19/07 7:48:58 AM

74  n  Patterns for Performance and Operability

If at any point the retry mechanism proves not to work as expected, it can be
disabled by configuring the retry attempts to zero.

An important characteristic of this solution is that the queue is transparent and
can be viewed by an application support resource. System transparency is a critical
support characteristic for any system that is maintainable. At any point, a technical
resource should be able to answer the following questions:

	 1.	How many requests are pending?
	 2.	What is the oldest pending request?
	 3.	When was the last time a request was successfully fulfilled?
	 4.	When was the last failed fulfillment request?

Each of these questions adds valuable insight to any troubleshooting effort. In
the solution we have presented, a database implementation of the request queue
would answer each of these questions.

Ensuring transparency of the request queue also creates opportunities for moni-
toring. You may decide that a properly functioning system should never have more
than 50 items in the queue. You could then choose to introduce a monitoring
mechanism that alerts operations whenever the pending items count exceeds 50
items.

Software Fuses

Most people are familiar with the concept of a fuse. When a threshold or error
condition is reached, the fuse blows and halts processing. This same concept is
applicable in a software environment. A familiar example in the software realm is
the user-account lockout. As a security feature, many software systems only allow
a finite number of authentication attempts before “locking” the account. No fur-

Application
Processing

Third-Party
Service

Request 1
Request 2
Request 3
Request 4
Request 5
...

Request
Queuing

Ful�llment
Scheduling

Ful�llment
Service

Fulfillment Service

Figure 4.2  Fulfillment services.

AU5334.indb 74 11/19/07 7:48:59 AM

Designing for Operability  n  75

ther authentication attempts are permitted until the account is unlocked by an
administrator.

To illustrate this concept further, let’s look at the example of a payment system
that charges credit cards on a monthly basis for accumulated usage fees by users.
This function occurs on a scheduled basis once per month and may process up
to 25,000 individual user accounts. Credit card providers such as VISA typically
charge on a per-transaction basis. VISA will assert its fee whether the transaction
is successful or not.

The payment job first calculates the amount owed for each user and then queues
the requests for payment authorization and settlement. Once the job begins settle-
ment transactions on individual credit cards, it will proceed serially until all of the
records have been processed.

In this example, we consider two types of failures. A system exception is an
unrecoverable error affecting software resources complicit in the processing. An
application exception is more likely to affect processing of an individual transac-
tion. Because credit card processing results in actual customer charges, sensitivity
is required during processing. The following thresholds are determined:

System Exception Handling: If a single system exception is thrown process-
ing will be stopped.
Application Exception Handling: During serial processing, if the applica-
tion encounters more than 25 consecutive application exceptions, a system
exception will be raised and processing will stop.

Since there is a real possibility that this job will halt processing, it is critical that
the software implementation conform as follows:

	 1.	Return an error code and/or generate a fatal event for monitoring.
	 2.	Ensure the system is in a state such that the job can be rerun without risk of

duplicated or partial processing. Barring the possibility to have the system in
a consistent state, you will need to provide a mechanism to compensate for
the system’s inconsistent state before or after resuming the job.

	 3.	Ensure that the system has generated sufficient output that a technical sup-
port resource can reliably determine which records have been processed and
which records have not.

Software Valves
When a system is experiencing errors, a typical reaction is to stop all processing
until the problem is understood. Through communication and restriction of user
access, you may be able to prevent human users from creating inputs to your system.

n

n

AU5334.indb 75 11/19/07 7:49:00 AM

76  n  Patterns for Performance and Operability

However, if your system participates in interactions with external systems, shutting
down access may be difficult unless it has been designed into your application.

In some cases, you may be able to shut off inputs to your system by disabling
components in the infrastructure. For example, a Web-based application might be
disabled by bringing down the content switch through which incoming hypertext
transfer protocol (HTTP) requests are routed. For asynchronous message-based
systems you may be able to prevent external systems from posting messages to your
application’s input queues, but how will these applications react when their submis-
sions are denied?

Another option is to bring your entire system down. The disadvantage in this
approach is that it may deny service to healthy functionality in your application.
This is also an abrupt way to deny service to applications that may depend on your
system as a service provider. If you are trying to diagnose a problem with your appli-
cation, you are abandoning any opportunities you may have to observe the state of
the system before it is shut down. Further, restarting the system may be time-con-
suming once you are confident that you have resolved the error condition.

From an operations standpoint, as an alternative to each of the previous sugges-
tions it may be necessary to introduce a logical shut-off valve for your application.
To illustrate this, we will consider an archiving solution for a transaction process-
ing system. As systems age, transactional database tables accumulate records over
time. Eventually these records may impact application performance; and even if
performance was not an issue, these records consume storage, which has an associ-
ated cost.

After an agreed upon period of time, we may wish to archive old records off
of the non-production system or delete them altogether. After consulting with the
business stakeholders for the system, we reach an agreement that we are allowed
to purge records once they are at least 24 months old. Archiving these records is
nontrivial as each record type has a complex set of business rules that determine
relationships to other records. We can only archive a record if it is 24 months old
and each of its related records is 24 months old. Unfortunately, this can only be
determined by programmatically navigating the relationships between record types
to make a correct determination.

The software designers in this case have implemented a solution in two parts.
The first part of the solution identifies transactions that meet the criteria for archi-
val. The second part of the solution actually archives each transaction. Visually, the
system looks like that shown in Figure 4.3.

Identifying the transactions for archival is accomplished using an appropriate
set of database queries. The actual archival of each record is performed asynchro-
nously on the other side of a message queue to ensure proper logging and transac-
tion handling for each record.

In this solution we expect the first part of the archival process to be completed
on a scheduled basis each weekend starting at 10:00 pm on Sunday evening. This
part of the process is expected to take 15 minutes or less, while the archival of all

AU5334.indb 76 11/19/07 7:49:00 AM

Designing for Operability  n  77

qualifying records is expected to take up to two hours for the largest forecasted
weekly volume. However, our operations window requires the system to be available
again the next morning at 7:00 am. All archival must complete in the nine-hour
window between 10:00 pm and 7:00 am. If the system performs to specification,
archiving should never last beyond 1:00 am, but if there is one thing that this book
has tried to impress upon you is that should is a word you need to remove from your
vocabulary.

What if the system goes down at 11:00 pm, unexpectedly? What if database
backups are scheduled during this window at some point in the future and the
archival solution runs eight times slower? What if the forecasted business volumes
are wrong, and the peak volumes are in fact much higher? What if the first part of
the solution doesn’t run successfully at 10:00 pm and a well-intentioned operator
runs it at 6:00 am? All of these hypothetical scenarios make this solution an ideal
candidate for the introduction of a valve. We do not want archiving to run beyond
the window allocated as it has an unknown impact on online usage of the system.

A software valve is introduced at the point of message consumption. A con-
figuration table is introduced or extended to indicate whether archiving is allowed
or disallowed for a given point in time. The first task in the archival process is
to enable archiving. The process listening for archive record requests checks the
archive-enabled flag prior to processing each record.

If the archive flag is enabled, it processes the record. If the archive flag is dis-
abled, the listener discards the message. It is acceptable to discard the message
because processing will be repeated the next time the selection job is run. It is not
business critical that records be archived immediately after they qualify. In this
way, we ensure that archive activities run only during the designated window (as
shown in Figure 4.4).

As another example, let’s revisit the retry pattern from the previous section. If
the third-party service is down, our system will quickly enter a state in which there

Identify
Records

Identify Transactions
Eligible for Archiving

Archive Individual
Record

Figure 4.3   Record archiving system.

Message
Queue

Enable Archiving
“Open valve”

Disable Archiving
“Close Valve”

Figure 4.4   Example software valve: record archiving system.

AU5334.indb 77 11/19/07 7:49:03 AM

78  n  Patterns for Performance and Operability

are many outstanding requests, each of which is generating retry attempts. Assum-
ing that the third-party is now aware that they have a problem, they may request
that we stop sending additional requests until they have resolved the issue. Unfor-
tunately, our fulfillment service schedules retry events on a per-record basis; we
have no way of shutting this off unless it is designed into the solution. Obviously, a
software valve is also appropriate for this scenario. Let’s look at the revised solution
with the addition of a valve (as shown in Figure 4.5).

If the valve is open, the request is queued again for another retry. In this case
the number of retries is not incremented. Again, the software valve is nothing more
than a configuration parameter that is dynamically checked by the fulfillment ser-
vice before making each request.

System Health Checks
A major deficiency in many software systems is that they are unable to tell you what
is wrong with them when they malfunction. For each failed operation the system
may create error outputs that can be helpful in diagnosing the problem but will not
be helpful in replicating the exact system behavior under the problem condition.
It would be an added benefit if we could poke and prod the system—much like
a doctor attending a sick patient—and collect symptom information on our own
schedule. There is no reason why applications cannot be built to meet this behavior;
they just need to be designed this way in the first place. We refer to this capability
as a system health check.

A system health check is a detailed series of tests that allow an operator to verify
overall system health. This is often implemented as a single interface to the system

Application
Processing

Third-Party
ServiceRequest

Queuing
Service

Fulfillment
Scheduling

Service

Fulfillment
Service

Fulfillment
Valve

Yes No

Request 1
Request 2
Request 3
Request 4
Request 5
...

Fulfillment Service

Figure 4.5  Fulfillment service and valves.

AU5334.indb 78 11/19/07 7:49:04 AM

Designing for Operability  n  79

that, when invoked, reports a detailed status on health. Typical attributes that are
verified by a system health check include the following:

	 1.	Connectivity to interdependent systems: If your system requires connec-
tivity to other systems to function, it is worthwhile to verify and clearly
report status on this connectivity. This type of health check will verify that
the network connectivity and remote system availability are intact.

	 2.	Availability of major subsystems: If your application follows a component
architecture in which components can be deployed independently of one
another, but are still dependent through loose coupling, it is worthwhile to
verify that all subsystem services are installed and available.

	 3.	Availability of database and file system resources/connectivity: Most
complex software systems have a dependency on database or file-system
resources. A good health check will verify these resources to ensure storage is
available.

	 4.	Performance of critical operations: If your application is time-sensitive,
discrete health checks can always be implemented and timed to report the
execution time for key subsystem operations.

	 5.	Statistical rollup of transaction-level errors: If your system logs failed
transactions to a persistent storage, you can report on the number of transac-
tion-level errors that have occurred.

A system health check should be as expansive in its coverage as possible. You
should not feel limited to the example diagnostics that we have listed in this chap-
ter; rather, you should prepare a list of all resources and dependencies that your
application requires to function correctly. For each item on your list you should
consider the introduction of a discrete health check.

Health checks can be bundled with your application or they can be imple-
mented as stand-alone processes or scripts that are deployed to the same platform.
The advantage of a stand-alone health check is that its availability is not dependent
on the availability of your system. However, a stand-alone health check will not be
able to report on the health of application resources with the same accuracy and
granularity as a health check that is actually embedded in your system. If your sys-
tem health check is part of your application, there is the possibility that the health
check will not be available if it depends on an application resource that is not avail-
able. A menu-based health check that allows a technician to select individual health
checks for execution is a valuable approach to mitigating this risk, but requires
more design and development effort.

AU5334.indb 79 11/19/07 7:49:04 AM

80  n  Patterns for Performance and Operability

The Characteristics of a Robust System
A robust system exhibits characteristics that allow it to self-diagnose and ask for
assistance so that the system can remain functional and operational against a variety
of different types of impacts. These characteristics are described in this section.

Simple Is Better
Intuitively, most people would agree that the simpler something is, the less likely it
is to break. Generally speaking, this is true; the probability of failure is the sum of
the component probabilities of failure in a system. Richard Manicom, the executive
responsible for the Canadian government’s federal tax processing systems through
most of the 1990’s, once articulated a valid point to the authors with this anecdote.
Consider the scenario of a twin-engine aircraft flying across the Atlantic Ocean in
which you are a passenger. Do you feel safer because there is a redundant engine in
the plane? What if you were told that the likelihood of an engine failure is twice as
likely for a single engine plane? In order for this to make you feel safer, you must
have confidence in the ability of the plane and its pilot to recover from an engine
failure. In other words, you are accepting additional complexity in the system and
trusting that it will improve the overall reliability of the aircraft. The relative safety
of single vs. multi-engine aircraft has been a topic of ongoing debate in the aviation
industry since the 1960’s. Dick Collins was the first to point out that statistically,
multi-engine aircraft are involved in more fatal plane crashes than single engine
planes in Flying Magazine. This statistic makes it tempting to conclude that single-
engine planes must be safer, but an equitable comparison requires consideration of
many more factors than we are able to discuss here.

Complexity is often a requirement in order to achieve the objectives of the sys-
tem you are building. In the real world, there are many factors that can cause com-
plexity to increase and as a systems designer, you must ensure that you are accepting
complexity in your design for the right reasons. You may make well-intentioned
choices in your design that are meant to improve operability or availability, but if
the complexity you introduce is not properly designed, tested and implemented, it
may have the opposite effect from what you intend. As a general rule, you should
strive for minimal, simple designs and accept complexity only when you have the
means and the commitment to implement it properly.

Isolation

Many large organizations support hundreds of different information systems. In
an effort to control costs, businesses are increasingly adopting strategies to oper-
ate multiple applications on shared hardware. This is often referred to as a shared
services model and it can be a cost-effective way to manage infrastructure costs. A

AU5334.indb 80 11/19/07 7:49:05 AM

Designing for Operability  n  81

shared services model allows an enterprise to make large, bulk purchases in infra-
structure and then distribute this cost amongst different applications and lines of
business. Managing your infrastructure as a shared service also creates opportuni-
ties to simplify and streamline your support organization. However, these attrac-
tive cost-savings often come with a hidden cost. If you are implementing multiple
applications on a shared hardware platform, you are exposing yourself to the
potential for undesirable interactions between applications. For example, if your
production applications are deployed such that they all rely on a single network
path, you are accepting the risk that a single misbehaving application could impact
all of your production applications. As a general rule, you should strive for dedi-
cated infrastructure for applications that require high availability. Applications that
are isolated from interactions with other systems will be simpler to operate, more
straightforward to troubleshoot and will enjoy higher availability.

Application Logging

Historically, developers have had two means of understanding the runtime behav-
ior of their applications. They can look inside the application while it is running,
or they can rely on the outputs the application creates while it is running. The for-
mer is usually referred to as runtime debugging or application profiling. The latter is
referred to as application logging.

Runtime debuggers for many software platforms are sophisticated and incredibly
useful. Debuggers allow the developer to run the program line by line, inspecting
and changing variable values and influencing the runtime behavior to understand
the program. Debuggers tend to be intrusive in that the software must run in a spe-
cial container or allow the debugger to connect to the software itself on a specified
interface. In production environments, it is usually not feasible to run the applica-
tion in a mode that permits debugging. Debugging is usually a single-threaded
activity and may seriously impact the performance/availability of your system.

Application logging is non-intrusive; it is compiled into the code and is capable
of creating output during the normal execution of the system. Good application
logging is a critical element of any maintainable software solution. Time and time
again the authors of this book have seen good return on investment in develop-
ment, QA (quality assurance), and production for application logs. The following
guidelines have proven to be effective.

	 1.	Ensure your log level is dynamically configurable: Many modern program-
ming platforms have logging frameworks available that allow you to dynami-
cally toggle logging on and off or change the log level. Log4j for the Java
platforms is perhaps the most pervasive example.

	 2.	More is better: In general, the operations benefit of application logging far
outweighs any performance penalty. This is true assuming you avoid unnec-

AU5334.indb 81 11/19/07 7:49:05 AM

82  n  Patterns for Performance and Operability

essary string concatenation in message formulation unless the message is
actually being logged.

	 3.	Debug logging: This refers to log statements that provide a running com-
mentary of the program execution. Developers frequently introduce debug
logging as part of their own programming efforts. The authors suggest that
you institutionalize debug logging as part of the development deliverable.
Tell developers in advance that obtuse debug messages that are meaningful
only to them will not be acceptable in their code. Debug logging is a manda-
tory requirement in the code that is delivered.

	 4.	Performance logging: Instrumentation for performance can be a critical
component for some applications. Because logging is often the least intrusive
way to observe a system, performance logging can be your best bet for resolv-
ing difficult application performance issues.

	 5.	Trace logging: In the operability requirements discussion in Chapter 3, we
introduced the concept of trace logging. The authors recommend that all
interfaces with external systems support a trace log that captures all input/
output messages. The trace log should be independent of any other applica-
tion log. If it is practical for the number of external interfaces you support, we
recommend an individual trace file for each physical interface.

When new software systems are launched, they are usually afflicted by at least
one of the following two problems:

	 1.	Insufficient and/or obtuse error logging: Logging good error messages is a
topic we will discuss in the next section of this chapter.

	 2.	Gratuitous logging. Messages are frequently logged at the wrong severity
level. Often, this is not caught until the system is in or near production. Dur-
ing test cycles, cluttered application logs are often attributed to open defects.
It is also common for developers to ask that the QA environment run with
debug logging enabled. If debug is enabled, it is harder to spot debug messages
that are mistakenly being logged as errors.

In order to mitigate the problems described above, we recommend two courses
of action:

	 1.	The development team should designate an individual to be responsible
for monitoring the application logs in non-production environments. This
resource should raise defects against log messages that are badly formed,
incomplete or have a mistaken severity.

	 2.	At least during the final user acceptance test cycles, you should ensure that
you are running the application with the same log levels configured as you
expect in production. When defects are raised, the development team should
ensure error logging is as expected as part of the defect fix itself. The devel-
opment resource mentioned above should closely scrutinize application logs
during these cycles.

AU5334.indb 82 11/19/07 7:49:06 AM

Designing for Operability  n  83

Application logging, like so many topics in this book, is usually an afterthought
in the implementation of most software systems. If you institutionalize logging best
practices and set clear expectations with your development team, you will see the
returns in support and operations activities down the road.

Transparency: Visibility into System State

As we will see later, troubleshooting a defect in a QA cycle or resolving an urgent
production issue starts with information gathering. The choices you make during
the design phase can impact the information you have available when you need to
solve a problem.

At this point, we’d like to highlight an antipattern that can cause serious grief
for any software system. Storing and transmitting data in a binary format is some-
times a requirement, not an option; however, where there is flexibility the authors
strongly encourage you to exchange messages between systems in clear text.

XML has been a widely successful and adopted technology largely because it is
text-based and transparent. Developers can inspect an XML document and under-
stand it. XML is often self-describing when the attributes are given meaningful
names. Consider the following login request message in three possible formats:

	 1.	XML Format

<?xml version=“1.0” encoding=“ISO-8859-1” ?>

<login-request>

	 <username>Tove</username>

	 <password>jgd0s75h540hr03hnfep9srhf934</password>

	 <encryption>PROV_RSA_SIG</encryption>

	 <timestamp>09:11:06 Jul 12, 2006</timestamp>

</login-request>

	 2.	The Delimited Format

Tove|jgd0s75h540hr03hnfep9srhf934|PROV_RSA_SIG|09:11:06 Jul 12, 2006

	 3.	Binary

<not-printable-characters>

To a developer, the advantages of clear-text XML-based messaging require no
further elaboration.

It can sometimes be tempting to store data in binary format. Java object serial-
ization makes it easy to store data in a single database column. From a programmer’s
perspective, the data is structured because it can be marshaled back into the origi-
nal Java object. In this case, the programmer does not need to maintain a matching

AU5334.indb 83 11/19/07 7:49:07 AM

84  n  Patterns for Performance and Operability

database layout for the coded object. If an additional attribute is required, the new
object type is serialized back into the table with no database changes required.

Though tempting, there are two serious drawbacks to this approach that make
this type of design counterproductive.

	 1.	Visibility: Once you have stored data in a binary format, you relinquish all
hope of querying/reporting on this data once it is in storage. The only means
to access it is through the code that serialized it into the database. When
an end user calls to report an issue with a specific database record, it will
be inconvenient to say the least to look at specific attributes of the serialized
object.

	 2.	Compatibility: If you are relying on your platform’s native capabilities for
marshaling/unmarshaling serialized objects, you must ensure that changes to
the software object remain backwards compatible with data that was previ-
ously serialized with the earlier code. This is error prone, and requires that
you test with production data in order to be certain you are not introducing
a problem.

Except in very unusual circumstances, the authors of this book recommend
that you avoid binary transmission between systems and storage of data. In this
way, you achieve the architectural advantage of clear separation between your cho-
sen software platform and your data model. If you decide to rewrite your applica-
tion for a different platform, you are more likely to preserve the data model intact.

Traceability and Reconciliation

Traceability and reconciliation enable the location of data. Systems with good trace-
ability allow you to find a transaction quickly based on a variety of search criteria.
Reconciliation efforts establish whether the number of inputs matches the number
of outputs at key junctures in the system flow. We will discuss both traceability and
reconciliation in more detail next.

To establish traceability in your system design, you need to find a way to link
the business input to a transaction identifier that will be propagated throughout
your system. In most cases, you will find it convenient to establish a system-gener-
ated identifier for each business request. The advantages of establishing a universal
internal reference are as follows:

This request identifier can be displayed to users who can use this identifier to
refer to their request in the event of problems.
This request identifier can be propagated into all data structures that contain
data related to this request. It is convenient as a foreign key into all database
tables that house related transaction data.

n

n

AU5334.indb 84 11/19/07 7:49:07 AM

Designing for Operability  n  85

All error and application logging should reference your system request iden-
tifier. This makes it easy to scan logs for all messages related to a specific
request identifier.
Where possible, your design should propagate this identifier to external sys-
tems in requests that your system makes. Again, when possible, you should
ask that the external system include your request identifier in response
messages.
In fulfilling the business request, if your system must interface with systems
that are not capable of maintaining a reference to your unique identifier,
you will need to maintain a local mapping of your request to the transaction
identifier that is used by the uncooperative external system.
You should maintain state for all business requests using appropriate data
structures. For example, if your processing requires you to make an asyn-
chronous request to an external system, the request status should reflect that a
request has been successfully made and that the system is awaiting a response.
Again, the global request identifier should be at least part of a composite key
to such a data structure.

If you adhere to transparent design for your data as discussed in the previous
section, consistent use of a global request identifier will allow you to determine the
state of a request and to extract any and all data related to that request. This is an
indispensable ability when you are troubleshooting an incident on any system. Even
if the information is not immediately useful to you in your investigation, it is criti-
cal that you be able to inform the business users of the exact status of their request.
If the business users have accurate information, they can take steps to mitigate the
impact of a lost request outside of your software system (although they will prob-
ably not be happy about it).

For highly traceable systems, designers will even go one notch further: not only
will each request be traceable, as mentioned above, but the data model will also
be structured so as to maintain a history of the changes made by various requests
over time. In these systems each version of a data element is maintained separately
or each change to a data element over time is maintained. The request identifier is
appended to each revision of the data element together with the timestamp for the
change.

Reconciliation is normally a batch activity with an objective to ensure that sys-
tem state is correct based on the inputs that have been received up until that point.
Consider the example of a client-server call center application in which customer
service representatives (CSRs) are taking orders for telephone customers. Each
order that is placed results in a database entry on the call center application server.
Whenever an order is received, a separate subsystem reads the order and initiates
a fulfillment process to the inventory and fulfillment system, which is hosted cen-
trally for the organization.

n

n

n

n

AU5334.indb 85 11/19/07 7:49:08 AM

86  n  Patterns for Performance and Operability

This same fulfillment system services a number of channels including Web mail,
regular mail, and a small number of brick-and-mortar offices. For this business,
customer service is based on the successful initiation of a fulfillment order for every
order that is taken at the call center. Both the fulfillment system and the call center
application have been implemented by a highly conscientious technical team, but
despite their best efforts, orders taken at the call center do not always translate into
fulfillments. In order to mitigate this risk, the organization has initiated a nightly
reconciliation process in which reports are generated from both the fulfillment and
call center applications. If the number of orders taken does not match the number
of fulfillment requests, the discrepancy is investigated. Since introducing the recon-
ciliation reporting, the technical team has seen two distinct types of failures:

An order is placed in the call center system that is never fulfilled.
An order is placed in the call center system and the order is fulfilled twice.

The purpose of the reconciliation report was to monitor for the first type of
failure; however, the technical team quickly realized that they had two problems on
their hands. In some cases, the fulfillment system was generating duplicate orders.
Customers were being sent (and potentially billed for) the same order twice. The
reconciliation process not only informs the technical support team when orders do
not equal fulfillment but also where the discrepancy lies. This system adheres to our
advice on the topic of traceability. Not only is every order assigned a unique system-
generated identifier, but this identifier is propagated to the fulfillment system.

When the reconciliation report does not match, it shows exactly which orders
have been omitted or exactly which orders have been fulfilled twice. The support
team can use the problematic order identifiers to interrogate the system for order
status and correct the problem before the call center or the customer is even aware
that there was a problem. Of course, each time an issue is identified in the reconcili-
ation, the root cause for the discrepancy is investigated and a code fix is made to
eliminate this scenario from ever happening again. In this case, the reconciliation
is a part of the monitoring and continuous improvement strategy for the organiza-
tion. The important design observation is that reconciliation approaches are not
possible if the system is not designed in a transparent and traceable way.

Resume versus Abort

Your application will experience errors. If your design is sound and your test cov-
erage is thorough, then hopefully errors will occur rarely. When an error occurs,
the support team needs to be focused on two key actions: assigning root cause to
the problem and resuming the failed business function. The stakeholders for your
system tend to be more concerned with the latter. This part of the chapter will focus
on recovering individual failures.

n
n

AU5334.indb 86 11/19/07 7:49:08 AM

Designing for Operability  n  87

A common approach to managing exceptions is to strand the failed transaction
and prompt the user to initiate a new transaction. This approach works provided
the failed transaction does not leave the system in a state that blocks the second
attempt. For example, if your system processes customer address changes and
only allows a single address change per customer at one time, the failing address
change would need to be invalidated manually by an operator or canceled by the
users themselves. This level of processing is simple and adequate for many software
systems.

The retry philosophy applies to scheduled jobs also. If a job is run once per day
during off hours, if the job fails the operations staff needs clear direction on how
to intervene, if at all. In the age of outsourcing and reducing costs, many organi-
zations have adopted a model in which operations staff is not familiar with the
application. In the spirit of “simple is better,” a scheme that works well is to ensure
that failed jobs can always be rerun without detriment to the system.

In more complex cases, you may have no choice but to resume the business
transaction. Earlier in this chapter we looked at an example in which a retry capa-
bility was added to an interface between our system and an external dependency.
Let’s revisit this example and ask the question, What if the number of retries is
exceeded for a large number of transactions between our system and the third-
party restored service? In such a situation, it may be impractical or impossible for
the business to input new transactions. In such a case, it is far more preferable for us
to resume the transactions that are already in the system. Because we have adhered
to the transparency guideline discussed earlier, we can readily report on the num-
ber of transactions that are in this state in our fulfillment queue. If the fulfillment
scheduler is designed to poll the request queue and retry transactions that are below
the retry threshold, we have an option to simply reset the number of retries on these
records. Assuming such a design of the scheduler component, the retry solution
meets three of our criteria for robust systems:

	 1.	It attempts to do automated recovery through a configurable number of
retries.

	 2.	It is fully transparent. At any point in time, we can interrogate the number
of transactions in each state.

	 3.	It can be resumed. If the number of retries is exceeded, we can reset the system
for all or a subset of transactions with a single database statement.

Exception Handling

An entire book could be written on the topic of exception handling. A core fea-
ture of any programming language is its native exception-handling capabilities.
We would like to avoid a technology-specific discussion, so in this section we will
define some general guidelines and then move on.

AU5334.indb 87 11/19/07 7:49:09 AM

88  n  Patterns for Performance and Operability

In our experience, the three most problematic and recurring themes for soft-
ware systems are as follows.

	 1.	Insufficient error checking in code.
	 2.	Insufficient detail in error messages when they are logged.
	 3.	No reliable way to correlate user events with logged exceptions.

We will now visit each of these topics in the context of another example. Our
concern is how errors are handled by application code so this example will reference
an example code fragment in the Java programming language. For we will consider
the implementation of a business operation that calculates an insurance quote. In
our example, the method calculateQuote takes an object of type QuoteRequest as its
argument and then performs the required business operation, ultimately return-
ing an object of type QuoteResult. The implementation of calculateQuote is shown
below.

public QuoteResult calculateQuote(QuoteRequest qr) {

	 QuoteResult quoteResult = new QuoteResult();

	 String applicantName = rq.getApplicantName();

	 Address applicantAddress = rq.getApplicantAddress();

	 try {

		 verifyAddress(applicantAddress.getLine1(),

			 applicantAddress.getLine2(),

			 applicantAddress.getCity(),

			 applicantAddress.getState(),

			 applicantAddress.getZip()

);

	 exception (AddressInvalidException aie) {

		 logger.debug(“Address Invalid”);	

		 rethrow aie;

	 }

	 /*

	 . . . other business logic to generate the quote

	 */

	 return quoteResult;

}

In this example, if the address attribute of the QuoteRequest object is not
defined, this code will throw a runtime system exception. Because this exception is
unchecked, it will throw this exception back to the caller, who may in turn rethrow
it. In fact, it is entirely possible that this exception would be thrown all the way
back to the end user’s display:

Exception in thread “main” java.lang.NullPointerException

at com.auerbach.nfd.example.insurance.QuoteEngine (Unknown Source)

at com.auerbach.nfd.example.insurance.web.QuoteAction (Unknown Source)

AU5334.indb 88 11/19/07 7:49:09 AM

Designing for Operability  n  89

One of the results of writing defensive code is that you get the appropriate error
messages. This is the first problem with the application code in our example. There
is no checking on the address attribute before dereferencing. As a result, a system
exception is thrown and the opportunity is missed to log a much more meaningful
exception. We could easily have avoided this by checking the address attribute as
follows:

QuoteResult quoteResult = new QuoteResult();

String applicantName = rq.getApplicantName();

Address applicantAddress = rq.getApplicantAddress();

If {applicantAddress==null) {

	 throw new InvalidQuoteRequest(quoteRequest);

}

By checking for this error condition and rethrowing a typed application excep-
tion, Java will force the calling object to handle the checked exception. This greatly
improves the chances that the end user will see a genuine error message and not an
incomprehensible system exception.

In addition to arguement checking, it is important to log as much information
as possible. Here is an example of a good logged exception:

Tue Jul 10, 2006 09:08:22 -- ERROR -- QuoteHelper.java:67 “InvalidQuoteRequest

exception being thrown for request: 9342432. Address is null. QuoteRequest object

is: [9342432,”Emily”,”Ford”, . . .]

Here is an example of what is all too often logged instead:

Tue Jul 10, 2006 09:08:22 -- ERROR -- QuoteHelper.java:67 “Error calculating quote”

In the first example log message, we get two key pieces of information that are
absent in the second example. First, we know why the exception is being thrown:
the address attribute has been checked and found to be null. Second, we are able to
correlate this error to an actual user request. If three users report issues calculating
insurance quotes on a given day, we use the error logs to derive exactly which users
experienced this particular problem.

We can look at the same code fragment again with each of our recommenda-
tions implemented:

public QuoteResult calculateQuote(QuoteRequest qr) {

	
	 QuoteResult quoteResult = new QuoteResult();

	 String applicantName = rq.getApplicantName();

	 Address applicantAddress = rq.getApplicantAddress();

	 // 1. Check for potential error conditions

	 If {applicantAddress==null) {

AU5334.indb 89 11/19/07 7:49:09 AM

90  n  Patterns for Performance and Operability

		 // 2. Log a detailed record of the error

		 logger.error(“InvalidQuoteRequest exception

		 being thrown for request: “ + qr.getApplicantNo() +

		 “. Address is null. QuoteRequest object is: “ + qr);

		 // 3. Throw a typed exception that forces the

		 calling application

		 // to handle it

		 throw new InvalidQuoteRequest(quoteRequest);

	 }

	 try {

		 verifyAddress(applicantAddress.getLine1(),

			 applicantAddress.getLine2(),

			 applicantAddress.getCity(),

			 applicantAddress.getState(),

			 applicantAddress.getZip()

);

	 exception (AddressInvalidException aie) {

		 logger.debug(“Address Invalid”);	

		 rethrow aie;

	 }

	 /*

	 . . . other business logic to generate the quote

	 */

return quoteResult;

}

To many developers reading this book, what we suggest in this section is sound
patently obvious. We make these remarks because a vast number of software sys-
tems have been built (and continue to be built) that do not meet this standard. If
you are an architect, technical lead, or development manager, you need to insist
that this level of error handling be accounted for through the code review process
for your deliverables.

Fortunately, emerging technologies continue to make appropriate error logging
and handling increasingly easy to implement. For example, exception handling is
a major improvement over the developer obligation to properly implement return
codes. More recently, aspect-oriented programming (AOP) approaches make it
easier to crosscut broad swaths of your application with consistent behavior and
handling. Error handling is one of the most often referenced applications of AOP
constructs. If you are a Java technologist, you are encouraged to investigate the
Spring framework invented by Rod Johnson, at time of writing, the most popular
AOP framework for this platform.

AU5334.indb 90 11/19/07 7:49:10 AM

Designing for Operability  n  91

Infrastructure Services
The short answer is that you shouldn’t expect anything from the infrastructure.
It does not matter what promises are made around the quality and availability of
the infrastructure; the application needs to be coded in a way that is resilient to
infrastructure failures.

That said, the technical team must be aware of the features in the software
platform that are expected to provide resiliency. For example, if the chosen software
platform provides redundancy between clustered servers, the development team
should review vendor documentation for this feature to ensure that the design of
the solution is compliant with vendor recommendations.

A good example of where this is applicable is in the BEA Weblogic Application
Server. This product supports failover in a clustered environment, but only if ses-
sion-based application data conforms to the java.io.Serializable interface. Without
this understanding, it would be easy for a development team to invalidate this
vendor feature.

Design Reviews
Design reviews are needed to confirm that standards and guidelines are followed
and are going to meet the requirements, both functional and non-functional.

The Design Checklist

In the preceding sections, we’ve looked at some key elements of successful software
design. We are also including a list of questions that you can use to audit your own
implementations. At the conclusion of the design and implementation phases, you
may find it worthwhile to sit down with a representative from the implementation
team and pose the following questions.

	 1.	Are error severities documented and understood by the development
team?

	 2.	Is there a defined service level for all work that the system is completing
asynchronously? For each point of failure, has automated retry recovery been
considered as a robustness strategy?

	 3.	When exceptions are thrown, does the system leave processing in a state that
can be resumed by an operator or by the user directly?

	 4.	If the system is experiencing problems, how do I gracefully shut off addi-
tional inputs? Does the system have flexibility to selectively disable individual
functions?

AU5334.indb 91 11/19/07 7:49:10 AM

92  n  Patterns for Performance and Operability

	 5.	If there is a surge of inputs or errors against critical functions, what is the
expected behavior? In what way will this impact unrelated processing in the
same system?

	 6.	For all batch jobs, is there a simple, reliable, documented recovery procedure
if the job fails during processing?

	 7.	For each external interface, does the application support dynamically con-
figurable trace logging?

	 8.	At any point during processing, can a technical resource inspect the system
and see all data and state information for any individual unit of work to sup-
port troubleshooting efforts?

	 9.	Has the development team conducted code reviews with attention given to
logging and exception handling? Were actual defects raised as a result?

	 10.	Has a technical resource completed a review of all application logs from
the last functional test cycles? Are all error messages meaningful and
complete?

The Operability Review
Once your application design is complete, a worthwhile activity is to conduct an
operability review as an aspect of the overall design review. An operability review
looks at your design from the perspective of discrete failure points, with a goal
of predicting the expected behavior. A common artifact of software design is
the sequence diagram, (shown in Figure 4.6). A sequence diagram illustrates the
sequence of system calls that achieve a given business operation. Sequence diagrams

End User Clicks
”Submit” File is posted to

web server as
MIME content

Success Response
Success Page

Displayed to User

Web Server
asynchronously

begins transaction
to store to archive

Archive begins DB
transaction to
commit binary

content

Content is
committed to
Database storage

Transaction
Successful

Request Successful

Web Browser Web Server Archive Database

Content is
marked for
clean up from
local file system

File is written
to local file
system

Figure 4.6  Example sequence diagram: multimedia upload application.

AU5334.indb 92 11/19/07 7:49:11 AM

Designing for Operability  n  93

can be written at the object level for your application as well as at the software
component level for the total software system. Let’s consider a view of an applica-
tion that allows users to upload multimedia content to a web site which stores this
content on their behalf in a repository. We will use this simple example to illustrate
the purpose of an operability review.

In the operability review, there are two principles that will guide us. They are
as follows:

If something can go wrong, it will go wrong.	
The word should is stricken from our vocabulary.

Let’s take a pessimistic view of our sequence diagram (shown in Figure 4.7)
with these guiding principles in mind. We will use the symbol ⊗ to indicate a
failure point.

In this view, we see that there are 12 discrete failure points for the application.
We generated these failure points on the assumption that for each arrow in the
sequence diagram it is possible for a failure to occur at either of the end points or to
the system call itself while it is in flight (e.g., network error). Let’s put these types of
failures into familiar scenarios and language.

For each of the failure scenarios that you enumerate in the operability review,
you should discuss the expected application behavior. During this process, remem-
ber not to use the word should. If you are using the word “should,” it means that

n
n

2

End User Clicks
“Submit”

File is posted to
web server as
MIME content

File is written
to local file
system Success Response

Success Page
Displayed to User

Archive begins DB
transaction to
commit binary
content

Content is
committed to
Database
storage

1

3

4 Web Server
asynchronously
begins transaction
to store to archive

5

10 Transaction
successful

7
8

9

6

11 Request
successful

Web Browser Web Server Archive Database

Content is
marked for
clean up from
local file system

12

Figure 4.7  Example sequence diagram with failure points: multimedia upload
application.

AU5334.indb 93 11/19/07 7:49:13 AM

94  n  Patterns for Performance and Operability

you don’t really know how the application will behave—as in, “The archive server
should roll back the transaction and return an error status.” Alternately, it might
mean that you are assuming that a failure scenario will never happen—as in, “The
Web server should never lose connectivity because it is directly attached to the same
switch as the archive server.” You need to avoid this type of thinking in the context
of an operability review. Remember, things will go wrong, no matter how unlikely
that may be, and you need to know with confidence how your system will react
when they do.

If you are uncertain of the application behavior, you are encouraged to devise
a test to find out. Through this process, you may find that you need to revise
your design or build additional robustness into the application. At the same time,
depending on the likelihood of the failure scenario, the criticality of the business
operation, and the process for detecting and correcting the incident, not all scenar-
ios may require design intervention. For these cases, it is important to identify them
as a team and make a collective and documented decision to address them or not.

Summary
Good software design can be applied to achieve a host of benefits: flexibility, exten-
sibility, readability, maintenance, and quality. Successful projects are often projects
with strong technical leadership that insists on a thorough design phase. In this
chapter, we’ve argued that some of the most tangible benefits of good software
design are in the area of operability. Extensibility and flexibility are important but
loftier benefits. You may need to extend or change direction in your software, but
in the real world, applications that recover gracefully from errors will earn acco-
lades sooner and on more occasions.

In the next chapter we will look at effective techniques and guidelines for build-
ing scalable, high-performing software systems.

AU5334.indb 94 11/19/07 7:49:13 AM

95

Chapter 5

Designing for Performance

The goal of this chapter is to help you to better architect, design, and develop
software that meets the performance requirements of your system. We will focus
on the different aspects of the solution design that will inevitably influence its per-
formance, or at the very least the perception that the end user will have of the
application’s responsiveness.

In our experience, performance considerations need to be part of every step of
the development process. Projects that delay performance considerations until late
in the software lifecycle are at significant risk when it comes to their non-functional
test results.

Requirements
The performance requirements of a system are gathered as part of the non-func-
tional requirements of a software solution, as discussed in Chapter 3. In what fol-
lows we will highlight how performance considerations should be looked at as an
influencing factor of the requirements gathering process.

The “Ilities”
Performance is intrinsic to a system, whereas some of the capabilities (further
referred to as “ilities”) of a solution—although not all of them—can be added as an
afterthought. Performance will also have a major impact on the “ilities” so much
so that for some systems, some of these “ilities” will have to be sacrificed in favor
of performance. Note that the reverse is also true, and that performance may have

AU5334.indb 95 11/19/07 7:49:13 AM

96  n  Patterns for Performance and Operability

to be sacrificed for one or more of the “ilities.” The important thing is to determine
where performance is critical and how thoroughly it is allowed to affect your overall
system because of its criticality.

“I am personally a big fan of BMW motor cars. What I like about
BMW is how over the latter years they have made performance an inte-
gral part of their car design. PErformance in a BMW is not about a big
engine, but rather about squeezing the most out of the engine. IT is also
about making the driver feel secure in using the power at his disposal
and doing so in an environment that is easy and comfortable to use.”

In what follows we take a look at how performance and the capabilities of a
system can be intertwined. We have chosen the “ilities” we discuss based on our
experience with how these aspects of a solution are interrelated. These do not, by far,
cover all of the capabilities associated to computer software (a search for “ilities” on
Wikipedia lists more than 50 possible “[capab]ilities”); however, they should convey
a sense of the type of questions that need to be answered when analyzing the require-
ments for a system that will be highly sensitive when it comes to performance.

Scalability

The first thing that will come to mind for many people when talking about per-
formance is system scalability. This property does not relate so much to the perfor-
mance of a system but rather to its capacity to uphold the same performance under
heavier volumes.

The requirement for scalability must be considered in relation to the need for
future growth of the business function that is supported by the software solution.

As a rule of thumb for a business with a moderate or slow growth rate, vertical
scalability of a system will be sufficient as long as Moore’s law holds true, which it
seems will be the case for still a number of years to come.

It is notable, however, that chip makers have started concentrating more efforts
on multicore central processing unit (CPU) solutions, and we would argue that
today software solutions should be built to scale horizontally in order to sustain
business demands at affordable costs in the future.

Scalability can influence performance in different ways. In distributed systems,
scalability will usually be the result of load-balancing requests coming into the sys-
tem, so that they can be processed by multiple nodes. The load balancing will carry
with it a small overhead that should be taken into account during specification,
especially if load balancing occurs for each tier in the distributed solution.

Distributed databases or application servers will, in some cases, provide caching
mechanisms to speed up data lookups. Although the cache will drastically acceler-
ate data access in some cases, it will also require synchronization of the data across

AU5334.indb 96 11/19/07 7:49:14 AM

Designing for Performance  n  97

all nodes, which does not come for free. Whether the system is mostly to be used
for reading data or for writing data will need to be assessed in order to define the
appropriate caching strategy (more about caching follows on p. 109).

Grid-computing solutions have multiple computers act as one; however, this is
not fully transparent and will require data synchronization to occur during specific
points of the processing. This will also add overhead to the total performance and
must be factored in when defining the system.

Usability

Making a system that is both enticing and easy for people to use, is a complex task,
worthy of a library in itself. Consequently, we will limit our interest here to the
impact usability requirements can have on performance.

Everyone will agree that a poorly performing system is not usable; people will
get frustrated and very soon abandon the application as a whole, even if the perfor-
mance issues are only related to one functional area of the entire solution.

The solution architect and business or usability analysts must therefore col-
laborate in order to come up with usage patterns that are both efficient for the end
user and computationally viable for the system under construction. The architect’s
role will be to provide input regarding the technology options available to the team,
whereas the usability analyst will ensure that these technology options are used in
a context most suitable for the end user.

Both should ensure that the user is not subjected to long waiting periods.
Expensive computations should not be performed while the user is waiting; they
should be removed from the user interaction flow and handled separately so that
the user can go on with her work.

A contemporary example of this is the use of    Web 2.0 technologies in order to
execute front-end validations that would previously have taxed the backend systems.

Another example is the use of asynchronous processing and exception handling
using workflow systems. Using this paradigm, processing errors are not reported
to the user immediately but through some form of a notification mechanism. This
type of processing is advantageous in environments where the user’s error rate is
very low and rapid response times of the essence.

Extensibility

The extensibility of a system can on occasion jeopardize its effectiveness.
In order to make a system extensible, designers and developers are often forced

to add additional controls and decision logic into the computational model, which
will quite often lead to performance degradation.

In all instances a design should be kept simple, except if the requirements
explicitly mandate the need for an extensible solution. In the latter case the require-

AU5334.indb 97 11/19/07 7:49:14 AM

98  n  Patterns for Performance and Operability

ments will also have to provide guidance on the specific conditions under which the
solution should be extensible, and not simply make a high-level statement about the
need for extensibility.

An interesting example of the impact of flexibility on performance is the
Enterprise Java Bean (EJB) framework. The EJB framework by its very nature had
to be designed with extensibility in mind. In its prior iterations (versions before
3.0), every component that was built for the system had to elicit characteristics
of security, transaction support, etc. As a result each EJB call had to go through
some wrapper code to handle these aspects of the component. This was because
the notion of extensibility had been baked into many aspects of the standard. As
of EJB 3.0, the standard changed rather fundamentally: instead of baking things
into the way components were defined it was decided that components should be
built with no or very little knowledge of the framework, and extensibility would be
handled by injecting the capabilities mentioned above using techniques of aspect-
based programming.

Securability

Networks, and the Internet in particular, have opened up the door for many threats to
the enterprise. As a result, many companies became conscious of the need for tighter
security and especially for building security into all aspects of their software solutions.

Tightening security rarely happens without an impact on system performance.
Therefore (and as with each theme in this section) securing your system needs to be
done in a way that neither degrades the performance of your solution nor disrupts
the operation of its functions.

In order to do so, the stakeholders, business analyst, security architect, and
solutions architect will need to work together to determine the scope of the security
measures that are required for the specific purposes of the system.

Here are some of the questions that will be important to determine which prin-
ciples will underpin the security architecture:

How many users will be using the system?
What is the access perimeter of the system: a local area network, distributed
across regions on an intranet or the Internet?
Do people with different profiles or roles access different functions of the
system?
Does the system manipulate data that is highly confidential or of a sensitive
nature?
Is there a need to trace back all actions/changes made via the system to an
originator?

n

n

n

n

n

AU5334.indb 98 11/19/07 7:49:15 AM

Designing for Performance  n  99

These questions are important, as they will allow the security architect to
determine:

The need for encryption or not and if said encryption should be hardware
accelerated, which may be necessary if many concurrent users have to be sup-
ported or if elevated volumes of data require encryption.
How to implement access controls. The demand for heavy access verifica-
tions will obviously impact overall system performance; hence this quality of
the system may require the implementation of cached access control lists, or
other optimizations around such checks.
Non-repudiation is another security measure that will impact the responsive-
ness of the system, given that each transaction requiring non-repudiation will
need signing. It is advisable to limit the requirements for non-repudiation to
only those specific transactions that may be legally binding.

It is not uncommon to find your business stakeholders demanding “as much
security as possible.” An important part of your job as a technologist is to educate
them on the performance trade-offs they may have to accept in order to achieve the
desired level of security.

Operability and Measurability

We have combined operability and measurability, as these system features will most
often coexist.

Mission-critical systems will usually need to report information about their state
and overall sanity back to an operations team. The type of information required
may be as simple as providing a log of any significant malfunctions in the system
or as complex as providing measures of the system performance, averages on the
number of errors per hour, real-time alerting through monitoring protocols such
as simple network management protocol (SNMP), and a variety of other measures
and informational data.

The data required to provide a defined level of information about the system
will have to be captured by the system, and hence add additional constraints of
computation and input/output (I/O) to the system.

The overall impact of these additional system constraints can be limited by
allowing reporting on the data to occur separately from the actual data gathering.
This may not always be feasible, especially when dealing with real-time systems, but
should be considered whenever the performance considerations outweigh the need
for immediate notification.

On the data-gathering side, care must be taken to limit the number of data
items that need to be captured. In that respect it is important to define the reason
for capture of the items as well as the lifecycle requirements of the items. Data

n

n

n

AU5334.indb 99 11/19/07 7:49:15 AM

100  n  Patterns for Performance and Operability

required for trending and long-term analysis may need to be captured on perma-
nent media, whereas for data that is needed only at system runtime it may be suf-
ficient to keep a transient in memory copy.

With today’s technologies it is, in certain cases, even possible to benefit from
runtime instrumentation, which allows adding or removing instrumentation to an
application while it is running.

Maintainability

The ability to maintain a system will not really have an impact on its performance.
Source code comments and design documentation do not impact system perfor-
mance, although we have sometimes wondered whether some development teams
believed so, given the scantiness of documentation and comments provided for
some of the solutions we had to review.

The reason we wanted to cover this topic is to stress the fact that design and code
documentation are important, and even more so when dealing with algorithms that
have to be heavily optimized. In many cases when optimization is required, algo-
rithms become either very complex or unreadable—or both. Therefore, particular
attention should be taken to the documentation that will surround such artifacts.

Recoverability

When a process will take a considerable amount of time to execute, you will usually
want the capability to recover from a failure in the middle of the process without
the need to rerun the whole process. The capacity to recover will depend on what
information is available to recover, and maintaining this information will by all
means impact the overall performance of the process.

The rule of thumb is clearly that recovery should not take longer than resum-
ing the process, if indeed the process can be rerun. If either the process cannot be
rerun, or the recovery is faster than resuming the process, the price of maintaining
recovery data is acceptable and it will have to be incorporated into the capacity
requirements for the system.

The system’s architect should ascertain with the business analyst that there is
indeed a requirement for recovery. In some cases data is perceived to be critical to
a system, when in fact the data is either transient or maintained as part of another
system. In those cases it is most likely that recovery of the data is not mandatory,
and therefore the performance penalty of recoverability should not be incurred.
For instances in those cases you could, for instance, think of disabling the database
features that will maintain recovery logs.

AU5334.indb 100 11/19/07 7:49:15 AM

Designing for Performance  n  101

Architecture
When taking a critical eye to a system’s architecture in order to figure out how to
design for performance while at the same time keeping to the projects’ timelines,
there are two important parts to your approach.

First of all you will have to determine which parts of the solution will need a
more thorough look to determine whether special measures are needed to ensure
the required level of performance. We call this activity the “hotspot” analysis of the
architectural picture, which we’ll examine in more detail in the coming section.

Secondly you’ll gain time by applying standard architectural patterns to the
performance issues that are specific to your problem. We will try to help you in
this regard by introducing you to a set of common performance patterns, as well as
their antipatterns.

Finally we also encourage you, when defining the architecture of a system—
whether it has high performance requirements or not—to take a pragmatic approach
as outlined in our personal note. Whenever possible, use the K.I.S.S. approach:
Keep it Simple and Stupid. On many occasions we have seen development teams
come up with designs that were far too complicated and circumvoluted for the
problem at hand. This seems to stem from a perception of the designer that if the
solution is too simple then he hasn’t done his job right. In our experience it is better
to reward people for coming up with simple, elegant solutions rather than overly
complicated ones that address more than the requirement. It is up to the manager
to clearly communicate this to the team.

Hotspots

When defining the architecture of a system it is important to clearly identify those
parts of the system that are liable to cause performance bottlenecks. These areas of
the system are quite often referred to as hotspots.

The determination of hotspots within an architecture will be achieved by map-
ping the non-functional requirements for the system onto the logical architecture.
Doing this will provide the design and architecture team with a view of which parts
of the system will require particular attention when it comes to the technical design
and even the implementation of the solution.

We suggest that you approach hotspot mapping as follows:

Make sure that the non-functional requirements of the system have been
accurately articulated with as much detail as possible around volumes and
response times.
Map each input or output channel of the system to its associated non-func-
tional requirement(s) and determine whether a hotspot would result from the
volumes or response requirements expected from said channel.

n

n

AU5334.indb 101 11/19/07 7:49:16 AM

102  n  Patterns for Performance and Operability

Make sure each component of your architecture has its input and output
flows defined. The throughput and response requirements of a component are
a combination of the requirements for all of its in- and outflows.
Based on the throughput or response requirements for each component, iden-
tify those components that are potential bottlenecks. Start with the compo-
nents that only have in- or outflows from or to external entities, and then only
those components that receive their inputs and outputs from other compo-
nents of the system.

Patterns

Divide and Conquer

By “divide and conquer” we understand the need to split up the work in smaller
parts. It is our opinion that the divide and conquer pattern is one that engineers
cannot live without in light of the increasing complexity of the systems that they
are tasked to build in today’s world.

When designing for performance this pattern is specifically helpful for tackling
the following problems:

The identification of hotspots is made easier, and the analysis of said hot-
spots is straightforward when one only has to concentrate on the inputs and
outputs of the problem area.
In many instances, the computation of all parts combined will take the same
amount of time and resources as the computation of the total problem, but in
many cases splitting up the computation of certain parts will give the impres-
sion to the end user that the system performs more efficiently.

Load Balancing

Load balancing is a typical pattern used to achieve horizontal scalability in a sys-
tem. A typical load balancing setup is shown in Figure 5.1.

In order for such a setup to achieve optimal scalability on requests made to the
system, these requests should be independent, and short-lived. When every request
is independent, each one can be processed by any hardware node in a server cluster
or farm, as long as the same application is deployed on each one of these servers.
This is an ideal solution, as it allows the load balancing mechanism to choose the
least busy server to execute the request, thereby optimizing overall resource usage.

Moreover, if every request is short-lived and will consume approximately the
same system resources whatever the request, the mechanism to load balance does

n

n

n

n

AU5334.indb 102 11/19/07 7:49:16 AM

Designing for Performance  n  103

not need to be complex, and a simple “round robin” approach will usually suffice.
Typically serving up static Web pages falls into this category.

Most applications are not that fortunate, and will have varying resource require-
ments for each request as well as requests that are not totally independent of each
other. A typical Web application will maintain a user’s session, and all requests
coming from that user’s session will need to share his session’s state. State is gener-
ally maintained on the server, thereby binding requests to the server(s) on which
said state is memorized.

When faced with long-running requests and/or dependent requests, load bal-
ancing can still be of use but will require more intelligent allocation of load. For
instance, you may decide to direct the load of resource intensive requests to specific
servers, which have been allocated and tuned specifically for the execution of such
requests. You may want to send the load balancer information about current server
utilization so as to route requests to those servers being less utilized.

Note that load balancing will quite often be used to support failover as well.
This will require additional mechanisms to be put in place in order for the load
balancer to be aware of dead nodes in a cluster, as well as which nodes have a replica
of any state information required to fulfill a request.

In the end, the more intricate the strategy to decide where to send the load of a
request, the more impact the load-balancing process will have on end-to-end per-
formance of your requests. Depending on your specific requirements, you will need
to find the right balance between the complexity of a good load-balancing mecha-
nism and the benefit it provides you in terms of overall scalability of your system.

Parallelism

Whereas load balancing deals with the execution of unrelated requests in parallel,
this topic will cover the parallel execution of related computations. We decided to

Server 1 Server 2 Server 3 Server 4

Load Balancer

User Requests

Figure 5.1  Simple load-balancing scheme.

AU5334.indb 103 11/19/07 7:49:17 AM

104  n  Patterns for Performance and Operability

keep the two topics separated, though we could have handled load balancing as a
subtopic of this one.

Even with today’s fastest computers, some calculations may still take a long
time to complete. Hence, if either the hardware does not exist to speed up your
computations, or buying the hardware that would allow faster computation is eco-
nomically not viable, dividing the problem into parallel computations is your only
remaining option (short of dropping the problem altogether) in order to up the
performance of these computations. Note that if this is true for the CPU usage of
your solution it can also be true for its I/O usage. In one case the solution is said to
be “CPU bound” whereas in the other case it is “I/O bound,” in both cases making
things run in parallel will help.

Before thinking of parallelization you will need to identify which parts of your
application would benefit the most from it, and if these parts can be parallelized at
all, meaning whether the algorithms exist to handle the task in parallel.

Once you have defined which parts of your solution will be benefiting from par-
allelism you will have to evaluate the overhead cost of the parallelization algorithm
in order to determine the boundary conditions under which parallel processing will
be triggered or not.

In many instances parallelized processing is only interesting as of the moment
certain volumes of data need to be manipulated, but does not make any sense for
small data volumes. For instance, when performing a parallel sort, the time of each
parallel sort together with the time needed to aggregate the results of these parallel
sorts should not exceed the time it would have taken to sort everything without
parallelism (as shown in Figure 5.2).

Now that we have defined the criteria that should guide you in answering the
question—To parallelize or not to parallelize?—we will look at some examples of
where to use parallelism when a system is I/O bound.

Parallel Sort 1

Parallel Sort 2

Parallel Sort 3

Time t1

Merge Sort Results

Time t2

Sort Without Parallelism

Time t3 < t1 + t2

Figure 5.2  Using parallelism in a sort algorithm.

AU5334.indb 104 11/19/07 7:49:18 AM

Designing for Performance  n  105

Scenario 1: Poor Query Performance

An application is required that allows business users at a distribution facility to
search historical order information. A national database exists that stores order
information. This business manages order fulfillment for a number of online busi-
nesses, so the record volumes are large. The database design has used the native
database capabilities to do date-based partitioning on the order fulfillment table. In
the current production database, there are between 4 and 6 million records for each
business day. This strategy allows different partitions to reside on different parts of
storage reducing contention for I/O reads. A prototype is built for the application
that implements a variety of the queries indicated in the business requirements. The
proof of concept is a success, with the exception of a subset of queries that include
wide date-range criteria. These queries span a massive amount of data in order
to execute, and all indications are that the query performance is very slow. The
development team profiles the query execution and observes that the query plan
is optimal, but that the query is slow because the database system must do a large
number of physical reads from disk in order to fulfill the request.

In this case, the query performance is limited by the physical constraint of
disk speed. Earlier in this section we stated that your objective is to refine your
implementation to the point where the only constraints that remain are hardware
constraints. Does this mean that there is nothing that can be done here? This would
not be an interesting example if this were the case. In this example, if we look a
little harder we realize that we have not truly reached the point of physical hard-
ware constraints.

In the scenario description, it is mentioned that the database designers designed
the order fulfillment table using a partitioning strategy specifically to take advan-
tage of multiple physical disks. This is an advantage that we have not yet leveraged
in our performance-tuning exercise. Many modern relational databases offer par-
allel execution capabilities. This means that the database optimizer will identify
components of the query that can be subdivided and executed in parallel. Not all
queries can benefit from this approach, but it doesn’t take long for us to realize that
it is perfectly suited to the problem at hand. By allowing the database to search
different partitions on different disks in parallel, we can dramatically improve the
performance. What was previously a serial activity with a difficult physical con-
straint (disk access speed) can now be executed in parallel. In this example, the
implementation team was able to experiment with the degree of parallelism based
on the physical database architecture and was able to successfully derive excellent
performance gains.

Scenario 2: Aggregating Results from External Systems

 A back-office financial services application is being enhanced to show bank
employees a single, complete view of up-to-date account and balance information

AU5334.indb 105 11/19/07 7:49:19 AM

106  n  Patterns for Performance and Operability

for a given customer. Account and balance information is maintained in up to
14 different backend systems, each of which has different response time targets
for requests. The challenge facing the implementation team is how to interrogate
each of the backend systems for information and report back within the aggres-
sive response-time requirements set forth by the business. A paper exercise quickly
shows that serially connecting to each of the backend systems will never meet the
performance requirements.

In this example, a local database is not the performance constraint; but rather
from the responsiveness of external systems. In this case, the theoretical best-case
performance is constrained by the longest response time of any one of the backend
systems. In other words, if we were able to make 14 concurrent requests, the longest
we would have to wait would be for the time it took the slowest system to respond.
Before embarking on a heavily parallelized solution, the design team looks at the
problem and makes the following additional observations:

Systems 1–5 consistently respond in 60ms or less
Systems 8 and 11 consistently take between 1500ms and 3000ms to respond
System 11 may not need to be interrogated (depends on the response from
system 4)
The remaining systems take approximately 100ms to respond

It may be tempting to introduce fourteen concurrent threads to access each
system in parallel, but this would appear to be unnecessary. A more appropriate
strategy would be as follows:

Thread 1: Issue a request to system 4 and then 11 conditional upon the
response from system 4
Thread 2: Issue a request to system 8
Thread 3: Issue serial requests to the remaining systems
Thread 4: Impose a timeout on the aggregate request of 4 seconds

The performance-limiting step is thread 1 or 2, which we expect to take at least
1500ms to complete based on the known behavior for system 8. It is not an issue
to make serial requests on the remaining systems because the aggregate of these
responses is still expected to take less time than threads 3 or 4. Note that we have
introduced a fourth thread to manage the overall execution and to impose a time-
out. If the system does not provide a timely response (even if it is an error), users can
become impatient and submit a large volume of repetitive requests, a process that
creates risk to system availability.

Before we can consider this exercise complete, we should make a remark about
maintainability. What if dramatic performance improvements are made to system
8, while at the same time system 3 undergoes a change in usage or platform that
degrades its performance significantly? From an operability perspective, hard cod-

n
n
n

n

n

n
n
n

AU5334.indb 106 11/19/07 7:49:19 AM

Designing for Performance  n  107

ing the parallelism strategy into the application could be a defeating strategy as
systems evolve. An appropriate response to this design challenge would be to assign
four worker threads from a pool to the completion of each consolidated request and
allow them to complete the work as quickly as possible. In this type of scheme, if a
thread takes longer to complete its work than expected, other threads can pitch in
and off-load effort as soon as they become available.

Synchronous versus Asynchronous Execution
One of the central questions when developing for performance is whether to execute
synchronously or asynchronously. Note that the answer to this question doesn’t
pertain so much to the resources that will be used to execute the code but rather to
the perception an external consumer will have of the system’s responsiveness.

Executing an algorithm asynchronously will give the external consumer an
impression of fast responsiveness given that the brunt of the work is not done dur-
ing the interaction with the consumer. This, however, is only a matter of percep-
tion, given that the resources required and the complexity of the system dialog is
quite often higher for this type of solution. Remember however that in most cases
the external consumer (whether human or not) is the party who will determine
whether your system is a success or not, thus the extra effort may well be worth
your trouble.

Consider an application in which business users must complete a series of forms
to initiate a business request. Once the form has been fully populated, there are
two steps to the fulfillment. The first step is to validate that the form inputs adhere
to basic business rules and validations. Processing for this validation is lightweight
and does not contribute to the duration of the fulfillment request in a significant
way. The second step in the processing is to submit the request to an external system
for further validation and acceptance.

The submission to the external system may take up to two minutes to process
based on the complex business processing that is needed to verify the request. In
the original system implementation, the application was designed such that users
waited for the response and were presented with the request outcome once it had
been completed. Business complaints and duplicate submissions led the technology
team to introduce “please wait” messages and interface controls to try to man-
age user expectations during processing. Users submit approximately 6–10 such
requests an hour during busy periods. If each request takes two minutes to submit,
business users are spending up to 1/3 of their time waiting for requests when they
are at their busiest!

Ultimately it was decided that a new paradigm was necessary. After consulta-
tion with the business, the technology team proposed that a new model be adopted,
which is commonly referred to as “fire and forget.” In the revised design, business
users complete the form as before and then submit the request in the last step for

AU5334.indb 107 11/19/07 7:49:20 AM

108  n  Patterns for Performance and Operability

asynchronous processing. The design team found that most input errors were being
caught by the intraform validations and that the first submission rarely needed
to be repeated. As a result, an inbox was added to the user interface that would
populate with the request status once the request had been fulfilled. As a conve-
nience feature, the team added an email notification that would allow users to be
informed when their request had completed processing. An unexpected advantage
of the alternative implementation was that when the backend fulfillment system
was unavailable, business users could still submit requests asynchronously to the
front-end system. This operability advantage improved the perception of system
availability as well as performance.

Finally, whether to opt for synchronous or asynchronous execution will depend
on the type of system you are building, the skills you have available, and many
other parameters. In Table 5.1 we attempt to provide a series of guidelines that may
help you to decide which way you want to go.

Deferred Processing

A subcategory of the asynchronous processing pattern can be dubbed “deferred
processing.” For the lazier amongst us this means never do more work than you
have to—advice that is particularly relevant in today’s climate of object-oriented
implementation and component-based frameworks. Component development
offers irrefutable advantages from the standpoints of extensibility, reusability, and
maintainability. However, component usage can also lead to serious performance
issues when not used at the appropriate times. It is common for a component to be
designed for one purpose and then re-purposed for something else. The secondary
usage of the component may not require the full component implementation, but it
is more convenient to use the existing “as is” component than to design something
new or change what is already available.

A typical example of this type of danger is the “User” object itself, which is
a common object in modern software implementations. The “User” object is an
abstraction of all characteristics of the authenticated user who is interacting with
the system. The user object commonly includes attributes for username, full name,
address, date of birth, email address, payment information, etc. When a user
first initiates a session with the system, it is common to construct the user object
and populate all of its attributes from storage. In some circumstances this may
be entirely appropriate if the attributes for the user all reside in a single, local,
and efficient data store. However, if the user object is a composite of information
from different systems, the context in which the user object is being used may not
require the object to be fully constituted. In this case, it may be prudent to defer
the construction of the object until a request is actually made to the object for the
specific attribute. Consider the example in which payment information for the user

AU5334.indb 108 11/19/07 7:49:20 AM

Designing for Performance  n  109

is stored in a different profile database than name and address information. For this
example, we might propose an object interface as follows:

	 public class User {

	 public User(String username, String password) { … }

	 public String getFirstName() { … }

	 public PaymentInfo getPaymentInfo() { … }

	 }

A user object is constructed when the user authenticates to the system and pro-
vides a valid username and password. In a deferred processing scenario, we would
suggest that the object construction start by verifying the username and password
against the authentication store. The implementation may also load the user’s per-
sonal information, including name and address, but the object construction would
not necessarily load payment information for the user. This independent initializa-
tion is deferred until the application calls the getPaymentInfo() method at some
point in the future.

Caching
Another mechanism that is commonly used to improve performance, or at the very
least give the perception thereof, is caching. This is mainly used to improve the per-
formance in scenarios requiring slow or voluminous I/O interactions, but can also
be used in parallel computing to maintain local copies of shared data.

Caching is such a pervasive performance-improvement pattern that it is very
common to have many layers of cache between the end user and the physical data
storage. Let’s consider the conventional three-tier architecture for a Web-based
application and look at a subset of different caches that may be at play. A nonex-
haustive example of how caches can be distributed is shown in Figure 5.3.

The main challenges related to caching information are twofold: 1) keeping the
cached information in sync when the information is distributed or when the infor-
mation can be modified by mechanisms that do not involve the caching mecha-
nism; and 2) managing the memory used by the cache in a way that minimizes
memory use but maximizes the use of the cache (in other words, choose the caching
strategy that will maximize cache hits).

These, however, are technical challenges, and solutions exist. For instance, most
application servers will use one or more caching mechanisms, and some will even
allow you to provide your own caching strategy. There are also a number of free and
commercial solutions available, such as Open Symphony OSCache or Gigaspaces.

Cache synchronization will ensure that the cache reliably reflects the contents
of the primary data store. When cache contents become out of synch, the contents
are referred to as stale. Depending on the nature of the data that you wish to cache,
you will need to choose a suitable synchronization policy. There are a variety of
choices, which we describe in Table 5.2.

AU5334.indb 109 11/19/07 7:49:21 AM

110  n  Patterns for Performance and Operability
Ta

b
le

 5
.1

 
G

u
id

el
in

es
 fo

r
Sy

n
ch

ro
n

o
u

s
ve

rs
u

s
A

sy
n

ch
ro

n
o

u
s

Ex
ec

u
ti

o
n

In
fo

rm
at

io
n

 a
b

o
u

t
In

te
ra

ct
io

n
 w

it
h

 th
e

Sy
st

em

Sy
n

ch
ro

n
o

u
s

Ex
ec

u
ti

o
n

A
sy

n
ch

ro
n

o
u

s
Ex

ec
u

ti
o

n

A
 re

qu
es

t r
eq

ui
rin

g
so

m
e

fo
rm

 o
f v

al
id

at
io

n
fe

ed
b

ac
k

is
 e

xe
cu

te
d.

Id
ea

l f
or

 th
is

 k
in

d
of

 in
te

ra
ct

io
n.

A
sy

nc
hr

on
ou

s
tr

ea
tm

en
t d

oe
s

no
t a

dd
 a

 lo
t o

f m
er

it,
 g

iv
en

 th
at

 a
 re

p
ly

 is

al
w

ay
s

du
e

to
 th

e
re

qu
es

to
r.

U
si

ng
 a

sy
nc

hr
on

ou
s

m
et

ho
ds

 in
 th

is
 c

as
e

w
ill

 a
dd

 c
om

p
le

xi
ty

 to
 th

e
im

p
le

m
en

ta
tio

n
w

ith
 n

o
b

en
efi

t l
ik

el
y.

O
ne

 n
ot

ab
le

 e
xc

ep
tio

n
to

 th
is

 th
at

 h
as

 p
ro

ve
n

its
 b

en
efi

ts
 is

 th
e

ap
p

ro
ac

h
ta

ke
n

by
 s

om
e

A
JA

X-
b

as
ed

 im
p

le
m

en
ta

tio
ns

. I
n

th
is

 c
as

e,
 v

al
id

at
io

n
fe

ed
b

ac
k

is
 p

ro
vi

de
d

to
 th

e
us

er
 in

 re
al

 ti
m

e
w

hi
le

 s
he

 in
p

ut
s

th
e

da
ta

. T
he

va

lid
at

io
n

of
 th

e
en

te
re

d
da

ta
 is

 d
on

e
as

yn
ch

ro
no

us
ly

 w
hi

le
 th

e
us

er

co
nt

in
ue

s
to

 ty
p

e
in

 m
or

e
da

ta
.A

lt
ho

ug
h

ov
er

al
l t

hi
s

us
es

 u
p

 m
or

e
re

so
ur

ce
s

(d
ue

 to
 th

e
m

ul
tip

le
 a

sy
nc

hr
on

ou
s

ca
lls

),
it

gi
ve

s
th

e
sy

st
em

 a

m
uc

h
b

et
te

r u
se

r e
xp

er
ie

nc
e.

A
 p

ac
ke

t o
f i

nf
or

m
at

io
n

is

se
nt

 to
 th

e
sy

st
em

. N
o

re
su

lt
s

or
 fe

ed
b

ac
k

is

re
qu

ire
d.

If
ab

so
lu

te
ly

 n
o

tr
ea

tm
en

t o
f t

he

in
fo

rm
at

io
n

is
 re

qu
ire

d
on

 th
e

re
ce

iv
in

g
en

d,
 th

en
 a

 s
yn

ch
ro

no
us

 in
te

ra
ct

io
n

w
ill

b

e
fin

e.

W
he

n
so

m
e

fo
rm

 o
f t

re
at

m
en

t o
f t

he
 in

fo
rm

at
io

n
is

 re
qu

ire
d,

 it
 is

 b
es

t t
o

p
ut

 th
e

in
fo

rm
at

io
n

on
 a

 q
ue

ue
 a

nd
 p

er
fo

rm
 th

e
tr

ea
tm

en
t w

he
n

re
so

ur
ce

s
b

ec
om

e
av

ai
la

b
le

.

Th
e

in
te

ra
ct

io
n

is
 v

er
y

dy
na

m
ic

. C
on

tin
uo

us

re
qu

es
ts

/r
es

p
on

se

ex
ch

an
ge

s
ar

e
re

qu
ire

d.

A
lt

ho
ug

h
no

t m
uc

h
di

ff
er

en
t f

ro
m

 th
e

fir
st

 s
ce

na
rio

, t
hi

s
sc

en
ar

io
 w

ill
 q

ui
ck

ly
 p

ut

he
av

y
co

ns
tr

ai
nt

s
on

 th
e

re
so

ur
ce

s
of

yo

ur
 s

ys
te

m
. S

yn
ch

ro
no

us
 in

te
ra

ct
io

n
is

on

ly
 re

co
m

m
en

de
d

if
yo

u
ha

ve
 a

 lo
t o

f
re

so
ur

ce
s

at
 y

ou
r d

is
p

os
al

.

If
yo

u
ha

ve
 li

m
ite

d
re

so
ur

ce
s

at
 y

ou
r d

is
p

os
al

, i
nt

ro
du

ci
ng

 s
om

e
fo

rm
 o

f
as

yn
ch

ro
no

us
 b

eh
av

io
r i

n
th

is
 in

st
an

ce
 w

ill
 a

llo
w

 th
e

sy
st

em
 to

 b
et

te
r

m
an

ag
e

re
so

ur
ce

 c
on

su
m

p
tio

n.
 S

om
e

m
id

dl
ew

ar
e

so
lu

tio
ns

 w
ill

 d
o

th
is

 fo
r

yo
u

(s
ee

 n
ot

e
b

el
ow

).

AU5334.indb 110 11/19/07 7:49:21 AM

Designing for Performance  n  111

Ta
b

le
 5

.1
 

G
u

id
el

in
es

 fo
r

Sy
n

ch
ro

n
o

u
s

ve
rs

u
s

A
sy

n
ch

ro
n

o
u

s
Ex

ec
u

ti
o

n

N
ot

e:
 A

lt
h

o
u

gh
 w

e
sp

ea
k

h
er

e
o

f
sy

n
ch

ro
n

o
u

s
an

d
 a

sy
n

ch
ro

n
o

u
s

in
te

ra
ct

io
n

s,
 w

e
ar

e
ta

lk
in

g
fr

o
m

 t
h

e
p

o
in

t
o

f
vi

ew
 o

f
th

e
sy

st
em

’s

d
es

ig
n

er
 a

n
d

/o
r

d
ev

el
o

p
er

.
A

t
th

e
le

ve
l

o
f

th
e

C
PU

,
m

o
st

 e
xe

cu
ti

o
n

s
w

ill
 b

e
as

yn
ch

ro
n

o
u

s
to

 s
o

m
e

ex
te

n
t.

Th
is

 a
sy

n
ch

ro
n

o
u

s
b

eh
av

io
r

co
m

es
 fr

o
m

 th
e

fa
ct

 th
at

 th
e

o
p

er
at

in
g

sy
st

em
 w

ill
 m

an
ag

e
th

e
ex

ec
u

ti
o

n
 o

f m
u

lt
ip

le
 p

ro
ce

ss
es

 a
n

d
 th

er
ef

o
re

 p
re

-e
m

p
t

o
r

q
u

eu
e

th
e

ex
ec

u
ti

o
n

 o
f s

o
m

e
o

f t
h

es
e

p
ro

ce
ss

es
, t

h
er

eb
y

in
tr

o
d

u
ci

n
g

a
fo

rm
 o

f a
sy

n
ch

ro
n

o
u

s
b

eh
av

io
r.

M
o

re
o

ve
r,

w
h

en
 r

u
n

-
n

in
g

co
d

e
o

n
 a

 tr
an

sa
ct

io
n

 s
er

ve
r

o
r

ap
p

lic
at

io
n

 s
er

ve
r,

th
e

m
id

d
le

w
ar

e
w

ill
 n

o
rm

al
ly

 r
el

y
o

n
 o

n
e

o
r

m
o

re
 r

es
o

u
rc

e
u

sa
ge

 c
o

n
tr

o
l

m
ec

h
an

is
m

s
th

at
 w

ill
 a

ls
o

 in
tr

o
d

u
ce

 a
 fo

rm
 o

f a
sy

n
ch

ro
n

o
u

s
ex

ec
u

ti
o

n
. T

h
es

e
co

n
si

d
er

at
io

n
s

ar
e

im
p

o
rt

an
t e

it
h

er
 w

h
en

 d
efi

n
in

g
th

e
ca

p
ac

it
y

re
q

u
ir

em
en

ts
 o

f a
 s

ys
te

m
 th

at
 is

 r
u

n
n

in
g

m
o

re
 th

an
 ju

st
 o

n
e

ap
p

lic
at

io
n

 o
r

w
h

en
 tr

o
u

b
le

sh
o

o
ti

n
g

p
er

fo
rm

an
ce

 is
su

es

o
n

 a
 s

h
ar

ed
 p

ro
d

u
ct

io
n

 s
ys

te
m

.

AU5334.indb 111 11/19/07 7:49:21 AM

112  n  Patterns for Performance and Operability

In order to ensure that the cache is just a cache and not a full replica of your
data store, the cache will have to be provided with a caching policy that will deter-
mine which elements to remove from the cache once the memory consumption of
the cache has reached a certain limit. A list of commonly used caching policies can
be found in Table 5.3.

Finally, one conundrum we have experienced with regards to caching on some
of our projects could be dubbed “too much of a good thing.” On many instances we
have found development teams replicating cached information in various pieces of
related code. Although we mentioned earlier that it was not uncommon to see caches
at different layers of an architecture, we have to caution you that this does increase
the chances of desynchronization between the various caches and the root entity
that is being cached. And it also consumes a lot of memory, which is still a valuable
commodity. The right places for caching must therefore be defined as part of your
global system architecture and not left to the whim of each and every developer.

Antipatterns
Whereas design patterns illustrate proven approaches to common problems, anti-
patterns exemplify design flaws that consistently cause applications to have prob-
lems. On the topic of performance, the authors have seen the following patterns
repeated over and over again without predictable results. As important as it is to
“do the right thing,” it is equally important to be able to recognize the wrong thing
and be equipped to avoid it.

Processors on the server
have their own cache to

reduce latency of
accessing server memory

during processing

Web browser caches
static web content
between requests

Web server caches
document root in
memory

Application container
caches code resources in
memory

Database maintains
statement cache for
parsed SQL

Operating System
maintains file system
cache (Note: It is
common for databases
to bypass this cache)

Application caches
database connection

references in pools

Database caches blocks of
data from disk for

performance

The SAN controller will
cache read/write data from

disk and only complete
operations when efficient

to do so

Web Browser

Web Browser

Server Platform

Application Tier

Application Container

Operating System

SAN Storage

Modern Relational
Database

Figure 5.3  Caching is pervase in most system implementations.

AU5334.indb 112 11/19/07 7:49:22 AM

Designing for Performance  n  113

Table 5.2  The Cache Syncronization Approach

Cache Policy Description

Time Expiration The cache maintains a timestamp for each member and
ejects members once they have aged to the configured
timeout.

Write-Through A write-through cache updates the cache as part of the
operation to update the primary data store. This type of
cache will preserve cache synchronization for updates
initiated by the application but will not guarantee
synchronization should external systems update the
primary data store.

Refresh-Ahead This is an enhancement to the time expiration strategy, in
which members are refreshed once the expiration period
has elapsed rather than being cast out of the cache
altogether. Typically, this strategy would need to be
combined with the least recently used (LRU) to manage
cache size.

Write-Behind This is a performance improvement to the write-through
strategy. Effectively, the application writes to the cache
and the write to the primary data store is deferred and
completed asynchronously.

Optimistic For complex cache members that may be updated by
external systems, the only way to reliably guarantee
synchronization is to verify the timestamp of the object in
the primary data store. The drawback of this approach is
that you still pay the performance penalty of seeking to
the target object. The advantage is that you do not need
to reconstitute a complex object if it is in the cache. Upon
verifying that the object is current, the application can use
the cached reference.

AU5334.indb 113 11/19/07 7:49:23 AM

114  n  Patterns for Performance and Operability

Overdesign

During the design phase of a project, it is easy to become enamored with perfor-
mance strategies and build them into your solution design. The introduction of
these strategies can quickly escalate the complexity of your application. The best
advice that we can give you is design to best practice and then performance tune to
your bottlenecks.

In other words, you may spend weeks perfecting your caching strategy only to
find that the native I/O for most of your data retrieval is perfectly acceptable without
a cache at all. To make matters worse, you may find that you have serious perfor-
mance issues, but none of them are in the focus areas you invested in during your
design phase. If you design your application flexibly and follow simple industry stan-
dards around performance, you are unlikely to have problems introducing tuning
and enhancements into your design once you have identified concrete problems.

Overserialization

Innovations in technology continue to make it increasingly convenient to build
systems based on distributed architectures. Support for distributed processing is

Table 5.3  Commonly Used Caching Strategies

Cache Policy Description

FIFO
(First In, First Out)

In this cache policy, members are ejected from the
cache in the same order that they were added. This
approach is basically a queue, and the primary
advantage is simplicity.

LRU
(Least Recently Used)

Members of the cache are ejected in order of
maximum idle time. This strategy is a big improvement
over FIFO and is also simple to implement. This
strategy is the most common caching strategy.

LRU2
(Least Recently Used Twice)

Similar to LRU, with the variation that objects must be
accessed twice before they are added to the cache. This
makes the cache scan resistant, meaning that the
cache is not overwhelmed with members that
participate in a linear scan of the entire data store.

LFU
(Least Frequently Used)

The cache maintains data on the frequency with which
data is accessed and ejects members with the lowest
frequency.

AU5334.indb 114 11/19/07 7:49:23 AM

Designing for Performance  n  115

a core feature in the two most common development platforms in use today: the
J2EE specification and Microsoft’s .NET framework. These frameworks allow you
to develop objects, deploy them in a distributed way, and then access them trans-
parently from any of the components in the distributed architecture.

The platform manages all of the implementation details associated with remote
invocation, freeing the application developer to focus on the business-specific
aspects of the system. This is a powerful advantage for any developer working with
these platforms. However, this flexibility comes at a price. Anytime you exchange
data over a network, the request data must be serialized into a stream and then
transmitted over a wire. At the receiving end of the request, the remote implemen-
tation must unserialize the request data and reconstitute the request in object form.
This process is usually referred to as marshalling and unmarshalling the request.
The same process is required in reverse to transmit the response back to the caller.
There are two performance exposures in this scenario:

Work has to be done to serialize and unserialize the request/response.
Work has to be done to transmit data over the wire between the remote and
local implementations.

From a performance standpoint, you want your application to spend as much
time as possible actually doing business processing versus overhead. The overhead
of these two factors is easily managed if it is anticipated during application design.
The most common design pattern that is used to address this factor is the use of
value objects and coarse-grained interfaces. We will illustrate with a simple exam-
ple. Let’s consider an often-cited example for the J2EE platform: Entity Enter-
prise Java Beans (EJB). An entity bean is an object implementation for data that
resides in persistent storage—most typically, a database. In our example, we’ll con-
sider a database table called ORDER for which there exists an entity EJB named
OrderEntityBean. Here is the database entity-relationship (ER) representation of
the ORDER table.

ORDER

ORDER_ID [PK]
DATE
STATUS
CONTACT_ID [FK]
DESCRIPTION
<···>

The OrderEntityBean has a number of object attributes, each corresponding to
a column in the ORDER table. The object declaration looks something like this (in
this example we are showing only the data access interfaces):

n
n

AU5334.indb 115 11/19/07 7:49:24 AM

116  n  Patterns for Performance and Operability

OrderEntityBean

orderId: Integer
date: Date
Status: String
contactId: Integer
description: String

+ create(): OrderEntityRemote
+ getOrderId(): Integer
+ setOrderId(): void
+ getDate(): Date
+ setDate(): void
+ getStatus(): String
+ setStatus(): void
+ getContactId(): Integer
+ setContactId(): void
+ getDescription(): String

Because OrderEntityBean is an entity bean with local and remote interfaces,
it is undesirable to have remote clients calling a setter method remotely for each
attribute on an order. We do not want to pay the performance overhead of remote
invocation for each attribute update. As an alternative, and to avoid this problem,
we introduce a value object and new interface on the order entity bean as follows:

OrderEntityBean

orderId: Integer
date: Date
Status: String
contactId: Integer
description: String

+ create(): OrderEntityRemote
+ getOrderId(): Integer
+ setOrderId(): void
+ getDate(): Date
+ setDate(): void
+ getStatus(): String
+ setStatus(): void
+ getContactId(): Integer
+ setContactId(): void
+ getDescription(): String
+ setDescription(): void
+ getOrderValue(): OrderValue
+ setOrderValue(): void

OrderValue

orderId: Integer
date: Date
Status: String
contactId: Integer
description: String

+ OrderValue(): OrderValue
+ getOrderId(): Integer
+ setOrderId(): void
+ getDate(): Date
+ setDate(): void
+ getStatus(): String
+ setStatus(): void
+ getContactId(): Integer
+ setContactId(): void
+ getDescription(): String
+ setDescription(): void

A value object is sometimes referred to as a transport object. Note that the
value object is an ordinary Java bean—in this case with a plain constructor. The
getter and setter methods for the order value object are referred to as coarse-grained
interfaces to reflect the fact that they perform work in bulk on the object through a
single interface. Similarly, the getter and setter methods for individual order object
attributes are referred to as fine-grained interfaces. Now that we have introduced a

AU5334.indb 116 11/19/07 7:49:26 AM

Designing for Performance  n  117

value object, a client is able to construct a single value object and set all of the attri-
butes on the order entity bean using a single-method call. Let’s look at the before
and after sequence of operations between the local and remote application tiers:

Remote Local

create()

setDate()

setStatus()

setContactId()

setDescription()

Remote Local

create()

setOrderValue()

Construct
OrderValue
value object

Object creation with value object
and coarse-grained method

Object creation with fine-
grained methods

The introduction of a value object allows us to avoid three remote method invo-
cations that were required in the original implementation. This is a simple and
widely used design pattern. Method invocation for EJBs also includes layers for
security and transaction handling that introduce marginal overhead. In addition
to avoiding serialization on each call, the value object implementation avoids these
additional costs also.

Related to this topic, the EJB 2.0 specification introduced the notion of local
interfaces for EJBs. This feature allows EJBs to defined local and remote inter-
faces. Local interfaces allow a calling application to pass arguments by reference
instead of by value. Previous to EJB 2.0, all EJB method invocations had to be by
value, meaning that a copy of the parameter data had to be serialized to the remote
instance and unmarshaled. Using local interfaces, calling client code can now use
these interfaces if the developer knows that the calling application code will be
located in the same application monitor as the remote implementation.

Oversynchronization
Synchronization is an important implementation tactic for ensuring data integrity
in software systems. The term usually refers to the need to ensure that only a single
thread of execution is able to use a given resource at any one time. This is usually
achieved by introducing a lock or semaphore that can only ever be granted to a
single thread of execution at any one time. A good example of this is write opera-
tions for database records.

If a user is updating a record in the database, you do not want concurrent write
operations to proceed simultaneously. In a worst-case scenario you might end up
with a record that has been updated by a combination of two separate updates

AU5334.indb 117 11/19/07 7:49:27 AM

118  n  Patterns for Performance and Operability

resulting in a serious data integrity problem. In order to avoid this, applications
need to synchronize access to certain types of resources. Unfortunately, synchroni-
zation is fertile ground for the introduction of a performance bottleneck.

If an execution thread reaches a point where it needs to access a synchronized
resource that is not available, the application thread has no choice but to wait.
You are unlikely to meet your performance objectives if application threads are
frequently waiting. Not only does this mean that you may have an end user who is
also waiting, there may be other user requests that are not being serviced because a
thread is not available to do so.

To avoid performance degradation due to synchronization, you should review
your application design and implementation to ensure that you are avoiding each
of the following:

Synchronizing resources that do not need to be synchronized: It is not
uncommon for a well-meaning programmer to introduce locks or synchroni-
zations to resources for which this is not required. A common example is for
an object or method that was originally designed for write operations to also
be re-purposed for read-only operations. If the read-only requirement for the
object introduces a high frequency of concurrent accesses, you will need to
introduce an unsynchronized, read-only version of the object or interface.
Synchronizing a resource for longer than necessary: An even more com-
mon scenario is for developers to demarcate the synchronized resource such
that it includes far more resources than actually required. If the object or
block of execution that is synchronized is defined to be overly inclusive, it
will mean that the lock is held for longer, increasing the probability that a
competing request will need to wait in order to execute.

Synchronization issues can be difficult to find once they have been introduced
to a system. It is important to review your application design carefully prior to
performance testing to try to avoid this type of bottleneck.

If your application has been built and you suspect synchronization may be caus-
ing performance degradation, this type of problem is often characterized by lower
than expected CPU usage under load, for obvious reasons. Custom instrumenta-
tion and profiling is often required to isolate this type of problem.

User Session Memory Consumption

Most online transaction processing (OLTP) systems that provide a useful business
function require users to work with the application over a series of interactions. As
the user navigates, refines usage criteria, and provides data input, the server side of
the system will usually need to maintain some record of the user’s interactions in
order to support business processing.

n

n

AU5334.indb 118 11/19/07 7:49:27 AM

Designing for Performance  n  119

A language preference is a simple example of something that the server side of
the system needs to “remember” in order to provide an accurate ongoing user expe-
rience. As the system accumulates user information, it typically adds this to a data
structure often referred to as a session. Throughout the user interaction, the system
will add, subtract, and modify the session to reflect current state.

In many applications there is a temptation to store session information in mem-
ory on the server and reference upon each user request. Unfortunately, for systems
that support a large volume of users, this is not a scaleable design. Memory is a
limited and critical resource for application processing. A common and unfortu-
nate example of poor design is to store large query results in memory while a client
application or user scrolls through the results. A search result may retrieve 500
records, but a typical user interface will only show 10–15 records at a time in a sum-
mary. It is a common mistake for the server to hang onto all 500 results in memory
so that they are readily available for the inevitable subsequent requests to view
additional pages of data. Databases are good at efficient data retrieval and buffering
data that has been recently requested. In this example, you should forward subse-
quent requests to the database and let it do all the work between requests.

Because user interaction with the system is unpredictable and potentially com-
plex, it is considered an antipattern to store user state information as part of the ses-
sion on an application server. For OLTP systems, you are advised to push as much
state information out to client systems as possible for purposes of scalability.

Algorithms
There is no denying that it is often more elegant to optimize a computer algorithm
so that it will yield the appropriate performance rather than buying a bigger com-
puter to handle a poorly conceived program.

It is not our intention to provide the reader with an exhaustive list of all of
the incredible algorithms that exist. Not only would the list need revisiting on an
hourly basis, but, when it comes to the basic algorithms that matter, Donald E.
Knuth did a much better job in his “The Art of Computer Programming series than
we could ever hope to achieve.”  5

Our aim is to make you aware that when it comes to performance program-
ming you will need to surround yourself with professionals that understand the
ins and outs of building efficient algorithms. These professionals will need at least
some basic notions of computational complexity theory, and will understand the
advantages, shortcomings, and pitfalls of the software libraries they will be using.
In other words, they will be able to tell you whether an algorithm will take expo-
nential time to compute or not, and which library function is best suited to support
the execution of your algorithms.

For instance, when it comes to sorting algorithms that person will be able to
tell you that a Quicksort algorithm has a complexity of Θ(n log n) and that there

AU5334.indb 119 11/19/07 7:49:28 AM

120  n  Patterns for Performance and Operability

are other algorithms such as Heapsort and Mergesort, which may be more adequate
depending on the problem you are tackling. Moreover, if he is a Java developer he
will also tell you the Arrays.sort method uses the Mergesort algorithm, which has
the advantage over Quicksort that it provides a stable sort (it maintains the relative
ordering of elements with the same comparable value). By relying on developers
who possess these skills, you will require less investment into hardware capacity
and what is certain to be a long and tedious non-functional test cycle.

Technology

Programming Languages

The chosen programming language will most certainly have an impact on the per-
formance of your application. The choice of language must be a careful balancing
act between the need for execution efficiency versus the need for programming
efficiency; and in most cases, the need for companies to standardize on a set of
standards will also be a factor.

From the standpoint of performance it is best to look at programming lan-
guages based on how the resulting program will be executed in the target environ-
ment rather than based on the language itself:

Compiled languages

Languages such as C++, Cobol, or Fortran, are compiled so as to execute using the
instruction set of the target platform/CPU. This will usually yield the better execu-
tion times, given that the compiler can fully optimize the execution code for the
target system. We will not futher elaborate on these languages, as it can be accepted
that these are probably the most efficient languages from a performance perspec-
tive. But in many cases these languages do not yield the same level of productivity
as more modern languages such as those we will discuss hereafter.

Virtual-machine-based languages

In this category Java and C# are probably the most prominent examples although
many other languages are available that either run on a Java or .NET runtime, or
have their own VM implementation.

Note that some parties may not agree with the statement that C# and the
other .NET languages are virtual-machine based, but by our reckoning there isn’t
much difference between Java’s bytecode and JVM approach and .NET’s common
language runtime approach except, perhaps, for the fact that the CLR is more

AU5334.indb 120 11/19/07 7:49:28 AM

Designing for Performance  n  121

language-agnostic than the JVM. From a performance perspective it has been dem-
onstrated that there is little or no difference between both technologies.6

There is a price to pay for the use of a virtual machine. It will have a larger
memory footprint than that of an average compiled program, given the need for it
to house its own runtime environment as well as the extensions it uses to instru-
ment or optimize code execution, such as a just-in-time or Hotspot compiler, or
built-in monitoring capabilities.

The virtual machine will also have a slight performance cost. This performance
cost is linked to a number of factors. First and foremost, there is the startup cost
due to the need to convert the code targeted at the virtual machine (VM) to code
targeted at the underlying CPU. The way this impacts performance may differ
depending on whether a just-in-time compiler is used versus a Hotspot compiler
(more about this below).

Then there is the fact that the virtual machine also serves as a “sandbox” for the
code’s execution. In other words, it will attempt to contain any malicious activity
that may emanate from the code. This means that additional checks will be per-
formed during code execution, which will also slow down the functions impacted
by such checks. Note that if the code comes from a trusted source you can disable
most of these checks, here you must find the right balance between security and
performance (as discussed in the section on securability).

Finally, one of the main causes for performance degradation with VM-based
languages is not so much related to the VM but to the fact that these languages
make use of garbage collection for their memory management. Although memory
managed through garbage collection proves conducive to faster development (given
the fact that the developer “seemingly” doesn’t need to care about how his use of
memory gets managed), it is also the primary reason why some VM programs
perform very poorly.

Many programmers will not think about memory consumption anymore when
using a language that does all the memory management work for them. This, how-
ever, will result in the garbage collector having to do all the “thinking” for the pro-
grammer—at the cost of performance. Because of some of the constraints imposed
on a garbage collector, it will stop a program’s execution in order to collect the
memory that has become unused. As a result, the program’s overall performance
gets degraded and in many instances the user’s perception of this performance
degradation negatively impacts the acceptance of a system. It is important for a
development team to understand this issue and ensure that memory management
remains a concern when using these languages.

Some of the techniques to alleviate these problems, such as object pool-
ing, are well known and should be part of every programmer’s bag of tricks.
Although applying good programming practices will remedy the problem
it is also noteworthy that research in the area of garbage collection has not
stopped and that today new approaches to this complex issue solve some, if

AU5334.indb 121 11/19/07 7:49:29 AM

122  n  Patterns for Performance and Operability

not all, of the performance impacts brought about by this type of memory
management.7

Just-In-Time versus the Hotspot Compiler
In the early days of Java, the virtual machine approach was heavily
criticized for its sluggish performance. In those days the Java bytecode
would be fully interpreted and not translated to the target platform’s
CPU. This resulted in 10 to 20 times slower execution than an equivalent
C++ program. As of the next generation of Java Virtual Machines (1.2),
performance was greatly improved by the introduction of Just-in-Time
(JIT) bytecode compilers. Note that Sun opened up the JVM architec-
ture to support the inclusion of a JIT compiler, and different vendors
such as IBM or HP have their own specific JIT compiler implementa-
tion, some yielding better results than others. The purpose of the JIT
compiler is to convert Java bytecode to native machine code. Hence, by
paying a small price at startup, important performance gains resulted
at runtime. The improved performance was not yet at a par, however,
with the types of performance optimizations achieved by compilers of
languages such as C or Delphi. This is due to the reduced visibility the
JIT compiler has of the execution logic of the program; bytecode does
not convey as much information about a program’s underlying logic
as does a higher order language such as C, C++, or Pascal. Hence, the
JIT compiler is unable to optimize loops or method calls to the same
extent a “classic” compiler is. This is why the Hotspot compiler was
introduced as of Java 1.3. Instead of taking a “brute force” approach to
bytecode conversion, the Hotspot compiler runs the bytecode in inter-
preted mode long enough to understand its underlying logic. Once it
has been able to “figure out” this logic it is able to decide which parts
of the code are worthwhile, converting to native code and how to best
optimize these parts. It may even decide to continue interpreting some
parts of the bytecode if these are deemed not to have a fundamental
performance impact.

Interpreted Languages

Although any language can be either compiled or interpreted, the languages that
were built with an interpreter as the underlying engine usually have two things in
common. They are either purpose-built to be efficient at one or more specific tasks
or they have been conceived to be very dynamic in nature, and quite often they
have both characteristics.

Most, if not all, so-called scripting languages are interpreted languages. The
vast majority of scripting languages are purpose-built; for instance, shell script
languages target the manipulation of operating system artifacts such as files and

AU5334.indb 122 11/19/07 7:49:29 AM

Designing for Performance  n  123

directories, Javascript is good at manipulating the object model underlying the
Web pages rendered by a browser, and the AWK language was designed to work
with text.

The interpreters for these languages are for the most part built in a way wherein
the code is interpreted just prior to execution. This means that the code is quite
often reinterpreted for each line that is executed. This is very sluggish, and clearly
not performance prone, but it makes it very easy to change the code and reex-
ecute it, which makes development and test cycles very rapid. These languages are
therefore used in contexts where the ease of changing the scripts and the facilities
provided by the language (such as file and directory manipulation in shell scripts)
will give the development team an edge when it comes to speed of coding rather
than speed of execution.

Other languages such as Ruby, Python, or Perl are also quite often associated
with interpretation. However, these languages—or should we say, their execu-
tion platform—use a slightly different approach than scripting languages. The
code for these languages is compiled to an intermediate representation just prior
to execution or on an as needed basis. This will make it easy for the execution
engine to translate the instructions in the alternate representation to operations
of the underlying processor architecture. Although this mechanism will impact
performance, it is faster than that used by scripting language and does facilitate
the creation of dynamic languages, some of which are targeted toward specific
problems. Perl, for instance, is a language that was developed to make string
manipulations easier, which has made it an ideal language to develop dynamic
Web content; after all, a Web page, in its simplest form, is a long string of text.

Your choice of such a language will need to be balanced between the need for
performance versus the facilities provided by these languages. As an example, Ruby
with the addition of Ruby on Rails makes the development of Web sites with a
database backend a breeze; hence, if your Web site is targeted at short, low-com-
plexity transactions, Ruby may well be for you.

Distributed Processing
Distributed processing can take many forms and has been around for quite some
time. Before Web Services ever saw the light of day there was RPC, Corba, DCOM,
RMI, and possibly other mechanisms to enable a software solution to execute func-
tion calls across a network.

These calls come at a great computing cost. Not only does the function call
need to be translated into a format that is platform independent (remember the
section on overserialization), but additional checks are required to verify connectiv-
ity, additional mechanisms are required to manage the lifecycle of remote objects
or processes, security has to be taken into consideration, and possibly distributed
transaction solutions might have to be involved. All of these will drain the capacity

AU5334.indb 123 11/19/07 7:49:30 AM

124  n  Patterns for Performance and Operability

of your system for the sole purpose of making a call over the network. You must
therefore make sure that this luxury is used sparingly and for the right purpose.

One of the greater benefits brought by Web Services is that this technology has
put an emphasis on the notion of providing services rather than functions across
the network. Services are of a higher order than functions and, when designed cor-
rectly, will illicit different usage patterns that aim at limiting the number of calls
over the network. A service-oriented approach is the right approach to designing
distributed solutions; it is a cause for thought as to why it has taken us so long to
figure this out.

Make sure to keep this in mind when designing your distributed solution even
if you do not use actual Web Services technology. Design with services in mind,
rather than functions. Create services that represent actual business functions, and
therefore have a real business value. Build the interfaces such as to limit the number
of calls required during any given interaction.

The additional bonus you get from using actual Web Services is that you can
rely on the actual infrastructure that was built for the Web. This gives you access to
a whole plethora of solutions for load balancing hypertext transfer protocol (HTTP)
requests, monitoring network traffic, and handling network failover.

Centralized versus Decentralized Processing
It is interesting to note how over the years computing has flipped back
and forth between centralized and decentralized models of processing
and how these have been related to the availability of processing power
and the need for performance. First there was the central mainframe,
one machine with tremendous amounts of power available. Over the
years workstations started gaining in power and hence it became pos-
sible to off-load some of the processing toward the desktop, which is
how the client-server decentralized model came about. In time, net-
working capabilities evolved and distributing processing across mul-
tiple servers, and the advent of the Internet made it desirable again to
centralize much of the processing. These days the need to provide users
with a richer Internet experience is pushing new demands of processing
toward the browser using Web 2.0 technologies, which tend to indicate
the resurgence of a decentralized processing model.

Distributed Transactions

If you have decided to go distributed you may be faced with a dilemma regard-
ing the way to deal with transactions. Transactions are dealt with easily when a
single resource is involved (e.g., a database); however, when multiple resources are
involved, and these resources are moreover distributed across the network, the com-
plexity of transaction processing gets multiplied.

AU5334.indb 124 11/19/07 7:49:30 AM

Designing for Performance  n  125

Now the transaction manager has to coordinate multiple transactional resources
across the network. In itself the “two-phase commit” protocol used to coordinate
multiple transactional resources is already causing a lot of overhead, but it is even
less efficient when it has to do its coordination work over the network.

Hence, although it may be easier for your developers to use distributed transac-
tion management (they will have to put less thought into how to manage the trans-
action), it is definitely not the way to build a “lean and mean” system. Whenever
possible, use transactions involving only one resource.

Note also that in our experience many systems that support distributed trans-
actions do so poorly. They quite often depend on the good comprehension and
interpretation of a distributed transaction management protocol such as XA. These
protocols are very complex, and their errors due to misinterpretation or miscompre-
hension are not uncommon.

XML
In what follows we talk about all the declinations of the extensible markup language
(XML) and not about a specific standard or a particular industry. Although it can
be said that XML has done wonders to enable collaboration of widely disparate
systems over the Internet, it is probably one of the worst technological choices when
it comes to performance.

Given that the goal of XML (and its predecessor, standard generalized markup
language [SGML]) was to create a language that was both readable by humans and
by the computer at the same time, it is a structured language, but not one that is
the most efficient for a machine to read. Humans require a verbose identifier and
some formatting—such as spacing, line breaks, and tabulations—in order to be
able to read and understand XML, whereas the computer couldn’t care less and
would be more efficient if it didn’t have to read all the formatting characters and
was provided with numerical identifiers that take up less space and can be more
readily matched to records in a database or memory array.

By making the above statement we are not encouraging you to make XML
more machine readable and less human readable, as this would defeat one of the
main reasons for the use of XML. If you were inclined to do so, we would encour-
age you to look at other means for transporting data rather than using XML.

The message we want to pass on is that XML is a beneficial technology when
it comes to the definition of messaging contracts between heterogeneous systems,
but that it should not be used indiscriminately for any sort of communication,
especially when performance is critical.

When you do end up choosing XML as the mechanism for communication of
your application, the one thing to choose correctly is the parsing technology that
will read the XML. A number of parsing mechanisms exist that are either more or
less efficient. Choosing the one that is right for you will depend on what you need

AU5334.indb 125 11/19/07 7:49:31 AM

126  n  Patterns for Performance and Operability

to do with the XML data. At different ends of the complexity spectrum you have
mechanisms that are SAX (simple API for XML) based and those that are DOM
(document object model) based.

SAX-based solutions will handle the XML piecemeal, one element at a time.
The overhead of the parser is minimal but you have to do all the leg work yourself.
The advantage is that you have complete control of the parsing and can stop it at
any time if you do not require all of the information in the XML, or if the XML
is incorrect.

DOM-based techniques will parse the complete XML and provide the devel-
oper with a document object model, which can be used to programmatically tra-
verse the XML elements. The advantage here is that using the object model the
developer has complete flexibility in the manipulation of the XML structure. It is
possible to get a list of all elements with a certain name, to add or remove elements
to the structure, etc.

In both cases the parser will usually give you the luxury to validate the XML for
you against either an XML schema or an XML document type definition (DTD).
Without detailing these two mechanisms—which is not within the scope of this
book—we can, however, mention that a schema is more complex to validate than
a DTD.

The right parsing mechanism is the mechanism that will perform exactly the
amount of work that you require. In most cases SAX-based mechanisms will do the
trick when all you need to do is read the XML once to transform it into some other
format or object model, whereas DOM will be more useful if the XML structure
needs to be traversed a number of times and possibly modified.

Software
This section will look at performance from the perspective of different software
solutions found in the most common system architectures in the industry. Each one
of these common software infrastructure pieces will require special attention when
it comes to performance tuning. Our goal here is to provide some commonsense
guidelines regarding the attention points for each of these systems when scrutiniz-
ing performance.

These guidelines will obviously not replace the expertise of a person specialized
in the configuration and operation of these solutions, but should provide the reader
with enough insight to tackle some of the more common performance issues found
when dealing with these often used infrastructure components. However, when in
doubt, hire a professional!

When building a system that will require a large amount of tuning and has some
very stringent performance requirements, we are confident that you will require
support from the software vendor(s) you have selected to support your system.
Given that it is not unlikely you will need to ask your vendors for changes, fixes,

AU5334.indb 126 11/19/07 7:49:31 AM

Designing for Performance  n  127

or enhancements in their product if you are dealing with a performance-intensive
problem, you would do well to ensure that the vendor will indeed support you to
that extent. This is usually rather easy when you are a big corporation with million-
dollar maintenance agreements with your vendors, but it may be a problem if you
are a small outfit with limited resources. In the latter case you may want to side with
either smaller vendors who will be willing to partner with you, or with open-source
software that you will be able to tweak to your specifications when the need arises.

Databases
When it comes to databases, you can summarize the things to focus on when con-
sidering the performance of your database server in one word: structure. In what
follows we will discuss relational database systems, since these are the systems that
we the authors are most familiar with. We are confident that whatever the database
system, the means to tune it will always deal with structure. Other database engines
will likely use a different terminology to refer to their specific structures.

Storage Structures

The structure of your database will be important at different levels. Let us start at
the lowest level, the structure of the data files onto the physical storage system.

Four main data structures normally compose a database system:

	 1.	The system tables that hold information about the database structure itself, or
what is usually referred to as metadata (data about the data).

	 2.	The database tables and other objects such as stored procedures, views, and so
forth.

	 3.	The database indexes, which, although they are another type of database
object, are considered separately given the essential role they play in making
a database efficient.

	 4.	The transaction logs, and other log files used to handle various aspects of a
database’s operations.

Each of the above structures is stored by most database solutions in one or more
files. In order to optimize access to these files it is preferable to store them on dif-
ferent file systems, segregated across different disks. As a result, when these files are
accessed in parallel by the database engine, disk access will also occur in parallel.

Index Structures

Once files are correctly structured, the next area to look into are the indexes. Indexes
will allow the database engine to optimize query access to your data but they will

AU5334.indb 127 11/19/07 7:49:31 AM

128  n  Patterns for Performance and Operability

slow down creation, updating, and deletion operations. Define your indexes with
care and make sure to include the appropriate columns in each index. It is possible
to combine more than one column into one index, which enables the engine to use
this index for either column. You will have to give precedence to the most used
column, however. For instance, in the example below, both index creation stanzas
will allow the engine to optimize access based on the values of columns A and B.
However, the first stanza will be better when the sort order or selection criteria favor
first A and then B, whereas in the second stanza the opposite is true.

CREATE INDEX TABLE_T_IDX ON T(A,B);

CREATE INDEX TABLE_T_IDX ON T(B,A);

Depending on your database system, it may also be possible to define different
types of indexes depending on the data you are manipulating. B-tree-like indexes
are used in one form or another by most database solutions and are very efficient
when the indexed data has a high degree of uniqueness, meaning that the entries
are mostly different from each other. For data that does not vary as widely, other
types of indexes will be more efficient. Check your database system for the types of
indexes it has to offer.

Together with the proper index definitions you have to make the database engine
aware of the sizes of your tables; this is usually referred to as the database’s statistics.
These statistics will allow the engine to determine if it is more cost-effective to use
an index or simply to scan a table for the contents you require. For small tables it is
most often more efficient to simply scan the table for the required content, but the
engine can only do this if its information about the table contents is up to date.

After all of this, if you still need an edge on one of the indexes, you may con-
sider pinning the index into memory, which is also an option provided by most
databases. You would only do this if, first of all, the index is used very frequently
and, second, the index size does not grow a lot. By doing this you will prevent costly
I/O operations to occur if parts of the index are not present in memory.

Partitions

If you still do not achieve the desired performance after tuning all of the above
structures, you may need to partition your data. Partitioning should only be con-
sidered when dealing with very large amounts of data, rule of thumb: more than a
million rows in one table. When dealing with these types of volumes partitioning
will allow you to apply a “divide and conquer” strategy. The data gets divided into
smaller volumes that can be managed more efficiently. When a query has to take
into account data across all of the partitions it is also possible for the engine to opti-
mize execution of the query by accessing the information in the different partitions

AU5334.indb 128 11/19/07 7:49:32 AM

Designing for Performance  n  129

in parallel and then merge the results from all partitions together in the end. If the
data that needs to be retrieved is not large, then this will be a lot more efficient than
looking up the data in a linear fashion.

Other Ways to Improve Database Performance

There are, of course, other ways to improve your database’s performance. You can
use other structural tricks, such as materialized views, to improve data access for
read-only data. You can tune the number of connections that can be made to your
database, or you can tune the memory allocation for different caches and memory
areas used by the database engine. These parameters will be very specific to each
database engine and we invite you to discover them by consulting the manuals of
your preferred database package.

Application Servers

As this book aims to be generic we will not try to discuss performance tuning
of any specific application server on the market. There are definitely books better
suited than this one for divulging all the tips and tricks of a specific vendor when
it comes to their application server. Instead of giving you a grocery list of all the
different parameters that can be used to get the most out of this or that application
server, we will try and focus on those resources that will have to be tuned for any
middleware of this sort.

Tuning of an application server could be referred to as “the tuning of the pools”
given that the control of resources within such servers is usually managed by chang-
ing the size of a pool of resources. The pools that can normally be sized are listed
in Table 5.4.

Messaging Middleware

Messaging middleware, also known as queues, plays an important role when it
comes to asynchronous processing. Depending on the use you want to make of this
type of middleware, your concerns should focus on different characteristics of these
solutions.

If you are looking for raw speed there are solutions (e.g., Tibco RendezVous)
that will be very efficient in fast message delivery. These solutions will draw
heavily on your network resources and will be highly dependent on your net-
work topology. The purpose of these solutions is to deliver messages fast, but
as a result they will not always guarantee actual delivery of the message, or
the uniqueness of said delivery (the message might get delivered two or more

n

AU5334.indb 129 11/19/07 7:49:32 AM

130  n  Patterns for Performance and Operability

Ta
b

le
 5

.4
 

R
es

o
u

rc
e

Po
o

ls

R
es

o
u

rc
e

Po
o

l
W

hy
 T

u
n

e
It

?

Th
re

ad
s

Th
is

 is
 th

e
ce

nt
ra

l r
es

ou
rc

e
of

 y
ou

r a
p

p
lic

at
io

n
se

rv
er

. I
t w

ill
 d

et
er

m
in

e
ho

w
 m

an
y

re
qu

es
ts

 c
an

 b
e

p
ro

ce
ss

ed

co
nc

ur
re

nt
ly

 in
si

de
 o

f t
he

 s
er

ve
r.

Th
es

e
re

qu
es

ts
 w

ill
 b

e
ei

th
er

 o
f t

he
 s

yn
ch

ro
no

us
 o

r a
sy

nc
hr

on
ou

s
ty

p
e.

N
ot

e
th

at

de
p

en
di

ng
 o

n
yo

ur
 s

er
ve

r i
t m

ay
 b

e
p

os
si

b
le

 to
 d

efi
ne

 m
or

e
th

an
 o

ne
 s

et
 o

f t
hr

ea
ds

 (a
ls

o
re

fe
rr

ed
 to

 a
s

th
re

ad
 p

oo
ls

).
Ea

ch
 s

et
 c

an
 th

en
 b

e
as

so
ci

at
ed

 to
 a

 s
p

ec
ifi

c
re

qu
es

t c
ha

nn
el

 (e
.g

.,
on

e
se

t f
or

 a
ll

H
TT

P
on

lin
e

re
qu

es
ts

, a
nd

 o
ne

 s
et

 fo
r

al
l m

es
sa

ge
-b

as
ed

 a
sy

nc
hr

on
ou

s
re

qu
es

ts
).I

t i
s

im
p

or
ta

nt
 to

 u
nd

er
st

an
d

th
e

re
la

tio
n

b
et

w
ee

n
th

re
ad

s
an

d
ot

he
r

re
so

ur
ce

s
in

 th
e

sy
st

em
. I

n
or

de
r f

or
 a

 th
re

ad
 to

 c
om

p
le

te
ly

 h
an

dl
e

a
re

qu
es

t i
t w

ill
 m

os
t l

ik
el

y
ne

ed
 to

 a
cc

es
s

va
rio

us

ot
he

r r
es

ou
rc

es
 in

 th
e

ap
p

lic
at

io
n

se
rv

er
. H

en
ce

, i
f t

he
se

 o
th

er
 re

so
ur

ce
s

ar
e

no
t s

iz
ed

 in
 a

 w
ay

 th
at

 w
ill

 g
ua

ra
nt

ee
 a

re

so
ur

ce
 is

 a
lw

ay
s

fr
ee

 w
he

n
a

th
re

ad
 n

ee
ds

 it
, t

he
 re

so
ur

ce
 w

ill
 b

e
ca

us
in

g
a

b
ot

tl
en

ec
k

in
 th

e
p

ro
ce

ss
in

g
an

d
in

tr
od

uc
e

p
er

fo
rm

an
ce

 is
su

es
.It

 is
 th

er
ef

or
e

a
go

od
 ru

le
 o

f t
hu

m
b

 to
 h

av
e

m
or

e
of

 th
es

e
ot

he
r r

es
ou

rc
es

 th
an

 th
er

e
ar

e
th

re
ad

s.
 If

m

an
y

ty
p

es
 o

f d
iff

er
en

t r
eq

ue
st

s
ar

e
p

ro
ce

ss
ed

 b
y

th
e

sy
st

em
 it

 w
ill

 b
e

us
ef

ul
 to

 d
iv

id
e

th
e

p
ro

ce
ss

in
g

of
 re

qu
es

ts

b
et

w
ee

n
di

ff
er

en
t s

et
s

of
 th

re
ad

s
an

d
si

ze
 th

e
re

so
ur

ce
s

us
ed

 b
y

th
es

e
re

qu
es

ts
 b

as
ed

 o
n

th
e

si
zi

ng
 o

f t
he

 g
iv

en
 th

re
ad

se

t.

Co
nn

ec
tio

ns
Th

er
e

ar
e

m
an

y
di

ffe
re

nt
 c

on
ne

ct
io

ns
 th

at
 c

an
 b

e
m

an
ag

ed
 b

y
th

e
ap

pl
ic

at
io

n
se

rv
er

. D
at

ab
as

e
co

nn
ec

tio
ns

 a
re

 th
e

m
os

t
co

m
m

on
 o

ne
s;

 h
ow

ev
er

, t
he

re
 c

an
 a

ls
o

be
 c

on
ne

ct
io

ns
 to

 m
es

sa
gi

ng
 m

id
dl

ew
ar

e,
 c

on
ne

ct
io

ns
 to

 th
ird

-p
ar

ty

ap
pl

ic
at

io
ns

, n
et

w
or

k
co

nn
ec

tio
ns

 to
 h

an
dl

e
al

l s
or

ts
 o

f p
ro

to
co

ls
, e

tc
…

. A
s

m
en

tio
ne

d
ab

ov
e

yo
u

w
ill

 h
av

e
to

 s
iz

e
th

es
e

co
nn

ec
tio

ns
 b

as
ed

 o
n

th
e

nu
m

be
r o

f t
he

m
 th

at
 a

re
 re

qu
ire

d
by

 a
 ty

pi
ca

l r
eq

ue
st

 m
ul

tip
lie

d
by

 th
e

nu
m

be
r o

f p
ar

al
le

l
re

qu
es

ts
 th

at
 c

an
 b

e
ha

nd
le

d
by

 th
e

sy
st

em
 a

t a
ny

 g
iv

en
 ti

m
e,

 w
hi

ch
 is

 e
qu

iv
al

en
t t

o
th

e
nu

m
be

r o
f t

hr
ea

ds
 th

at
 c

an

pr
oc

es
s

th
e

re
qu

es
t.

Co
nn

ec
tio

ns
 =

 C
on

ne
ct

io
nP

er
Re

qu
es

t *
 T

hr
ea

ds
 +

 K
K

is
 a

 s
m

al
l c

on
st

an
t t

ha
t y

ou
’ll

 a
dd

 to
 a

cc
ou

nt

fo
r e

rr
or

s
in

 y
ou

r k
no

w
le

dg
e

of
 h

ow
 m

an
y

co
nn

ec
tio

ns
 a

re
 re

qu
ire

d
pe

r r
eq

ue
st

. U
su

al
ly

 5
 is

 a
 g

oo
d

nu
m

be
r.

Yo
u

w
ill

 a
ls

o
ha

ve
 to

 b
e

ce
rt

ai
n

th
at

 th
e

ta
rg

et
 s

ys
te

m
 fo

r t
he

 c
on

ne
ct

io
ns

 (d
at

ab
as

e,
 th

ird
-p

ar
ty

 a
pp

),
ha

s
su

ffi
ci

en
t c

ap
ac

ity
 to

 h
an

dl
e

th
e

nu
m

be
r o

f c
on

ne
ct

io
ns

 th
at

 y
ou

 p
la

n
to

 s
et

 u
p

to
 it

. I
f t

hi
s

ap
pl

ic
at

io
n

is
 a

ls
o

ap
pl

ic
at

io
n

se
rv

er
–b

as
ed

, f
or

 in
st

an
ce

,
yo

u
m

ay
 n

ee
d

to
 e

ns
ur

e
th

at
 it

s
th

re
ad

s
ar

e
eq

ua
l t

o
th

e
nu

m
be

r o
f c

on
ne

ct
io

ns
 y

ou
 h

av
e

fo
re

se
en

.

 –
 c

on
tin

ue
d

AU5334.indb 130 11/19/07 7:49:33 AM

Designing for Performance  n  131

Ta
b

le
 5

.4
 

R
es

o
u

rc
e

Po
o

ls

O
b

je
ct

s
A

lt
ho

ug
h

no
t t

ru
e

fo
r a

ll
ap

p
lic

at
io

n
se

rv
er

s,
 m

os
t m

od
er

n
on

es
 u

se
 a

n
ob

je
ct

 o
r c

om
p

on
en

t p
ar

ad
ig

m
.In

 o
rd

er
 to

m

an
ag

e
th

e
m

em
or

y
us

ag
e

of
 th

e
se

rv
er

, i
t w

ill
 n

ot
 a

llo
w

 a
n

un
lim

ite
d

cr
ea

tio
n

of
 th

e
b

as
e

co
m

p
on

en
ts

 in
to

 m
em

or
y,

b

ut
 w

ill
 ra

th
er

 re
ly

 o
n

p
oo

ls
 o

f o
b

je
ct

s
th

at
 c

an
 o

nl
y

gr
ow

 to
 a

 c
er

ta
in

 s
iz

e.
 T

he
se

 o
b

je
ct

 p
oo

ls
 a

re
 a

 re
so

ur
ce

 li
ke

 a
ny

ot

he
r i

n
th

e
sy

st
em

, a
nd

 h
en

ce
 c

ou
ld

 b
e

si
ze

d
ac

co
rd

in
g

to
 th

e
sa

m
e

ru
le

s
as

 th
e

nu
m

b
er

 o
f c

on
ne

ct
io

ns
 d

is
cu

ss
ed

ab

ov
e.

 W
e

di
sc

us
s

ob
je

ct
s

se
p

ar
at

el
y

b
ec

au
se

 s
om

e
ap

p
lic

at
io

n
se

rv
er

s
us

e
th

e
ob

je
ct

 p
oo

l n
ot

 o
nl

y
to

 re
cy

cl
e

ol
d

ob
je

ct
s

in
 o

rd
er

 to
 c

re
at

e
ne

w
 o

ne
s,

 b
ut

 a
ls

o
as

 a
 tr

an
sa

ct
io

na
l c

ac
he

. I
n

th
is

 c
as

e
th

e
ca

ch
e

is
 u

se
d

to
 m

ai
nt

ai
n

th
e

st
at

e
of

 o
b

je
ct

s
du

rin
g

as
 p

ar
t o

f t
he

 li
fe

cy
cl

e
of

 a
 tr

an
sa

ct
io

n.
 F

or
 s

om
e

ty
p

es
 o

f r
eq

ue
st

s
it

is
 p

os
si

b
le

 th
at

 a
 la

rg
e

nu
m

b
er

 o
f

ob
je

ct
s

p
ar

tic
ip

at
e

in
 a

 tr
an

sa
ct

io
n

an
d

he
nc

e
th

e
si

ze
 o

f t
he

 o
b

je
ct

 p
oo

l s
ho

ul
d

b
e

b
as

ed
 o

n
th

e
la

rg
es

t n
um

b
er

 o
f

ob
je

ct
s

th
at

 m
ay

 p
ar

tic
ip

at
e

in
 a

 tr
an

sa
ct

io
n

of
 y

ou
r r

eq
ue

st
. P

oo
lS

iz
e

=
 O

b
je

ct
sI

nT
ra

ns
ac

tio
n

*
Th

re
ad

s.
 In

 th
is

 c
as

e
yo

u
w

ill
 h

av
e

to
 v

er
ify

 th
at

 y
ou

r s
ys

te
m

 h
as

 e
no

ug
h

m
em

or
y

to
 h

os
t a

ll
of

 th
e

di
ff

er
en

t o
b

je
ct

 p
oo

ls
.

AU5334.indb 131 11/19/07 7:49:33 AM

132  n  Patterns for Performance and Operability

times). These are ideal when messages need to be broadcast very efficiently
but actual delivery is not mandatory, and when the receiving system tolerates
multiple deliveries of the same message.
If guaranteed delivery is what you are looking for, the messaging solution you
will choose will have to include a mechanism to persist the data. This means
that performance will be impacted by the additional I/O cost that will be
incurred. Depending on the underlying persistence mechanism, the impact can
be non-negligible. Many messaging systems (e.g., IBM WebSphere MQ) will
use a database system as their persistence mechanism. This provides additional
flexibility for the management of the messages—the messages can be indexed
by topic or other criteria, or the transaction manager of the database engine
can be used to enroll the message persistence activity into a transaction—but
it does add additional overhead to the whole operation of sending a message. If
all you are interested in is that your message is guaranteed to get from point A
to point B, a simple file-based solution may be what you require.
Your requirements may also involve complex routing, in which case the
throughput of your setup will be dependent on the routing rules you have
defined and the associated network infrastructure. In the case of complex
routing across multiple networks, the overall behavior of this type of middle-
ware will be more dependent on network latency, network traffic, etc. rather
than on the configuration of the middleware itself.

One of the nicer things about messaging middleware is that performance prob-
lems associated with these tools are fairly easy to identify: just find the location of
where messages are getting queued and you’ve found where the problem is. This
does not mean, however, that the problem will be easy to resolve.

ETLs
Now that we have discussed software that is used mainly in processing discrete
units of work, such as messages and online requests, let’s talk a bit about tools
that are geared toward the processing of high volume “batch” units of work. This
software family gets referred to as ETL, which stands for extract, transform, and
load—in other words, extract a lot of information from one or more places (data-
bases, files, or other storage media), transform it in some way, and load it back into
(usually) another place or set of places.

ETLs are by their very nature very resource intensive. They will try to squeeze
the most out of your system in order to extract the data as quickly as possible,
transform it at blazing speed, and load it back to its target. Extracting and loading
will put a heavy strain on your system’s I/O capacity, whereas the transformation
will drain memory and CPU. These tools usually offer an impressive number of
parameters that will help you tune them so that they will solely use those resources
that you want them to use.

n

n

AU5334.indb 132 11/19/07 7:49:33 AM

Designing for Performance  n  133

The one thing to understand about this type of software is that it is mainly a way
to ease the implementation of processes that conform to the pipe-and-filter pattern.
The main characteristic of this pattern is that it is linear and does not automatically
lend itself to parallelization, which would allow cutting the time necessary to per-
form the required transformations. This means that it will often be the job of the
ETL engineer to determine how to parallelize the transformation process.

Parallelization of a pipe-and-filter process is straightforward in itself (as shown
in Figure 5.4). All you need to do is split the data up so that it can be processed
in parallel.

In practice, however, it is seldom as easy as we make it sound. It must be pos-
sible to split the data, which is dependent on a number of aspects of the data and
the transformation process:

Splitting the data and processing it in parallel must be less costly than process-
ing everything linearly. In other words, the splitting process must be low-cost,
and you must have sufficient CPU power to process the data in parallel.
The data entities being split up must not be interdependent from the perspec-
tive of the filtering process, otherwise that process will not provide the proper
function.
When other data inputs are used within the same process, it must be possible
to split those inputs as well or to replicate them so that one copy is available
to each parallel process.

If you are unable to split up the processing into a number of parallel chunks,
you may be reduced to finding the most appropriate ETL solution for you. As
usual, the software landscape is rife with different kinds of solutions in this

n

n

n

Data Data

Data Data

Pipe

Pipe Split

Pipe

Pipe

Pipe

Pipe

Pipe Pipe

Pipe

PipeFilter

Filter

Filter

Filter

Join

Figure 5.4   Parallelization of a pipe-and-filter process.

AU5334.indb 133 11/19/07 7:49:35 AM

134  n  Patterns for Performance and Operability

problem space. Some solutions will be very generic, favoring all sorts of transfor-
mations and ease of use but providing results that are not always optimal. Other
solutions are targeted at very specific problems, e.g. sorting of data. Many database
vendors also offer solutions to handle data extracted from their database; these
solutions are usually not very user friendly or loaded with functionality, but they
are designed to optimize the extraction and load process from and to the database,
which is often costly due to its I/O nature.

Hardware Infrastructure
Phew! You’ve made it this far. You’ve made sure that your requirements were speci-
fied with performance in mind, you designed your application to use every bit of
CPU and memory available to you, you optimized your code, and you tuned all of
the software pieces you were reliant upon. And still you want more bang for your
buck. It is now time to look at your hardware infrastructure.

Resources
When it comes to hardware, the problem of performance becomes a problem of
managing the resources that you have available to you, knowing that most of these
resources do not come cheap. You’ll have to determine the configuration that will
optimize your usage of CPU, storage, network, and possibly other hardware devices.
Where to look first for optimization options will highly depend on the profile of
your application.

If you are dealing with a computing intensive application you’ll want to have
the fastest CPUs, and possibly a lot of them as long as the application scales hori-
zontally. For such applications, looking at network throughput and latency may
only be necessary if you want to distribute the processing across multiple computer
nodes, and communication between said nodes is intensive. Storage will likely be
of little concern.

If you are dealing with an online transaction system, storage and network capa-
bilities will likely be of the essence. You’ll want to look at network hardware to
distribute your load across multiple servers to make sure that your database and
storage systems are properly tuned to minimize I/O latency and maximize through-
put, and you’ll want to do the same for your network. The network topology will
have to be designed to minimize packet hops; preferably those computer nodes that
exchange a lot of data should be on the same subnet and use gigabit connectivity (or
better, if available). Storage will require direct channel attachments of the storage
devices probably using technologies such as dark fiber.

If you are dealing with heavy batch processing, you’ll have to be particularly
attentive to the I/O capabilities of your servers. You’ll want to ensure that I/O

AU5334.indb 134 11/19/07 7:49:35 AM

Designing for Performance  n  135

bandwidth can be tuned and that sufficient I/O channels are available on the
machine to allow some level of scalability for I/O operations.

Whatever your challenge, you’ll want to make sure that a proper capacity pro-
jection was done as part of your project, and that it is later substantiated by taking
adequate measurements during your performance and sustainability tests.

Resource Sharing, a.k.a. Federation
Many companies these days are either looking at federating their
hardware or are actively doing so. Companies look at hardware shar-
ing primarily as a means to optimize usage of an expensive pool of
resources and secondarily as a means to facilitate management of this
resource pool. To support this, a number of vendors have come up with
an offering that will allow their customers to request additional hard-
ware power when the need arises (e.g., IBM’s On Demand program).

There are different strategies that can be applied to federate your
resources. You can use hardware capabilities to make this possible;
one of the most prominent technologies in this area has been dubbed
“blade” technology, which relates to the ability of hardware supporting
this technology to be “sliced and diced” in a manner that will sup-
port the user’s processing requirements. The advantage of this type of
technology is that the split up of processing resources is done at the
hardware level; hence, there will be no degradation of performance to
a target system running on the partition of a blade server. This system
will have its own dedicated processors, memory, and I/O busses.

A different approach to federation involves the use of virtual machine
technology to create “virtual hardware,” which uses the capacity of the
underlying system for actual operations. This approach does impact
performance of the system as a whole. Although the exact capacity con-
sumption of each virtual machine is in most cases controllable (depend-
ing on which vendor solution you use), the code used to “virtualize” the
hardware resources will always induce a level of overhead to the overall
processing power of the system, thereby lowering its raw performance.
This approach does have the advantage that it will allow you to deploy
an image of a virtual machine on the target platform using a predefined
set of virtualized hardware, which means that you can use a similar
image to deploy to your development, test, and production environ-
ment. This has clear advantages for people wanting to tightly control
the promotion process of a software solution.

AU5334.indb 135 11/19/07 7:49:35 AM

136  n  Patterns for Performance and Operability

Yet another approach that we have seen used is the federation of appli-
cations using application servers. In this case applications are deployed
as packages (e.g., EAR files), onto the target application server, and it
is the resources dedicated to the applications server (see page 125) that
will be shared by the different applications. This is probably the most
difficult approach to control from a capacity-management perspec-
tive. If applications deployed in this way are not well behaved and the
application server resources they will use are not segregated, situations
will arise in which one application ends up consuming all resources,
thereby leaving the other applications with no processing power. It is
therefore important, should you choose this approach, to impose strict
regulations upon the application developers regarding the way they use
application server resources, and how they configure their components.
You should try and favor independent resource pool usages (see Table
5.4) as much as possible; this way each application will impact only its
own resources.

Summary
Somebody recently told me, “presentation is 50% of success,” and although he was
talking about the clothes he was wearing I believe this is very true when it comes to
presenting information to a user.

For the end user, the perception of performance is what counts; it is quite pos-
sible that the underlying system is doing more processing than what would be abso-
lutely necessary, but if this gives the user the impression that everything is going
very fast, you have probably done something right.

Today’s AJAX solutions are a big help at making the user perceive things are
going faster for instance. While the user fills out a Web form, his inputs are being
checked by XML-based requests made in the background. Although the XMLs
being sent back and forth between the Web browser and the server require a lot
more capacity from the server systems than if one request was used for the whole
validation process, the overall perception to the user is that his work, and therefore
the system, is done faster.

Another one of today’s technologies that can be used to give the user a perception
of faster processing pertains to the use of work-flow technology. Using a work-flow
system (a.k.a. an exception management system) you can refrain from executing
tedious parts of the processing as part of the user’s transaction. If a complex valida-
tion can be split up into a simple validation capturing 80% of the problems and a
more involved validation that is required yet only triggers an error 20% of the time,
the secondary check can be left for a later time and executed as a separate part of the
work-flow process. When the error is triggered, either a compensating action can be
taken or the user can be notified at that time that something went wrong. By using

AU5334.indb 136 11/19/07 7:49:36 AM

Designing for Performance  n  137

this strategy the user will not be bothered by the overhead of the difficult validation
and will only be bothered by it, after the fact, 20% of the time.

These technologies may not be the right ones to solve your performance prob-
lems, but decoupling parts of the processing from the user’s interaction process may
well be what you need for some of them. So don’t always think of performance;
think of appearance.

AU5334.indb 137 11/19/07 7:49:36 AM

139

Chapter 6	

Test Planning

Non-functional test planning and execution is a challenge. Planning your scope,
executing your tests, and interpreting results are tasks that require a delicate bal-
ance of business understanding, technical expertise, and objectivity. Whereas func-
tional testing can be reliably mapped to functional requirements, non-functional
test scope is derived from a usage model that is an approximation of how the system
will be used.

To ensure effective test cycles, the following planning activities are important:

	 1. 	Identify high-level non-functional scope: In this activity, you identify
exactly which requirements will be tested, to what degree they will be tested,
and when they will be tested.

	 2. 	Review and accept non-functional requirements: If the business analyst
and technical participants have completed quality non-functional require-
ments, review and acceptance of the requirements will be a short meeting.
This is an opportunity to ask questions, clarify understanding, and gain an
appreciation for where special emphasis may be required.

	 3. 	Define core and optional test cases: For complex systems, the nature of
non-functional testing is such that it is very difficult to test every permutation
of human and machine inputs. In this activity, the non-functional test lead
proposes a set of detailed test cases that outline the test objective, required
data, configurations, test steps, and supporting apparatus.

	 4.	Define test tools and supplementary software: The last ten years have seen
major advances in the variety and capabilities of software testing tools. In
order to create artificial input volumes, you will very likely require a software
package. There are a number of packages available and we will discuss them
in this chapter.

AU5334.indb 139 11/19/07 7:49:37 AM

140  n  Patterns for Performance and Operability

	 5. 	Determine resource and environment requirements: Execution of non-
functional tests is a technical activity requiring development expertise. You
need to account for this in your resource model.

	 6. 	Prioritize and schedule test execution: Non-functional test execution
usually requires most of the application functionality to be working simulta-
neously. If the development team is creating the system in a series of phased
deliverables, you will need to accommodate this in your scheduling. There
is also a clear advantage to bringing high-risk test activities as far forward as
possible.

As you complete the planning activities listed above, you should record your
decisions and intentions in a non-functional test strategy document. The strategy
document is a good reference for yourself and other stakeholders who require a view
of your test plan and methodology.

This chapter reviews each of the listed elements of the test planning phase. We
illustrate examples of where poor planning has caused projects to incur delays or
omit important test coverage. This chapter is mandatory reading for profession-
als responsible for ensuring that quality non-functional test coverage is executed
according to schedule.

Defining Your Scope
It is tempting to take the position that you must test everything, but this perspective
is impractical. In determining scope, your objective is to be pragmatic and weigh
technical risk against business needs to arrive at a scope that adequately mitigates
business risk. By definition, non-functional testing concerns itself with testing sce-
narios during which

Things go wrong
A number of things happen all at once
Extreme conditions are reached (e.g., extreme data volumes)

As we shall see, there are hundreds of ways that things can go wrong. For com-
plex systems, the permutations of human and machine inputs are virtually endless.
In this section, we look at ways of coping with the magnitude of possible test cases
that this reality presents for both operability and performance test types. But first we
will discuss how to assign components inside and outside of your system boundary.

System Boundaries
Your test strategy must include a statement defining system boundaries for your
intended scope. Components that fall within your system boundary are generally

n
n
n

AU5334.indb 140 11/19/07 7:49:37 AM

Test Planning  n  141

components that are being developed as part of the program or project under which
you are working. For these components it is expected that you have access to a
software vendor or in-house development team. It is also expected that you have an
in-house testing environment along with the deployment capability to install and
configure the application.

Components that are outside the system boundary are external systems and
dependencies over which you have no control. In defining these components out-
side of the system boundary, you assume that they will meet an agreed upon service
level in the production environment and do not require any direct testing as part
of your efforts.

As we shall see in Chapter 7, for these components it is often necessary to simu-
late the external system with a homegrown component that stands in for the exter-
nal dependency in order to support your test scenarios. Let’s look at an example
architecture, as shown in Figure 6.1, and apply the previous definitions to deter-
mine a system boundary.

The example shown in Figure 6.1 describes a CRM (customer relationship man-
agement) solution in which 500+ customer service representatives (CSRs) respond
to customer telephone inquiries; these customer service agents are widely distrib-
uted geographically. Primarily, agents work from home on desktop computers that
are provided to them for this purpose. The client application communicates with
an application server using SOAP/HTTPS. A collection of services are exposed as
Web services to the application server for shared functionality like sending email
and faxes. Customer information is drawn from an enterprise customer database
that is accessed over a MQ (message queue) series messaging interface.

MQ Series

SOAP/HTTP

SOAP/HTTPS Application
Server

Enterprise Services
Gateway

Enterprise
Customer
Database

Agent
Desktop

Win 32
Thick Client

Oracle Application
Database

SqlNet

System Boundary

Figure 6.1  Example system boundary for a CRM application.

AU5334.indb 141 11/19/07 7:49:38 AM

142  n  Patterns for Performance and Operability

In this example, all of the components that are shown within the system bound-
ary are being upgraded as part of a major system enhancement. The development
team is actively engaged and can assist with scoping, deployment, troubleshooting,
tuning. The enterprise customer database and the enterprise gateway tier, however,
are existing services that have been previously tested. These systems are actually
already in the production environment and support similar loads to that which will
be imposed by the new system.

The organization has tested these systems well beyond the business usage model
for the distributed call center. Both of these applications are in a support mode and
do not have development resources available to assist with testing and development.
Furthermore, these enterprise services belong to a different division in the organiza-
tion. The bureaucracy required to include them within the system boundary would
cause costs to multiply. In Chapter 7 we will see how our system boundary will
influence our test execution.

It should be obvious that the elements within our system boundary are high risk
and justify commanding the bulk of our testing efforts. The supporting legacy sys-
tems are outside our system boundary. You will need to make a similar judgment call
for your application and document it in your test strategy as part of your test plan-
ning. Our next area of focus is on how to scope the coverage for the test case itself.

Scope of Operability

For even moderately complex systems, there are a myriad of ways that things can
go wrong. Consider a simple example like database failure. Here is a list of different
scenarios in which your application can experience database failures. We use an
Oracle database as an example:

The network fails and can no longer route responses back to the application
The network fails and can no longer forward requests to the database
The network cannot find the database server
The network is functioning, but latency increases and causes 50% of requests
to timeout
The database is listening to requests, but is returning an authentication error
All Oracle processes on the database are down
The listener on the database is down, but the database is otherwise healthy
The listener is running and accepting requests, but the shared server processes
are down
The database is experiencing performance issues and 50% of requests are
timing out
The database is refusing new connections
The database is refusing new connections after a delay of two minutes
The database is returning transaction errors

n
n
n
n

n
n
n
n

n

n
n
n

AU5334.indb 142 11/19/07 7:49:39 AM

Test Planning  n  143

The database is configured with Real Application Clustering (RAC) and one of
the servers has stopped responding
One or both of the servers in the RAC cluster experiences memory corruption
One or both of the servers in the RAC cluster is unplugged
One or both of the servers in the RAC cluster experiences kernel panic
An Oracle shared server process crashes and creates a core dump
Oracle server runs out of disk for table extents

In this list we have included only scenarios that are external to your software
system. The client connectivity can also be subject to a host of potentially fatal
types of errors. If you decide to conduct non-functional test scope for database
failure, which of the above test cases will you include? No one would dispute that
including all of these failure scenarios results in the highest-quality test coverage,
but the testing may take four weeks to execute. Is this practical?

To make matters worse, the load profile for the system is also variable. For
each of the failure scenarios above there are potentially hundreds of variations of
in-flight requests based on time of day and season, not to mention the randomness
associated with individual user behavior. Consider a scenario in which there are 12
distinct and unique scheduled jobs for your system. Are you going to test each and
every job with each of the 20 failure scenarios above? This would result in 120 test
cases just for the combination of job execution and database failure. We haven’t yet
considered human and machine online inputs in this planning.

As you can see, defining your test scope means making judicious decisions. A
prudent approach includes consideration of the following inputs:

How much business risk is associated with this functionality?
From a technical point of view, how many unique test cases are associated
with failure for this component?
From a technical perspective, what is the likelihood of each type of failure?

This discussion can only be had by involving the business and technical par-
ticipants who helped to formulate your non-functional requirements. If we revisit
the list of Oracle database failure types from above, we can group them based on
similarity to one another as follows:

Database Not Responding (50% Likely)
The network fails and can no longer route responses back to the application
The network fails and can no longer forward requests back to the application
The network cannot find the database server
The network is functioning, but latency increases and causes 50% of requests
to timeout
All Oracle processes on the database are down

n

n
n
n
n
n

n
n

n

n
n
n
n

n

AU5334.indb 143 11/19/07 7:49:39 AM

144  n  Patterns for Performance and Operability

The database is experiencing performance issues, and 50% of requests are
timing out
The database is refusing new connections after a delay of two minutes.

Database Responding with Application Error (25% Likely)
The database is listening to requests, but is returning an authentication error
The listener on the database is down, but the database is otherwise healthy
The listener is running and accepting requests, but the dispatcher and shared
server processes are not running
The database is refusing new connections
The database is returning transaction errors on every commit
Oracle server runs out of disk for table extents

Database Partially Available (25% Likely)
One or both of the servers in the RA cluster experiences memory corruption
The database is configured with Real Application Clustering and one of the
servers stops responding
One or both of the servers in the RAC cluster is unplugged
One or both of the servers in the RAC cluster experiences kernel panic
An Oracle shared server process crashes and creates a core dump

Basically, each type of failure belongs to one of three types: (1) the database is
not responding at all; (2) the database is responding immediately with an applica-
tion error; or (3) the database is only partially available.

If we agree that fundamentally the application should react in a similar way for
each of the failure modes in any one of these categories, we can take the first step
in defining our test scope.

In each of the three categories, we select the most representative failure mode for
that category. For example, we may decide that the network configuration is static
and reliable, so the most likely mode of failure would be a sudden performance/
capacity event on the database in which all or the majority of database requests
begin to timeout. We apply similar thinking to the remaining two categories and
agree on mode of failure for these categories also.

Next we examine associated business risk. In dialog with the business and tech-
nical participants, we learn that 10 of the 12 jobs scheduled for this application
are not critical. These 10 jobs perform housekeeping tasks that can be completed
anytime within a one week window. If a job fails or does not run, its processing will
be completed the following day. Further, these ten jobs run on a dedicated server
that is isolated from the more critical online application. The remaining two jobs,
however, are highly business critical. Architecturally, these jobs are constrained to

n

n

n
n
n

n
n
n

n
n

n
n
n

AU5334.indb 144 11/19/07 7:49:40 AM

Test Planning  n  145

share the online application server and, to make matters worse, they run at the end
of the peak usage period for the online application. In this case, it is an easy deci-
sion to categorize these jobs as mandatory test cases for each of the three failure
modes that we have defined. As a result of our analysis, instead of 120 test cases, we
now have six test cases. Since the two jobs are independent of one another and run
on a similar schedule, we may further optimize our execution to schedule a total of
three tests in which each failure mode is tested for both of the jobs at the same time.
We will talk more about optimizing test execution later in this chapter.

Scope of Performance

The factor that most complicates performance testing efforts is variability in busi-
ness usage. In the same way that a business usage model approximates actual usage,
our test cases will approximate the business usage model. How heavily you are able
to invest in performance testing will be a function of perceived risk and expected
cost. If time and budget permits, you should derive your test cases based on 100%
of the load scenarios defined in the non-functional requirements. If this is not pos-
sible, you may need to sit down with business and technical participants to exclude
scenarios that are

Low business risk (For example, a feature is not frequently accessed and/or
a business user can tolerate poor performance)
Complex to implement because load scenario requires preconditions that are
hard to achieve or require interactions with systems outside of your system
boundary
Technically equivalent to a scenario that has already been defined for your
scope

If you do decide to exclude load scenarios, this needs to be clearly commu-
nicated to management along with the reasons for excluding these test cases. Be
prepared to justify the expected cost for full scenario coverage versus your proposed
coverage. Initially, it is difficult for most people to accept that 100% non-functional
test coverage is infeasible for most systems. Part of your challenge will be to educate
your stakeholders on the limitations we have discussed in this chapter.

Load Testing Software
Load testing software is available from a number of reputable software vendors.
In this section, we discuss product features that we feel have been critical to the
success of projects in our experience. We will also make some brief comments on
products that are available at the time of this writing.

n

n

n

AU5334.indb 145 11/19/07 7:49:40 AM

146  n  Patterns for Performance and Operability

Product Features

A prerequisite for executing performance and operability tests is a solution for how
you will create load in your testing environment. For applications having a large
number of concurrent users, a software solution is required. It is impractical to cre-
ate load manually with human testers.

Choosing the right software solution for your testing is a decision involving
many factors, including the skill set of your testers, available budget, corporate
standards, software platform for your solution, and whether your application will
have an ongoing need for non-functional test capabilities. In this section we will
enumerate a number of product features that are important in any solution.

	 1.	Randomness: Many loading tools can create randomness in the execution
of your test scenarios on your behalf. This is helpful because it allows you to
execute load in a way that is generally consistent with expected usage, but
that also allows for subtle variations expected in human usage. The most
common implementation of a randomness strategy is through the concept
of think time. Think time refers to the length of pauses between execution of
steps in the load scenario. Think time simulates the time that a user or exter-
nal system spends looking at a screen or otherwise contemplating/processing
outputs from your system.

	 2.	Supported interfaces (web, wireless, client/server, etc.): Some load test-
ing solutions support exclusively web-based applications. If you represent the
needs of a large organization, you should inventory the full range of appli-
cations for which testing will be required and make sure that you choose a
solution that can support each of them. For example, only a subset of load
testing tools can support client/server protocols necessary to simulate thick
client interaction.

	 3.	Scripting and programmable logic: Some solutions offer you a great deal of
flexibility in terms of building logic into your load scenarios. Other solutions
limit you to a record/playback capability in which there is limited means to
make scripts intelligent. A single “smart” script may support three differ-
ent scenarios using condition logic. A scripting language also enables you to
include non-standard pauses and validation conditions. If you suspect that
you will need to develop more complex load scenarios for your application,
make sure that you have the required development expertise available. Prod-
ucts may employ widely used scripting languages like Visual Basic or Jython.
Other products require use of their own proprietary language.

	 4.	Cost: Predictably, feature-rich, industry-leading load solutions can be very
expensive. In contrast, there are some very functional open source solutions
that are free.

	 5.	Externalizing data from scripting steps: A major part of the variation in
many load scenarios is the variation in data. In the online banking example

AU5334.indb 146 11/19/07 7:49:41 AM

Test Planning  n  147

from Chapter 1, we identified two types of users: retail and small-business
users. In implementing load testing scenarios, it is preferable to implement
a single script for functions like “login” that can be multi-purposed for
both retail and small-business users. In many solutions, data like username,
account number, and amount can be externalized from the script itself as part
of a configuration file.

	 6.	Overhead and concurrency: If you need to simulate 100s or 1000s of con-
current users, you will need a load-testing platform that is robust. The load-
ing software needs to maintain state for each concurrent request and reliably
report performance statistics and error rate to a central database as part of
your results. Software packages capable of supporting high volumes do so
by implementing a distributed set of controllers and agent processes that can
create load from a scalable number of server machines. Software vendors with
this level of support will charge customers based on the number of concurrent
scenarios that they need to execute.

	 7.	Reporting capabilities: One of the advantages of using a load testing solu-
tion is that reporting, including statistics like average, minimum, maximum,
and percentile, is completed on your behalf. Depending on the vendor, many
reports include detailed graphing capabilities and comparison against previ-
ous test cycles.

	 8.	Monitoring: Some vendors include plug-ins for monitoring software com-
ponents in your solution itself. Such plug-ins can monitor OS (operating sys-
tem) parameters like memory, threads, and CPU (central processing unit).
Plug-ins also exist for monitoring vendor-specific platforms that implement
standards such as J2EE and .NET. The authors recommend leveraging the
monitoring platform that is intended for the production environment as part
of your testing strategy. Monitoring capabilities that are bundled with load
testing software can be used to supplement, but not replace, the monitoring
that should already be in your test environment.

Vendor Products
Selecting the right load testing software for your system will depend on many fac-
tors, including how you prioritize features described in the previous section. In this
section, we include some objective opinion on some of the more popular load test-
ing tools available at time of writing.

Mercury LoadRunner, now a part of HP’s IT management product suite,
enjoys broad market penetration amongst performance testing software. Load-
Runner is a rich solution that provides all of the features listed in the previous
section. For Web-based applications, LoadRunner scripts can be developed using
a record/playback approach. The record/playback process generates a proprietary
script that can be inspected and/or altered. LoadRunner also supports load testing

AU5334.indb 147 11/19/07 7:49:41 AM

148  n  Patterns for Performance and Operability

for non-Web-based interfaces including client server, legacy, Citrix, Java, .NET and
all widely known (enterprise resource processing) / (customer relationship man-
agement) solutions like PeopleSoft, Oracle, SAP, and Siebel. From a monitoring
perspective, there is rich plug-in support for a number of platforms and vendors
including J2EE, .NET, Siebel, Oracle, and SAP. Features and flexibility come at a
cost. Mercury’s product is the most expensive to license in the industry. Further,
there is no synergy between the load testing solution and the automated functional
test suite (WinRunner and QTP) so resources cannot rely on a common skill set in
order to develop scripts for functional and non-functional scenarios.

E-Load, from Empirix, is a load testing tool, supporting each of the features
listed in the previous section. The Empirix product is focused on web-based and
call center applications, thus lacking support for the full range of systems that
are likely to exist in a large enterprise. E-Load can scale to simulate thousands of
concurrent users and uses a distributed architecture to do so. E-Load is based on
the Jboss open-source J2EE application server. The authors have found that some
tuning is required out of box to create significant loads. Also, the stability of the
loading engine seems to degrade as scenario complexity and length increases. For
tests that must run for longer than 2 hours, the authors have found that this tool
may require careful monitoring and occasionally must be restarted.

If budget concerns are overriding for your project, there are a number of open-
source contributions to the area of load testing software. Jmeter, from the Apache
Software Foundation, is a popular Jakarta-based Java solution that can be used
to create loads for different types of interfaces, among them: Web applications,
Perl scripts, Java objects, database queries, and FTP (file transfer protocol) servers.
Because Jmeter is open-source, developers on your project can extend/customize
Jmeter as needed. For example, custom plug-ins can be written to create load for
unsupported interfaces. During tests, statistics capture and graphing capabilities
are highly configurable but do not have the same ease of use as other vendor-sup-
ported solutions. Jmeter is written in pure Java, and thus can run on any platform
with support for a JRE (Java runtime environment).

Grinder, available from SourceForge.net, is another popular open-source load
testing tool. Like each of the preceding three products, Grinder supports a distrib-
uted architecture for creating large concurrent volumes of requests. As of version
1.3, Grinder scenario execution is driven by Jython scripting. Jython is a script-
ing language based on Python that adds support for Java. Jython allows for great
flexibility in scenario scripting but requires a developer’s programming skill set.
Grinder is a good choice for developers or technical resources in a QA (quality
assurance) role who need to do discrete testing of services over standard proto-
cols such as IIOP, RMI/IIOP, RMI/JRMP, JMS, POP3, SMTP, FTP, and LDAP,
SOAP, XML-RPC, HTTP, HTTPS, and JDBC.

PureLoad, from Minq, is another offering in the area of loading testing soft-
ware. Minq is the maker of the popular Java-based DBVisualizer database utility
familiar to many developers. PureLoad includes a record/playback feature for Web-

AU5334.indb 148 11/19/07 7:49:42 AM

Test Planning  n  149

based applications and also supports authoring of scripts to test services exposed
over standard protocols such as NNTP, FTP, SMTP, IMAP, JDBC, LDAP, Telnet,
and DNS. Other standard features include creation and storage of test scenarios,
statistics capture, and graphical presentation of results.

Additional Testing Apparatus
Simulators, Reflectors, and Injectors

There may be scenarios in which your software system must interact with external
systems that are outside of your system boundary. For these cases, additional test-
ing apparatus may be required in order to conduct non-functional testing. In the
example earlier in this chapter, we determined that performance test cases that
exercise the enterprise customer database are critical, but that there is no instance
of this system available for testing. The only way to test these scenarios is to devise
additional test apparatus to stand in for the enterprise customer database. This
stand-in processing will need to mimic the enterprise customer database (ECD)
interface in a manner consistent with the service level agreement (SLA) for this
system. For example, if all requests over an MQ to the EDC system are guaranteed
to respond in 2 s or less, then our additional test apparatus should also behave in
this way.

In practice, there are three types of such test apparatus:

	 1.	Injectors: Injectors are the simplest form of test apparatus; injectors create
inputs to your system, but do not expect or require any response from your
system. Injectors are used to simulate load representing machine inputs. Injec-
tion capability is often a supported feature of your load testing software.

	 2.	Reflectors: Reflectors are used to stand in for an external system that par-
ticipates in request/response with your system. A reflector is a “dumb” server
process that listens for requests and reflects back a static or crude response.
The goal of the reflector is to provide the minimum response needed for your
loading scenarios to operate.

	 3.	Simulators: Simulators are “smart” server processes that actually mimic a
complex interplay between your system and an external system. A simula-
tor may actually store state information and intelligently construct response
messages based on the request or on previous requests. Some systems require
a simulator in order for even the simplest test cases to execute. If you build
a simulator, you may be able to cross-purpose the simulator to support
functional testing and training purposes. Ultimately, an investment in a sim-
ulator is a technical activity requiring design and development; as such, it is
the most complex and costly of these three apparatuses.

	 4.	Stubs: A stub is a piece of application functionality that is embedded in your
system and provides stand-in processing for an external system. A stub is like

AU5334.indb 149 11/19/07 7:49:42 AM

150  n  Patterns for Performance and Operability

a simulator or a reflector except it is part of the run-time code for the applica-
tion itself. Typically, stubs need to be configured to override the intended
production configuration for the application. Stubs can be a very convenient
means of substituting for an external system but because of their embedded
nature, they will compete with your application for resources. An externally
hosted simulator or reflector will yield more accurate performance and capac-
ity results but will be more cumbersome to implement and maintain.

If you decide that additional testing apparatus is required, you will need to staff
a custom development activity. In most cases, the development team will have the
required skills and will be the most familiar with the interfaces of the system. The
need for test apparatus is frequently an afterthought for projects and becomes an
unplanned burden for the development team. Hopefully, this need is identified
early enough in your project that it can be accommodated in a planned and coor-
dinated way. By documenting your apparatus requirements in your non-functional
test strategy, you are communicating your needs to the development team.

You will also need to decide where any additional test apparatus will be hosted.
Generally, you have two choices. You can host the software on the system infrastruc-
ture itself or on additional infrastructure designated for this purpose. Since your test
apparatus is standing in for components that are outside your system boundary, it is
preferable that they be hosted on dedicated infrastructure. Unfortunately, dedicated
infrastructure means additional cost. If required, this infrastructure should have
been planned for in your project initiation. In many cases, there will be an opportu-
nity to co-host loading software and test apparatus on the same hardware so long as
it has been sized with sufficient capacity during project initiation.

Test Beds
Your test bed is comprised of two elements: data required for load scenarios, and
data that is already seeded in the software system to represent data populated by
historical, previously-executed transactions.

Test-Case Data
Your load scenarios will determine what test-case data is required. An important
feature of the test data is the amount of variation required. Let’s consider a securities
trading solution that coordinates settlement instructions on behalf of financial insti-
tutions. For such a system, there might be seven distinct types of request message
types. Each request type may involve a security ID that identifies the unique security
that is involved in the request. If the security IDs are referenced against a database
and/or influence the complexity of processing, it will be important for the security
IDs used in the load scenario to be varied and representative of the real world.

AU5334.indb 150 11/19/07 7:49:43 AM

Test Planning  n  151

In assembling your test bed you will need to work with business resources to
identify the range of security IDs that will be subjected to the system in order to
do accurate testing. On the other hand, other pieces of data in the request may not
be important. Price information may be effectively “pass through” in this system.
In other words, there is no special processing for price information. Price informa-
tion may be logged to a database table and the performance characteristics are not
impacted by variations in the data.

These types of decisions can only be made in the course of reviewing test cases
with technical project participants. Omitting natural, real-world variation in your
data may be a time-saving simplification, but it also introduces marginal risk. Tech-
nical resources may not correctly anticipate the effect that variation in your test bed
will have on the system. As a result, it is always preferable to make your test bed as
similar to the expected production inputs as possible.

Test Environments
Your test environment should have been defined during the initiation and plan-
ning phase for your project. Projects that fail to allocate infrastructure for hard-
ware during this phase can experience serious delays as time is wasted waiting
to procure additional environments. Your environment will need to support the
software system itself, load testing tools, and any additional test apparatus that
you have identified.

In planning your test environment you will need to define the level of iso-
lation you will achieve, the change management procedures you will follow,
and the scale of your test environment as a proportion of the target production
environment.

Isolation

At a minimum, you should strive for isolation of the software system from all other
software components, including the load testing solution and any supporting test
apparatus. The part of the system that you are isolating is, of course, all components
that you have identified that are within your system boundary. As we will see in
the next chapter, it can be difficult to achieve repeatable test results even in well
isolated environments.

Many organizations have reluctantly conceded that the only way to reliably test
mission-critical systems is to introduce a production-scale environment that is ded-
icated to non-functional testing. Such environments are commonly referred to as
staging, pre-production, performance, and certification environments. In addition to
supporting non-functional activities, these environments are useful for rehearsing
production deployments. Attractive as this option is, if you do not have budget or

AU5334.indb 151 11/19/07 7:49:43 AM

152  n  Patterns for Performance and Operability

time for a production-scale, dedicated testing environment then you may consider
one of the following alternatives:

	 1.	Reduced-scale Dedicated Test Environment: If the capital cost of a pro-
duction-scale environment is prohibitive, you may consider a smaller-scale,
but dedicated, environment to support non-functional testing. This approach
requires you to make compromises and accept some additional risk as you
must extrapolate test results to the target production environment.

	 2.	Re-purpose production hardware: If you are building a new system for
which there is currently no production environment, you may be able to
test using the target production infrastructure itself. Of course, this strat-
egy means that you will lose your test environment once the production sys-
tem is commissioned. More specifically, this means that you will not have
a non-production environment in which you can regression-test changes or
reproduce load-related issues. For mission-critical systems, neither of these
consequences are acceptable.

	 3.	Time-shift existing hardware: With some coordination, you can dedicate
your existing functional testing hardware for performance testing during
specific intervals. For example, non-functional testing can be scheduled on
evenings and weekends. You should recognize that this type of arrangement
is usually not an efficient use of resources, nor does it provide for much con-
tingency if any of the activities on the shared infrastructure begin to track
behind schedule.

	 4.	Create logical instances: If neither of the previous two options are realistic,
you should at least configure your system as its own logical instance. For
example, a single database server can often support many development and
QA instances of an application. For your non-functional testing you should
strive to isolate your test system on its own instance. This will mitigate outside
influences, and is more representative of the target production environment.

	 5.	Cross-purpose the Disaster Recovery (DR) environment. Increasingly,
software systems are a core part of every large business operation. Conse-
quently, in the event of a large-scale disaster, it is unacceptable for the business
to be completely deprived of its software systems. As a result, large organiza-
tions commonly make an investment in a geographically separate computing
facility that can host critical software systems in the event of a disaster. Such
a facility is referred to as a DR site. A DR site must have equivalent hardware
capacity to the primary facility that it supports in order for it to be effective
in the event of a disaster. Since this hardware is not utilized unless a disaster is
declared, it is common and cost-effective to cross-purpose this infrastructure
as a non-functional testing environment. If your software solution is sup-
ported by a disaster recovery site, you are strongly encouraged to consider
leveraging this site for your non-functional testing.

AU5334.indb 152 11/19/07 7:49:44 AM

Test Planning  n  153

In designating your test environment, you need to inventory all of the hard-
ware required by the system. This includes servers, network components, and
storage devices. Many organizations provide network and storage services from a
central pool of resources. Be sure that you understand what the SLA is for these
components and whether or not it is consistent with the target production envi-
ronment. You should also be aware of whether or not unrelated activities within
your organization can exert influence on your testing with respect to these shared
resources.

Capacity

Hardware costs for some systems can be exorbitant. The prospect of duplicating
this cost for the non-functional test environment(s) can be a menacing thought for
many executives. For mission-critical systems expected to be in operation for many
years, an investment in a proper non-functional test environment is a necessary cost
of doing business.

The cost of unscheduled downtime that could have been avoided with proper
testing usually makes the hardware cost of the test environment seem justifiable.
However, there will be situations in which a scaled-down version of the production
environment is suitable for most non-functional testing. A scaled-down version of
the production environment is designed with a reduction in some or all of the fol-
lowing resources: servers, memory, CPUs, storage and network devices. The cost of
a system one-half the size of the production system may actually be one-tenth the
expense. In such cases, the cost savings justify the risk. If you are going to proceed
with a reduced version of production for your non-functional testing, you should
review the following list of considerations:

	 1.	Operability Testing: Operability testing is usually not impacted by a scaled-
down non-functional testing environment. Failover, fault-tolerance, and
boundary testing are typically unrelated to hardware capacity.

	 2.	Performance Testing: Hardware resources like CPU and memory are read-
ily seen as commodities that can be scaled linearly. In other words, dou-
bling the load should correspond to twice the amount of CPU and memory
requirements. However, there is no guarantee of this relationship. Further,
resources specific to your application may not scale linearly. If you are unable
to test peak load for your system in your test environment because of hard-
ware limitations, you are taking a considerable risk.

	 3.	Capacity Testing: If your system is not big enough to support peak load, you
are relying on extrapolation for capacity planning and measurement. For many
systems, this is an acceptable measure, but it is not entirely without risk.

AU5334.indb 153 11/19/07 7:49:44 AM

154  n  Patterns for Performance and Operability

Change Management

An important question to answer during your test planning is who will have access to
the non-functional testing environment. Specifically, which individuals can deploy
the system into the environment and/or make changes to the system during testing?

An ideal process is one in which the same resources and procedure that are used
for deploying the production system should be used for deploying into your non-
functional testing environment. This ideal assures us that the configuration in your
test environment will be identical to production. Once your system is deployed,
there will be an ongoing need to make subtle changes to the system. We have
already discussed the need to load transaction volume—perhaps artificially. Addi-
tionally, we know that we may be introducing test apparatus into the environment
that may require configuration changes to the system.

Non-functional testing, when executed by technical resources, can be intru-
sive. Technical resources executing non-functional tests need the flexibility to make
tuning and configuration changes in order for testing to succeed. For example,
operability tests often require testing resources to purposefully configure the sys-
tem “wrong” to observe the outcome. Requirements to change the system can be
met in two ways: the same resources responsible for the deployment can make all
changes to the system on a by-request basis, or the non-functional test team can
make these changes themselves.

In either case, it is imperative that a log be maintained for all changes that
are made to the environment. The non-functional test team must be confident
that when acceptance testing is executed, the configuration and state of the system
in the test environment is aligned with the intended production configuration.
Towards the end of your test cycles, changes that have been made for tuning/opti-
mization purposes should be communicated to the deployment team, who should
then re-deploy the system into your environment for final acceptance. Following
this approach ensures that only changes that are in the production package are
deployed to the test environment at the time that acceptance testing is executed.

The detailed specification for your non-functional testing environment should
be a documented part of your testing strategy. If you are making compromises
in the capacity, isolation, or change-management processes for your environment,
then these risks should be documented in your test strategy so that management is
aware of them.

Historical Data
Many systems accumulate data over time; such data is referred to as transactional data.
The accumulation of transactional data may influence the performance characteristics
of your system and, as a result, should be modeled and included in your testing.

AU5334.indb 154 11/19/07 7:49:45 AM

Test Planning  n  155

Business volumes can be derived from the business usage model constructed
during the requirements phase of your project. Let’s revisit the example we used in
the requirements chapter. For each of the transactions in Table 6.1 we have included
the average daily volume for four key coarse inputs.

In consultation with the development team, we have learned that login and
account inquiries do not create transactional data on the system. In other words,
any number of logins and account inquiries will leave the system unchanged. As a
result, we can ignore these coarse inputs.

Bill payments and funds transfers, however, do create transactional data on the
system as they are completed. A technical resource has provided the information
shown in Table 6.2 with respect to the database.

Operationally, transactional data is preserved for up to one year in the produc-
tion system. When the system is running at steady-state, there will be one year’s
worth of business volumes in each transactional table. Combining the record
counts and business volumes, we can forecast transactional table volumes shown
in Table 6.3.

Before we begin testing, each of the tables must be loaded up to the correspond-
ing record counts. There are two ways that this can be achieved: volumes can be
generated by running load scenarios themselves or by authoring custom data-load-
ing scripts that populate data directly into the system. It can be time-consuming
to generate table volumes by running load scenarios. Also, if development for the
system is still underway, sometimes this approach isn’t even an option until much
later in the project lifecycle. Time spent authoring scripts for generating volumes
artificially is often a good investment. It gives you the flexibility to run the scripts
on demand against multiple systems without impacting your timelines. However,
you will need to weigh this against the risk of there being defects or omissions in
the script you are using to populate data.

Table 6.1  Example Business Usage: Online Banking System

Usage Attribute Requirement

Busiest Interval 12:00 noon to 1:00 pm, Friday
30% of the heaviest day’s business volumes

Login 2,309,039

Account Inquiry 1,209,049

Bill Payment 529,143

Funds Transfer 210,985

AU5334.indb 155 11/19/07 7:49:45 AM

156  n  Patterns for Performance and Operability

Table 6.3  Transactional Table Volumes

Coarse
Input

Table Number of
Records/
Coarse Input

Number of
Records/
Coarse Input

Total Number
of Records
After One Year

Bill Payment Transaction 1 529,143 529,143

Payment
information

1 529,143

Transaction
fulfillment

2 1,058,286

Transfer
Funds

Transaction 1 210,985 210,985

Transfer
information

1 210,985

Transaction
fulfillment

2 421,970

Table 6.2  Example Coarse Inputs: Online Banking System

Coarse Input Table Number of Records

Bill Payment Transaction 1

Payment information 1

Transaction fulfillment 2

Funds Transfer Transaction 1

Transfer information 1

Transaction fulfillment 2

AU5334.indb 156 11/19/07 7:49:45 AM

Test Planning  n  157

Summary
The choices you make during your test planning will determine the efficacy and
the ease with which your test execution is completed. A non-functional test strategy
is a critical planning deliverable that should be completed prior to any test execu-
tion. The non-functional test strategy enumerates the key factors and assumptions
in preparing your detailed test plan including the definition of system boundaries,
your performance and operability test scope, load testing software, additional test
apparatus, test environments, and test data.

It is usually impossible to test every mode of failure with every load scenario for
your system. This reality requires you to use informed judgment in the determina-
tion of your test scope. Systems that must interact with software systems outside
of your control may require the introduction of additional software apparatus that
mimics the interaction of external systems. The test environment in which you
execute your tests may be a full-scale replica of the target production environment
or a logically separate instance that is defined on the same infrastructure as your
functional test environment.

The choices you make for your test environment will reflect a cost-benefit analy-
sis based on your risk tolerance. Finally, the test data that is used for your test
execution requires careful forethought. Non-functional testing is only as good as
the likeness of historical and test case data used in the execution. In Chapter 7 we
will delve deeply into the next topic in the software lifecycle: test case preparation
and execution.

AU5334.indb 157 11/19/07 7:49:46 AM

159

Chapter 7

Test Preparation
and Execution

During the test planning phase of your project, you would have defined the high-
level scope of the test execution. You would also have identified specific data
requirements, characteristics of your test bed, and any additional test apparatus like
injectors, reflectors, or simulators that would be needed to efficiently execute tests.
Seeking out data, authoring data load scripts, and developing your test apparatus
are all activities that will be completed during the test preparation and execution
phase of the project. It is during this phase that you will bring each of these con-
cepts together and actually commence the testing initiative.

In this chapter, we will review test preparation and execution activities, includ-
ing common challenges that are faced and general considerations for reporting test
results to project stakeholders.

Preparation Activities
The test cases that are defined in your project scope during the planning phase
include most of the details that are needed for execution such as required data,
execution steps, success criteria. Unfortunately, there is usually considerable work
to be done before actual testing activities can begin once the development team has
declared that the application is available for testing. Prior to commencing testing
activities you will need to attend to the following details:

AU5334.indb 159 11/19/07 7:49:46 AM

160  n  Patterns for Performance and Operability

	 1.	Script Development: If you are using load testing software, you will need
to develop scripts that implement the load scenarios contained in your test
plan.

	 2.	Validating the Test Environment: When the system is deployed into the
test environment, you will need to validate that your performance scripts
execute as expected.

	 3.	Seeding the Test Bed: If you are using custom data loading scripts, these will
need to be executed against the test environment.

	 4.	Establishing Mixed Load: Mixed load is a combination of test cases that
best characterize application usage. Mixed load is the default load profile that
you should use whenever you execute operability, failover, sustainability, and
capacity testing. The mixed load should include test cases that generate load
in proportion to the actual business usage. Because the mixed load provides
broad functional coverage for the application, it is useful for verifying new
deployments in your testing environment.

	 5.	Tuning the Load: When you begin to subject the application to load, you
will need to make adjustments to parameters in the load testing software.
This is achieved through trial and error.

Script Development
The load testing software that you plan to use must support the development of test
scripts that create the virtual load needed for testing. The amount of development
required depends on the software package and the number and complexity of your
test scenarios. You should try to retain the following characteristics for your test
scripts as much as possible:

	 1.	Resilient to changes in the user interface: Software systems will change
over time, especially the user interface. Business users are likely to refine the
user experience as a system is integrated into business operations, and they
begin to see the impact of their original ideas. In order to reduce rework in
your load testing scripts, you should try to avoid validation and control logic
that is heavily dependent on details in the user interface.

	 2.	Self-sustaining: A load testing scenario may incorporate business logic that
expects the system to be in a certain state or to have transactional data pre-
populated. Where possible, it is always preferable for scripts to be self-sustain-
ing. This means that the scripts themselves create all data and preconditions
that they require. Consider the example of a load testing script for a sales-
force automation application. A load scenario may require a user to login and
view prospect information created by a different user. One way to implement
this in a self-sustaining way is to build a single script login as one user cre-
ates the prospect information. This is followed by a second step in which a

AU5334.indb 160 11/19/07 7:49:47 AM

Test Preparation and Execution  n  161

second user logs in to view the prospect information. The drawback of pair-
ing activities like this is that they may make it more difficult to achieve your
target transaction rate for coarse inputs in the right proportions. Later in this
chapter we will look at sustainability testing where a load is applied for a long
period of time. This activity will be complex to execute if a test operator must
intervene and reset conditions following each test iteration.

	 3.	Leaves system in a state where tests can be repeated: Wherever reasonably
possible, use your load scripts to leave the system in a state that does not inter-
fere with testing should you choose to resume or repeat testing at a future date.
This may seem obvious, but in some cases it can be difficult to achieve. Many
scripts that emulate human usage are required to login to the application as a
prerequisite step for all tests. However, many applications are designed such
that a user can only have one concurrent authenticated session. Trivially, this
means that each one of our scripts needs to logout at completion in order to
ensure that they can be executed again without error. However, we must also
consider the case in which our scripts stop executing abruptly before they
have the opportunity to logout. There are lots of failures that can bring this
scenario about, including the following: the load testing software could fail
midway through the test, a critical component in the application may start
failing, or a functional defect could impact the ability of a subset of scripts to
complete. In each of these cases the system will be left in a state that blocks us
from repeating our testing. In such situations we may have to rely on restart-
ing the system to reset the system state. If this is too time-consuming—or
worse, doesn’t work—we may need to build a custom solution in order to
intervene and artificially reset the system state.

	 4.	Achieve target coarse inputs with an optimal number of scripts: The busi-
ness usage defined in your requirements describes the types and transaction
rates for coarse inputs. In implementing load testing scripts, you should try
to minimize the number and complexity of scripts while achieving the target
transaction rate for your coarse inputs. The remainder of this section elabo-
rates on this topic.

If we revisit the human inputs from our online banking example in Chapter
3, we see the following targets for coarse inputs. Our challenge now is to translate
these coarse inputs (as shown in Table 7.1) into detailed load testing scripts that
create the inputs in the right proportions.

Because our system requires authentication, each of our scripts require login as
the first execution step. If we take a simple approach and write a separate script for
each coarse input, we will run into a problem.

In order to achieve a target transaction rate of 2.17 TPS for the account inquiry
operations, we will indirectly achieve a transaction rate of 2.17 TPS for login also.
That is, we will overstate the transaction rate for login by a considerable margin.
To make matters worse, the bill payment and funds transfer operations will also

AU5334.indb 161 11/19/07 7:49:47 AM

162  n  Patterns for Performance and Operability

introduce logins at their transaction rates. Our login transaction rate will end up
being the sum of all transaction rates (i.e., 3.82 TPS). This is nearly four times the
required transaction rate. If we were to follow this approach, and login performance
does not meet our requirements, how will we know if we would have the same prob-
lem if the transaction rate was 1.06 TPS? Or worse, perhaps the login operation
is so taxing that it is compromising performance of the other business operations
also? We are going to have to plan our script development more creatively.

We note that the ratio of account inquiries to logins is approximately 2-to-1. In
other words, for each login, there must be at least two account inquiries if we are
to achieve the target transaction rate for account inquiry. We can also see that for
each login there is a little less than one bill payment. For every four logins, there
appear to be about three transfers. We can accommodate these proportions if we
implement our test scripts as shown in Table 7.2.

This is a fairly simple example, and we were able to arrive at reasonable pro-
portions through a trial-and-error strategy. The approach we have taken in this
example involves creating two scripts that observe the 2-to-1 relationship between
account inquiries and logins.

We consider the login transaction rate to anchor the transaction rate for the
other operations in the script. For script 1, if our login TPS is 0.45 operations per
second, this means that, necessarily, each discrete step in the test script must also
be achieving this TPS. If we manually distribute the load between each of the two
scripts, we can make adjustments until we achieve something very close to the tar-
get transaction rates in the business usage. When we go to tune our load, we will
have the opportunity to make additional adjustments to our load scenario. For now
this seems like a reasonable approach for us to use in developing our test scripts for
our human coarse inputs.

Table 7.1  Inputs

Input Input Type Schedule

Login Human Continuous at 1.06 XXXX (TPS)

Account Inquiry: Less than five
accounts

Human Continuous at 1.87 TPS

Account Inquiry: Five accounts or
more

Human Continuous at 0.30 TPS

Bill Payment Human Continuous at 0.94 TPS

Transfer Funds Human Continuous at 0.71 TPS

AU5334.indb 162 11/19/07 7:49:48 AM

Test Preparation and Execution  n  163

Table 7.2  Test-Script Implementation

Test Script Input Type
Script
TPS

Login
Account
Inquiry

Bill
Payment

Funds
Transfer

Bill
Payment
Script

Login 0.45 0.45

Perform
account
inquiry

0.45 0.45

Perform bill
payment 1

0.45 0.45

Perform
account
inquiry

0.45 0.45

Perform bill
payment 2

0.45 0.45

Funds
Transfer
Script

Login 0.68 0.68

Perform
account
inquiry

0.68 0.68

Perform funds
transfer

0.68 0.68

Perform
account
inquiry

0.68 0.68

Totals: 1.12 1.13 2.26 0.9 0.68

Target: 1.06 1.06 2.17 0.94 0.71

AU5334.indb 163 11/19/07 7:49:48 AM

164  n  Patterns for Performance and Operability

In Chapter 3 we also looked at business usage from the perspective of concur-
rent users. In our usage model, we established that up to 5,100 users were concur-
rently logged in to the system during the peak interval between noon and 1:00 pm
on Fridays.

Now that we have derived a set of scripts that will create transactions in the
correct proportions, we can use “think time” and virtual user load to gradually
increase load and achieve the target transaction rate. We will see this process in
action later in this chapter.

Validating the Test Environment

You should expect problems the first time you attempt to run load scenarios in
your environment: custom test apparatus, a new software deployment, and newly
crafted load testing scripts are being brought together for the first time. You will
likely require a break-in period where you make adjustments to the testing environ-
ment. This activity is sometimes referred to as shaking down the environment. In
many test plans, an environment validation and shakedown period is included and
referred to as cycle zero.

If the non-functional testing environment is similar in scale and configuration to pro-
duction, don’t be surprised if you discover new application issues. For example, if your
application is clustered across multiple servers, the non-functional test environment may
be the first environment in which two or more physical servers are introduced into the con-
figuration. You will need to work through issues like this with the development team.

In validating the environment your primary objective should be to ensure the
end-to-end execution of the load test scenarios. However, you should also contrast
the system response time against the documented requirements. If specific test cases
are consistently failing to meet performance requirements under light or moderate
load scenarios, your results are unlikely to improve with increasing loads. For these
cases, you should document the failures as critical defects and escalate them to the
development team for investigation.

Establishing Mixed Load

During performance testing, your goal is to re-create conditions that are represen-
tative of the production environment. If your load scenarios represent scenarios
that will execute relative to each other in the production environment, then they
should test the same scenarios in the test environment.

A mixed load is a set of test cases that execute together and are representative of
a given time interval. For some systems, a single mixed load may be sufficient for
all of your activities. For more complex systems, you may require a series of mixed
loads for different conditions.

AU5334.indb 164 11/19/07 7:49:49 AM

Test Preparation and Execution  n  165

Standardized mixed load scenarios can be used for many purposes, as described
below:

	 1.	Performance Certification: Running the mixed load at peak transaction rates is
usually the best condition under which to conduct performance certification.

	 2.	Performance Regression: A mixed load is an efficient way to conduct per-
formance testing. It is a single test in which you run load and compare results
against the baseline from the most recent previous test.

	 3.	Operability Testing: A mixed load is the most useful test scenario with
which to execute operability tests. The mixed load should include broad
coverage for different application functions. By using the same mixed load
for each of your operability tests, you standardize the load and simplify the
activities of the test operators.

	 4.	Sustainability Testing: The sustainability test requires a sustained, representa-
tive load. When the mixed load is applied for a long interval, this requirement
is met.

	 5.	Capacity Testing: When the mixed load is run at the peak expected volumes,
the environment becomes suitable for taking capacity measurements. Later in
this book, we will see how this translates to capacity planning activities.

Let’s revisit the online banking example from Chapter 3 again and look at
assembling a suitable mixed load. For human usage, the metrics shown in Table 7.3
were defined for coarse inputs.

Earlier in this chapter we revealed how we could achieve these coarse inputs
through the introduction of two load testing scripts executed at specific transaction
rates. In terms of machine inputs, there were three separate interfaces (as shown in
Table 7.4).

Table 7.3  Transactions

Transaction Classification Target Transaction Rate

Login Light 1.06 TPS

Account Inquiry:
Less than five accounts

Light 1.87 TPS

Account Inquiry:
Five accounts or more

Medium 0.30 TPS

Bill Payment Medium 0.94 TPS

Funds Transfer Medium 0.71 TPS

AU5334.indb 165 11/19/07 7:49:49 AM

166  n  Patterns for Performance and Operability

In this example, only one of the machine inputs runs concurrently with the
peak online usage. Human inputs dominate the load profile for this application, so
we are most interested in the behavior of the system during the business day—that
is, from 7:00 am to 10:00 pm.

Theoretically, busy evening online volumes could coincide with execution of
the bill payment fulfillment job. Since complexity is still manageable with the addi-
tion of the bill payment fulfillment job into the mixed load, we will include it. The
business reporting job, however, runs off-hours. We will indeed test it in our scope,
but we will not include it in the mixed load that we use as the basis for performance
regression, sustainability testing, and failover.

In light of the decisions we have made, our mixed load scenario looks like that
represented in Table 7.5.

Note that all of the human inputs are modeled using two load testing scripts
running continuously at the specified transaction rate. The customer marketing
messages are a continuous machine input. The transaction rate for marketing mes-
sages is tied to the login rate, as we saw in Chapter 3. The bill payment fulfillment
is scheduled to run every six hours in cognizance of the fact that this scenario is a
compressed business day, i.e. this scenario runs constantly at peak load.

In this example the mixed load scenario that we have defined is simpler than
you would expect for a critical, multifunction system like a national online bank-
ing system. For enterprise systems, the mixed load may include a few dozen up to
a few hundred scripts.

Table 7.4  Machine Input

Machine Input Input Type Operations Window

Customer Marketing
Messages

Continuous

7:00 am to 10:00 pm,
Monday to Friday
12:00 noon to 1:00 pm,
Friday: 30% of heaviest day’s
business volumes

Bill Payment Fulfillment Batch
Must start after 6:00 pm and
complete successfully before
10:00 pm, Monday to Sunday

Business Reporting Batch 2:00 am, Monday to Sunday

AU5334.indb 166 11/19/07 7:49:50 AM

Test Preparation and Execution  n  167

Seeding the Test Bed

If your system requires historical volumes of data, you should load this data into the
environment as soon as the application has been deployed and validated. In Chap-
ter 6 we discussed two approaches for loading historical volumes into the test bed.

Irrespective of the method you are leveraging, if you are using a database it is a
good idea to export the database image with the augmented volumes. In this way
you can restore the database image to reset the test environment back to the origi-
nal transactional volumes.

Your load scenarios may add transactional volumes beyond the required amount,
or the scenarios may functionally invalidate the database through the course of script
verification. A software system that is running at high capacity for a sustained period
of time can subtly change the characteristics of your application. For example, most
relational databases maintain internal statistics for determining the optimal execu-
tion plan for retrieving data. Over time, statistics in your database can deviate from
their original values and significantly change the behavior of your system.

A database import resets statistics as well as data. If your load scenarios require
frequent update, insertion, or deletion operations to be performed on the database,
consider that this can impact the efficiency with which data is stored on disk. If you
have the option to re-import the database, the state of the database will be consis-
tent in terms of how contiguously data is stored on persistent storage.

Tuning the Load

Assuming you have completed the scripting of test cases and validation of your
environment, you will need to run load using your load testing software and final-
ize configuration settings. The following tuning parameters need to be defined dur-
ing this activity for each load scenario in your mixed load.

Table 7.5  Inputs (Mixed Load Scenario)

Input Input Type
Transaction Rate /
Schedule

Bill Payment Script Human Continuous at 0.45 TPS

Funds Transfer Script Human Continuous at 0.68 TPS

Customer Marketing
Messages

Machine Continuous

Bill Payment Fulfillment Machine Run once every 6 hours

AU5334.indb 167 11/19/07 7:49:50 AM

168  n  Patterns for Performance and Operability

	 1.	Number of virtual users: “Virtual users” is an industry term for the number
of concurrent threads executing load against your application. For load sce-
narios that emulate human usage, the term “users” is appropriate because the
load testing software is emulating actual human users.

	 2.	Ramp-up: Ramp-up refers to the rate at which load is increased over the
duration of the test. You can begin the test with the maximum number of
users, or you can step up the number of virtual users over an interval at the
beginning of the test.

	 3.	Think time: “Think time” is another industry term that refers to the interval
between execution steps for each script. Think time is a pause in the script
execution that emulates the time a human user spends processing the output
of the previous step.

	 4.	Test duration: For your application, you will also need to designate the
length of the load test. For example, is it enough to demonstrate acceptable
performance for 30 minutes, 60 minutes, 120 minutes, or longer?

In Chapter 3 we saw that for human inputs, the number of concurrent users
is an important characteristic of the overall business usage. However, the fact that
you have 500 concurrent users logged on does not help you to assign virtual users
across load scenarios in your test suite. For example, how many virtual users should
be assigned to bill payment versus funds transfer? To get to this level of detail, you
will need to make an educated guess and then refine your parameters as you observe
the system.

Let’s continue to work with the online banking mixed load example from ear-
lier in this chapter. When we go to execute these scripts against the test environ-
ment, we may find that the duration for the bill payment script is 40 seconds while
the funds transfer script executes in only 15 seconds. This is shown in Table 7.6.

The difference in execution time is explainable, as the bill payment script includes
a number of steps that are not actually measured for performance, i.e. the script has
many more steps than the funds transfer script. We know from Chapter 3 that the
number of concurrent users expected to be on the system during the peak interval
is 5,100. If we assign 2,550 virtual users to each of our two load testing scripts, we

Table 7.6  Script Duration

Input
Transaction
Rate/Schedule Script Duration

Bill Payment Script Continuous at 0.45 TPS 40 s

Funds Transfer Script Continuous at 0.68 TPS 15 s

AU5334.indb 168 11/19/07 7:49:51 AM

Test Preparation and Execution  n  169

are unlikely to achieve our target transaction rate. In order to compensate for the
long execution time of the bill payment script, we will need to compensate with a
higher number of users. We make an educated estimate for virtual user distribution
to establish a starting point (as shown in Table 7.7).

When we allocate virtual users in the ratio above, we find that we are still not
meeting our target transaction rate for the bill payment script. We are also running
at significantly higher loads than required for the funds transfer script. We can try
to compensate again by shifting an additional 200 virtual users to the bill payment
script (as shown in Table 7.8).

By shifting an additional 200 users to the bill payment script, we have achieved
our target TPS for bill payments. Unfortunately, we are still executing far too many
funds transfers based on our requirements.

At this point we don’t want to subtract users from either test script because our
target for the total number of users is still 5,100. Ideally, we would like to slow
down the funds transfer script. Fortunately, there is a mechanism for us to do so in
our load testing software.

Think time is a common industry term for a pause between executions of steps
in a load testing script. Think emulates time that a user spends processing the
results of their previous action. The load testing software we are using injects a

Table 7.7  Virtual Users

Input
Transaction
Rate/Schedule Virtual Users Actual TPS

Bill Payment Script
Continuous at
0.45 TPS

3,300 0.30 TPS

Funds Transfer
Script

Continuous at
0.68 TPS

1,800 1.41 TPS

Table 7.8  Shifting Users

Input
Transaction
Rate/Schedule Virtual Users Actual TPS

Bill Payment Script
Continuous at
0.45 TPS

3,500 0.44 TPS

Funds Transfer
Script

Continuous at
0.68 TPS

1,600 0.98 TPS

AU5334.indb 169 11/19/07 7:49:51 AM

170  n  Patterns for Performance and Operability

default think time of 4 seconds between steps in the execution. We can slow down
the entire script execution by increasing the think time. If we adjust the think time
for the funds transfer script to 6 seconds, our results will show a decrease in the
transaction rate for this script (as shown in Table 7.9).

In this example, adding an additional 2 seconds between execution steps has
dramatically decreased the transaction rate for this script. As a secondary effect, the
transaction rate for the bill payment script has actually increased. By slowing down
funds transfer script, we have created some slack in the system that has allowed the
bill payment script to execute slightly faster.

Many load testing packages also support a parameter called delay between itera-
tions, which is an interval of time that the software package will wait before re-
executing the load script. This parameter can also be used to adjust the load of a
specific script. You should be careful in using the parameter, however. By introduc-
ing a delay between iterations, you will create periods of time in which there are less
than 5,100 concurrent users on the system. Alternately, if you increase the think
time, you can be assured that there are still 5,100 active users on the application at
any point in time.

Before we move on we also need to discuss the concept of ramp-up. In the
loading scenario we discussed a moment ago, if all 5,100 virtual users logged in
simultaneously and proceeded to execute, how do you suppose the system would
react? 200 instantaneous logins is an interesting operability test for any system, but
it is not representative of the actual production environment.

A more likely scenario is that user activities are randomized. At any point in
time, there are blocks of users executing different functions. Some users are finish-
ing a bill payment at the same instance that another user is just logging in. In order
to create this distribution, load testing software allows you to configure the ramp-
up parameters for your load. The most common ramp-up parameter is the number
and interval over which virtual users should be added to the load. If our target load
is 1,600 virtual users, one ramp-up scenario would be as shown in Table 7.10.

In this configuration, an additional ten users will be added to the load every 8
seconds. As a result, it will take (1,600/10) × 8 = 1,280 seconds = ~21 minutes to
reach the target number of virtual users.

Table 7.9  Funds Transfer

Input
Transaction
Rate/Schedule Virtual Users Actual TPS

Bill Payment Script Continuous at 0.45 TPS 3,500 0.48 TPS

Funds Transfer Script Continuous at 0.68 TPS 1,600 0.61 TPS

AU5334.indb 170 11/19/07 7:49:52 AM

Test Preparation and Execution  n  171

Another advantage of incorporating a gradual ramp-up for your system is that
you can observe error rate and response time during ramp-up to ensure that the
system is healthy. If the error rate is high or response time is poor, you can abort the
test before too many resources have been committed.

The last thing you need to consider in tuning your load is the length of time
over which you need to run the load. For most systems, you should apply a load
for at least 30 or 60 minutes. As a general rule, the higher the transaction rate, the
shorter the required duration for your test. In order for your performance results to
be reliable, you need your test to be long enough to capture an adequate example of
data points. You will need to consider the ramp-up time in your test duration also.
Since the load is initiated in a staggered fashion at the beginning of the test, your
load will also exhibit a ramp-down period (as shown in Figure 7.1).

Load testing software will calculate statistics for the full duration of the test,
including the ramp-up and ramp-down intervals. Your test length should be long
enough so that the peak load interval dominates the statistics that are collected. For
example, the load profile shown in Figure 7.2 would satisfy the calculated transac-
tion rate but would not be a very good indication of system response at this rate:

Performance Testing
Business users tend to wait for performance test results with the most anticipa-
tion. Fortunately, your test execution strategy should prioritize performance testing
towards the front of your execution schedule. Many of the operability tests that
you will need to conduct can only be executed under load. If your application has
not been certified for performance, you are very likely to have difficulty achieving
the required load for your operability testing. In this section, we will look various
aspects of performance testing including priming effects, stress testing, regression
and reporting of results.

Table 7.10  The Ramp-Up Scenario

Parameter Value

Target Virtual Users 1,600

Ramp-up Interval 8 seconds

Ramp-up Users 10 users

AU5334.indb 171 11/19/07 7:49:52 AM

172  n  Patterns for Performance and Operability

Priming Effects
Depending on the nature of the system you are testing, priming effects can exert
considerable influence on your performance test results. Priming effects manifest
themselves through degraded performance when a system is first started. There are
a number of causes for priming effects, among them:

Preprocessing or compilation of application code
Loading application components into memory
Initializing application caches from persistent store
Initializing pools of application resources
Establishing connections to external resources or between components

If you see degraded performance following application start-up, you should
continue to run load to ensure that you are not observing a priming effect. It is
important to note priming effects in your test results. If there is no expectation that

n
n
n
n
n

Peak Load Ramp-Down Ramp-Up

Load
(TPS)

Time

Figure 7.1  The ramp-up period.

Ramp-Down Ramp-Up

Peak
Transaction

Rate Load
(TPS)

Time

Figure 7.2  Peak transaction rates.

AU5334.indb 172 11/19/07 7:49:54 AM

Test Preparation and Execution  n  173

your system will be restarted frequently, your performance testing should be based
on a “warm” system. A warm system is one that has already been subjected to load
in order to eliminate priming effects.

Performance Acceptance

Performance acceptance is the process by which new applications go through test-
ing processes focused on validating performance and also getting certified against
non-functional requirements. Assuming that you have completed all of the neces-
sary planning and preparation activities, performance acceptance is a matter of
applying load and reporting response times.

A typical performance report from a load testing application for a 60-minute
performance test will look like the one shown in Table 7.11.

In assessing the value of the performance results, you will need to determine
if the transaction rate is accurate and also if the error rate is acceptable. The trans-
action rate is easy to calculate in this example for both the bill payment and the
fund transfer scripts. We use the number of successful iterations in each of our
calculations.

The transaction rate for the bill payment script is calculated as

	
Transaction Rate Transactions

Interval
 ,

= =
1 728
33600

0 48
s

TPS= .
.

The transaction rate for the fund transfer script is calculated as

	
Transaction Rate Transactions

Interval
 ,

= =
2 351
33600

0 65
s

TPS= .
.

Both of these transaction rates are very close to our targets of 0.48 TPS and
0.61 TPS, respectively.

Our next task is to evaluate the error rate for this test. If the error rate is too
high, it is unlikely that we will achieve the target transaction rate. If the applica-
tion is exhibiting a high error rate, this can also have an unknown effect on your
performance results. Even if you are hitting your target transaction rate, if the
error rate is higher than 5%, it is recommended that you resolve the errors before
reporting performance results. For some applications, you may decide on a more- or
less-forgiving error rate.

We calculate the error rate for this performance test as follows:

The error rate for the bill payment script is calculated as:

AU5334.indb 173 11/19/07 7:49:57 AM

174  n  Patterns for Performance and Operability

Ta
b

le
 7

.1
1  

Th

e
Pe

rf
o

rm
an

ce
 R

ep
o

rt

Sc
en

ar
io

It
er

at
io

n
s

Er
ro

rs
M

in
im

u
m

A
ve

ra
g

e
M

ax
im

u
m

90
%

Pe

rc
en

ti
le

St
an

d
ar

d

D
ev

ia
ti

o
n

Bi
ll

Pa
ym

en
t S

cr
ip

t
17

28
10

35
.3

26
40

.0
07

52
.0

65
43

.9
65

5.
60

8

Lo
gi

n
17

38
5

0.
88

6
1.

13
2

2.
13

2
1.

39
0

0.
12

8

A
cc

ou
nt

 In
qu

ir
y

17
33

2
1.

00
1

1.
45

2
2.

87
5

1.
87

5
0.

30
4

Bi
ll

Pa
ym

en
t 1

17
31

1
2.

30
9

2.
67

5
3.

92
5

2.
87

1
0.

56
0

A
cc

ou
nt

 In
qu

ir
y

2
17

30
2

1.
13

1
1.

34
5

2.
66

5
1.

78
5

0.
31

3

Bi
ll

Pa
ym

en
t 2

17
28

0
2.

00
4

2.
43

5
4.

05
9

2.
91

7
0.

60
4

Lo
go

ut
17

28
0

0.
23

0
0.

56
4

1.
04

7
0.

64
5

0.
03

5

Fu
nd

s
Tr

an
sf

er
 S

cr
ip

t
23

51
8

11
.0

84
18

.4
92

23
.4

75
19

.2
73

2.
38

4

Lo
gi

n
23

58
3

0.
78

4
1.

23
1

2.
40

0
1.

33
3

0.
09

A
cc

ou
nt

 In
qu

ir
y

23
55

1
0.

99
8

1.
31

1
2.

77
0

1.
60

5
0.

40
5

Fu
nd

s
Tr

an
sf

er
23

54
1

0.
92

3
1.

34
2

2.
38

6
1.

35
2

0.
39

2

A
cc

ou
nt

 In
qu

ir
y

23
53

2
1.

01
5

1.
44

1
2.

80
6

1.
91

1
0.

43
0

Lo
go

ut
23

51
1

0.
20

7
0.

50
1

1.
19

8
0.

62
2

0.
03

1

AU5334.indb 174 11/19/07 7:49:57 AM

Test Preparation and Execution  n  175

	
Error Rate Transactions

Transactions
Errors

To
 =

ttal
= × =

10
1 728

100 0 57
,

. %
.

The error rate for the funds transfer script is calculated as:

	
Error Rate Transactions

Transactions
Errors

To
 =

ttal
= × =

8
2 351

100 0 34
,

. %
.

The error rate is very low for both of our scripts. Fortunately, this means that we
can report these test results against our non-functional requirements. If our error
rate had been much higher, further investigation would have been required. Errors
in your script execution can come from a variety of sources. The load testing soft-
ware itself may encounter an error for a specific thread of execution.

A subset of the data in your test bed may be bad, i.e. does not meet valida-
tion criteria for the application. It is also possible that the application begins to
encounter errors under load. The most common such error is a timeout, in which
no response is received within the configured timeout for the load testing software.
Timeouts are common as a result of priming effects, i.e. right after a system has
been started. If the error rate is consistently high for your application, some recom-
mended actions are:

	 1.	Repeat the test at lower load: If the error rate goes away at a more moderate
load, then your problem is likely load related. If the error rate is being caused
by a high number of timeouts, you should see poor performance response
times in your results. If response time is good for passing iterations, then you
are probably not looking for timeout scenarios.

	 2.	Run scripts individually: You may also find it useful to run each script
under load individually. This will rule out interplay between different busi-
ness operations as a source of problems.

	 3.	Look for application errors in the log: If the software system has followed
the logging best practices described earlier in this book, there should be
descriptive information in the application logs.

	 4.	Ensure you have sufficient capacity: You should look at the load profile on
the hardware. If you are maximizing resources like the CPU (central processing
unit) or memory, it should be no surprise that the error rate is high.

Before we move on, we will comment briefly on standard deviation. Many load
testing packages report standard deviations in your performance results. The stan-
dard deviation is a statistical description of how distributed your data is between
the minimum and maximum values. A very low standard distribution means that
your data is clustered around the arithmetic average for the data set.

AU5334.indb 175 11/19/07 7:50:00 AM

176  n  Patterns for Performance and Operability

With respect to performance results, the smaller the standard deviation, the
more reliable the average is as a projection of system response time. Assuming that
your data is normally distributed about the mean, another interpretation of the
standard deviation is that two-thirds of your data is within one standard deviation
of the mean.

Reporting Performance Results
By now you should appreciate that obtaining meaningful performance test results
is not always easy. There is a sequence of important steps required starting with
assessing the original business requirements and culminating in the execution of
your tests.

Before you report test results, the authors recommend that you verify that your
performance results are repeatable. A good standard for repeatability is three con-
secutive trials. If three consecutive tests yield similar response time, you should feel
comfortable reporting your results. A performance test report, as shown in Tables
7.12–7.14, includes the best summary information expected by business users in
order to evaluate results

In this test report we have eliminated some of the supplementary statistical
attributes from the data including minimum, maximum, and standard deviation.
It is helpful to have this data available if anyone should request it, but it does not
need to complicate the test report that will be shown to business users.

Note that we have also calculated the actual transaction rate for business
operations as derived from the original business requirements. For clarity, we have
included an additional column with the title Calculations that shows how the trans-
action rates were derived from the scripts used in the load. Note that we have also
shown statistics for each test case in duplicate when it exists in multiple test sce-
narios. If you would prefer, you can collapse these statistics into single line items.
In our experience, this requires additional effort and users are usually comfortable
scrutinizing results in the original expanded format.

This simple example has focused on a very limited number of test cases. If you
are supporting dozens or hundreds of test cases, you will benefit from automat-
ing the creation of test reports from the raw data that is collected from your load
testing software. Some software packages support the generation of customizable
reports. Other packages export the data in a raw format that can be processed into
a report that meets your requirements. The authors have found that Microsoft Excel
extended with VBA (visual basic script) is an efficient way of automating creation of
custom reports suitable for business acceptance.

AU5334.indb 176 11/19/07 7:50:00 AM

Test Preparation and Execution  n  177

Performance Regression: Baselining
Once a software system is established in a production environment, there is good
reason to conduct performance regression testing whenever changes are introduced
into the environment. The mixed load scenarios that were defined earlier in this
chapter are particularly useful in the context of performance regression.

A mixed load performance regression subjects the software system to a wide
variety of operations in a single test. The performance results from the regression
test can be compared against the most recent previous results. The most current
performance results for a system are usually referred to as a baseline. The baseline
is the expected performance of the system in production. A confirmation of the

Table 7.12  Example Performance Summary Information

Performance Test Report

Test Date: Monday, July 24, 2006

Test Duration 16:04:00 – 17:32:00

Total Virtual Users 1200

Test Operator(s): Ido Gileadi, Mike Moerman

Table 7.13  Example Performance Report: Transaction Rates

Transaction Rates Target Transaction
Rate

Calculations Actual Transaction
Rate

Login 1.06 TPS (0.48 + 0.65) 1.13 TPS

Account Inquiry –
(Less than five
accounts)

1.87 TPS (0.48 * 2) + (0.65 * 2) 2.26 TPS

Account Inquiry –
(Five accounts or
more)

0.30 TPS 2.26 TPS

Bill Payment 0.94 TPS (0.48 * 2) 0.96 TPS

Transfer Funds 0.71 TPS (0.65 * 1) 0.65 TPS

AU5334.indb 177 11/19/07 7:50:01 AM

178  n  Patterns for Performance and Operability

Ta
b

le
 7

.1
4 

Ex
am

p
le

 P
er

fo
rm

an
ce

 R
ep

o
rt

: R
es

p
o

n
se

 T
im

es

Sc
en

ar
io

It
er

at
io

n
s

Er
ro

rs
A

ve
ra

g
e

90
%

 P
er

ce
n

ti
le

R
eq

u
ir

em
en

t
Te

st
 R

es
u

lt

Bi
ll

Pa
ym

en
t S

cr
ip

t
17

28
10

40
.0

07
43

.9
65

n/
a

n/
a

Lo
gi

n
17

38
5

1.
13

2
1.

39
0

3
Pa

ss

A
cc

ou
nt

 In
qu

ir
y

17
33

2
1.

45
2

1.
87

5
3

Pa
ss

Bi
ll

Pa
ym

en
t 1

17
31

1
2.

67
5

2.
87

1
3

Pa
ss

A
cc

ou
nt

 In
qu

ir
y

2
17

30
2

1.
34

5
1.

78
5

3
Pa

ss

Bi
ll

Pa
ym

en
t 2

17
28

0
2.

43
5

2.
91

7
3

Pa
ss

Lo
go

ut
17

28
0

0.
56

4
0.

64
5

n/
a

n/
a

Fu
nd

s
Tr

an
sf

er
 S

cr
ip

t
23

51
8

18
.4

92
19

.2
73

n/
a

n/
a

Lo
gi

n
23

58
3

1.
23

1
1.

33
3

3
Pa

ss

A
cc

ou
nt

 In
qu

ir
y

23
55

1
1.

31
1

1.
60

5
3

Pa
ss

Fu
nd

s
Tr

an
sf

er
23

54
1

1.
34

2
1.

35
2

3
Pa

ss

A
cc

ou
nt

 In
qu

ir
y

23
53

2
1.

44
1

1.
91

1
3

Pa
ss

Lo
go

ut
23

51
1

0.
50

1
0.

62
2

n/
a

n/
a

AU5334.indb 178 11/19/07 7:50:02 AM

Test Preparation and Execution  n  179

integrity of your testing would show consistency between actual production per-
formance and the baseline that you recorded prior to introducing the system into
production.

A performance regression report as shown in Table 7.15–7.17 will compare per-
formance results against the original requirements and the most recent baseline for
the system. In a regression test, we assume the same load as was used in previous
tests.

By including the previous baseline, you get a view of how you are affecting per-
formance as a result of the change under consideration. The new results may still
meet the requirements, but users will not react favorably if performance degrades
by, say a full second, across all the business operations.

Table 7.15  Example Performance Regression Report:
Summary Information

Performance Test Report

Test Date: Monday, July 31, 2006

Test Duration 11:32:00 – 13:05:21

Total Virtual Users 1200

Test Operator(s): Ido Gileadi, Mike Moerman

Table 7.16  Example Performance Regression Report: Transaction Rates

Transaction Rates Target Transaction
Rate

Calculations Actual Transaction
Rate

Login 1.06 TPS (0.48 + 0.65) 1.13 TPS

Account Inquiry –
(Less than five
accounts)

1.87 TPS (0.48 * 2) + (0.65 * 2) 2.26 TPS

Account Inquiry –
(Five accounts or
more)

0.30 TPS 2.26 TPS

Bill Payment 0.94 TPS (0.48 * 2) 0.96 TPS

Transfer Funds 0.71 TPS (0.65 * 1) 0.65 TPS

AU5334.indb 179 11/19/07 7:50:02 AM

180  n  Patterns for Performance and Operability
Ta

b
le

 7
.1

7 
Ex

am
p

le
 R

eg
re

ss
io

n
 R

ep
o

rt
: R

es
p

o
n

se
 T

im
es

Sc
en

ar
io

It
er

at
io

n
s

Er
ro

rs
A

ve
ra

g
e

90
%

Pe

rc
en

ti
le

A
ve

ra
g

e
(b

as
el

in
e)

90
%

 P
er

ce
n

ti
le

(b

as
el

in
e)

R
eq

u
ir

em
en

t
Te

st
 R

es
u

lt

Bi
ll

Pa
ym

en
t S

cr
ip

t
17

28
10

40
.0

07
47

.9
65

40
.0

07
43

.9
65

n/
a

n/
a

Lo
gi

n
17

38
5

2.
13

2
2.

39
0

1.
13

2
1.

39
0

3
Pa

ss

A
cc

ou
nt

 I
nq

ui
ry

17
33

2
2.

45
2

2.
87

5
1.

45
2

1.
87

5
3

Pa
ss

Bi
ll

Pa
ym

en
t 1

17
31

1
3.

67
5

3.
87

1
2.

67
5

2.
87

1
3

Pa
ss

A
cc

ou
nt

 I
nq

ui
ry

 2
17

30
2

2.
34

5
2.

78
5

1.
34

5
1.

78
5

3
Pa

ss

Bi
ll

 P
ay

m
en

t 2
17

28
0

3.
43

5
3.

91
7

2.
43

5
2.

91
7

3
Pa

ss

Lo
go

ut
17

28
0

1.
56

4
1.

64
5

0.
56

4
0.

64
5

n/
a

n/
a

Fu
nd

s
Tr

an
sf

er
 S

cr
ip

t
23

51
8

22
.4

92
24

.2
73

18
.4

92
19

.2
73

n/
a

n/
a

Lo
gi

n
23

58
3

2.
23

1
2.

33
3

1.
23

1
1.

33
3

3
Pa

ss

A
cc

ou
nt

 I
nq

ui
ry

23
55

1
1.

31
1

1.
64

3
1.

31
1

1.
60

5
3

Pa
ss

Fu
nd

s
Tr

an
sf

er
23

54
1

2.
34

2
2.

38
2

1.
34

2
1.

35
2

3
Pa

ss

A
cc

ou
nt

 I
nq

ui
ry

23
53

2
1.

43
4

1.
94

2
1.

44
1

1.
91

1
3

Pa
ss

Lo
go

ut
23

51
1

1.
50

1
0.

62
2

0.
50

1
0.

62
2

n/
a

n/
a

AU5334.indb 180 11/19/07 7:50:03 AM

Test Preparation and Execution  n  181

Stress Testing
Formally, your project has met its commitments if performance testing shows that
response times are satisfied under peak transaction rates. However, it is informa-
tive to tell the business what transaction rate causes the system to miss its response
time targets. In other words, how much more load can the business apply and still
expect satisfactory performance? For some applications, this is useful information
for business planning purposes.

Executives with technology portfolios will sometimes ask for this test to improve
their sense of comfort with new applications. This test can also indicate the margin
of error you are working with in the production environment with respect to busi-
ness usage. If your business requirements for usage are way off the mark, the stress
test informs you how much contingency you have in the business usage.

The performance profile for most systems looks like that shown in Figure 7.3.
As load increases, response time gradually increases until you hit a knee in the

curve where response time increases dramatically. At this point it is futile to apply
additional load. The stress test establishes at what load system response time will no
longer meet performance requirements.

In Figure 7.4, L1 indicates the level of load at which performance is certified. For
L1, response time is well below the stated performance requirements of the applica-
tion. L2 indicates the level of load at which the system response time is equivalent
to the performance requirements. This is the breaking point for the system. In this
example, we would state that the system is certified for L1 but it is rated up to L2.
There are no guarantees of system behavior beyond L2.

Operability Testing
Operability testing is a broad category of testing that encompasses everything in
the non-functional domain that is not performance testing. In this section, we will
decompose operability tests into more specific categories and discuss approaches for
testing each one of them.

Response
Time

Load

Figure 7.3  The performance profile.

AU5334.indb 181 11/19/07 7:50:05 AM

182  n  Patterns for Performance and Operability

Boundary Condition Testing
Boundary condition tests exercise a software system at its limits to ensure that the
system is resilient. Boundary condition tests are executed as part of the functional
test scope for many applications.

Consider an application used by consultants for tracking billable hours to clients
on a weekly basis. For this application, consultants are asked to email an Excel spread-
sheet, having a specific format to an email address that is set up to accept them.

The timekeeping application processes the attachments in the emails and
responds with a status email indicating that the hours have been accepted or
rejected. In the functional specification for the application, it is stated that the time
tracking application can process up to five attachments on a single email. If there
are six or more attachments, the email is rejected. We should expect a functional
tester to design a test case in which an email is sent with six attachments to confirm
this functionality.

But what happens if the consultant accidentally sends the wrong spreadsheet—
perhaps a spreadsheet having tens of thousands of lines of input? Or worse, what
happens if a consultant accidentally attaches a 400 MB multimedia file to the email
and sends it to the time-tracking application? Both of these examples have the
potential to be destructive in nature. Because they are destructive, most systems do
not have written requirements detailing how the application should respond under
these circumstances.

What is obvious is that we do not want exotic inputs such as these to inter-
fere with the availability of the application. In other words, the application should
discard or reject these requests with an error status. Since these inputs have the
potential to crash the time-tracking application, it is preferable that these tests be
executed under the umbrella of non-functional operability testing. Boundary tests
are usually not difficult to execute. Often, the scope of your boundary condition
tests will not become apparent until the technical design and implementation of
the application are complete.

R1

Response
Time

Load
L1 L2

R2

Figure 7.4  Dramatic response time increases.

AU5334.indb 182 11/19/07 7:50:06 AM

Test Preparation and Execution  n  183

In accepting the application into the test environment, you should scrutinize
each of the system interfaces and devise additional test conditions as needed.

Boundary condition test cases are not difficult to document and generally do
not require a load testing solution. These tests can often be introduced into the
test schedule during downtime, i.e., time during which you are waiting for other
activities like deployments, script development, etc. Table 7.18 is an example of two
documented boundary condition test cases.

Failover Testing

High availability is achieved using high-quality infrastructure and software compo-
nents combined with redundancy. When there is redundancy in your environment,
failover testing confirms that your system will take advantage of the redundancy

Table 7.18  Boundary Condition Test Cases

Test Name
Test
Description Expected Result Actual Result

Test
Result

Email
Interface
Boundary
Test 1

Formulate a
time-tracking
email and send
with an Excel
attachment
having 60,000
lines of
numeric input.

Application should
reject email with
status message back
to sender.
Application should
not use
disproportionate
system resources to
process message.
Availability should
not be impacted.

Email took 2
minutes to process
on server. Used
approximately 8%
of CPU during
processing. No
unusual spikes in
memory or other
resources observed.

Pass

Email
Interface
Boundary
Test 2

Formulate a
time-tracking
email and send
with a
multimedia
attachment 400
MB in size.

Application should
reject email with
status message back
to sender.
Application should
not use
disproportionate
system resources to
process message.
Availability should
not be impacted.

Email took 10
minutes to process
on server before
server crashed.
Used approximately
8% of CPU during
processing. Memory
footprint grew
rapidly. Suspect
memory exhaustion
caused server to
crash.

Fail

AU5334.indb 183 11/19/07 7:50:06 AM

184  n  Patterns for Performance and Operability

to maintain availability. In the course of executing failover tests, you will need to
address the following topics:

	 1.	What is the mode of failure for the failover test? There are many modes of
failure for most software components. A process can stop responding or the
network cable can be unplugged from the server itself. You will need to decide
on the mode of failover for your testing. In some cases, you may elect to test
multiple modes of failure.

	 2.	Which software components are being tested for failover? This question
should be answered in the solution architecture, i.e., which components were
intended as redundant.

	 3.	What load is suitable for failover testing? Ideally, you want to identify a
broad and representative mix of business functionality that can be executed
during a single test. The mixed load that we established during preparation
activities is usually appropriate (if not a good starting point).

	 4.	What are the performance requirements during failover? Assuming the
failover is successful, is there sufficient capacity in the infrastructure to accom-
modate peak load on the surviving components? Is there a requirement to sup-
port the performance requirements in the event of a failover?

	 5.	Does the system require fail-back capability? Will the failed component
be resumed automatically or manually? In either case, is the system required
to fail back under load? Some systems do not support fail-back, meaning that
the system must be brought offline in order to restore service the original
service level.

	 6.	What functional expectations are there for in-flight processing? What
error rate is tolerable during failover (if any)? Most systems should expect
some degree of exceptions during a failover scenario.

Let’s look at an example test case definition that addresses each of these topics.
In this example, we will consider a failover scenario for a clustered Web Services
interface on the IBM WebSphere application server platform. The Web Service
supports address lookup and validation. This is an enterprise service that supports a
number of different mission critical applications. The service architecture is shown
in Figure 7.5.

Incoming hypertext transfer protocol traffic (HTTP) is addressed to a VIP (vir-
tual Internet provider) address on a Content Switching Service (CSS). The CSS
load balances requests across the WebSphere cluster as shown in the diagram. In
evaluating this architecture, we have two tiers of redundancy. We have redundant
AIX servers managed by Veritas.

At the level of the application server, we have four clustered WebSphere pro-
cesses that provide the enterprise Web Service. In this example, the address lookup
service is stateless. For purposes of this illustration, the Web Service tier supports
only a single request type. Let’s look at how we would define failover test cases for
each level of redundancy (as shown in Table 7.19 and 7.20).

AU5334.indb 184 11/19/07 7:50:07 AM

Test Preparation and Execution  n  185

Table 7.19  Test Case 1: WebSphere Cluster Failover

Failure Mode
Under load, kill one of the four WebSphere
processes at the UNIX level

Software Components Failing
Over

WebSphere cluster

Load During Failover Peak transaction rate (6.5 TPS)

Performance Requirements
Must meet service level agreement (SLA) of 2
seconds response time

Error Tolerance
Transient errors are acceptable for up to 30
seconds

Fail-Back Required?
Yes; when the failed process is restarted, it should
resume load

AIX Server 1
WebSphere

Server Process 1

WebSphere
Server Process 2

AIX Server 2
WebSphere

Server Process 2

WebSphere
Server Process 3

WebSphere Cluster

Veritas Cluster

VIP: 10.403.54.783

Content Switch

Figure 7.5  Example clustering and redundancy scheme.

AU5334.indb 185 11/19/07 7:50:08 AM

186  n  Patterns for Performance and Operability

For each level of redundancy we have identified a likely failure mode. We
have also identified the specific clustered components that are participating in the
failover. Since component failures are random, unplanned incidents, we assume
that component failure can occur under peak load times.

The maximum load forecasted for the service is 6.5 TPS. Since this service sup-
ports multiple enterprise applications, downtime is unacceptable. The system can
only tolerate errors for up to 30 seconds, after which service must be restored to the
two-second response time specified in the original requirements and SLA published
to users of this service.

There is a shepherd process on both AIX boxes that attempts to start failed
WebSphere processes. In fact, we will rely on this service to restart the WebSphere
process that we will terminate during out test. The Veritas failover will not support
a failback scenario. Reintroducing an AIX server into the production infrastructure
under load is perceived as a high and unnecessary risk.

Fault Tolerance Testing

During a failover test, the objective is to cripple a redundant service and observe the
level of service. In the case of a fault tolerance test, the objective is to fully disable a
service and observe how the application responds.

In Chapter 3 we cited a common non-functional operability requirement as:
“if an infrastructure component is unavailable, services provided by dependent

Table 7.20  Test Case 2: Veritas AIX Cluster Failover

Failure Mode Kernel panic on AIX server

Software Components Failing Over AIX server

Load During Failover Peak transaction rate (6.5 TPS)

Performance Requirements Must meet SLA of 2 seconds response time

Error Tolerance
Transient errors are acceptable for up to 30
seconds

Fail-Back Required?
No; an AIX server would only be introduced
back into the Veritas cluster manually during a
scheduled maintenance window

AU5334.indb 186 11/19/07 7:50:08 AM

Test Preparation and Execution  n  187

components should only be impacted insofar as they depend on the unavailable
component.”

To help with our understanding, let’s assume that the address validation service
described in the previous section supports a reservation system for a global hotelier.
Addresses are validated whenever customers provide a billing address in the course
of making reservations. The reservations system services a large suite of functional-
ity, including the ability to look up room availability, quote rate information, and
create or cancel existing reservations. The address validation service is used only for
validating billing addresses for new customer reservations.

As you may already have guessed, the purpose of a fault tolerance test in this
case would be to prove that if the address validation Web Service is not avail-
able, a user’s abilities to access the nondependent business functionality are not
compromised. Test case definition for fault tolerance scenarios is very similar
to failover test-case definition, including the fail-back attribute (as shown in
Table 7.21).

Request timeouts can be a very destructive scenario for many software sys-
tems. If timeouts are not supported or configured, a software system can quickly
become bottlenecked and begin to deny service to all clients. In the fault tolerance
test case described above, some creativity may be required in simulating this fail-
ure scenario. One possibility would be to purposefully misconfigure the address
validation URL (uniform resource locator) for the Web Service to an IP (Inter-

Table 7.21  Test Case 1: Address Validation Fault Tolerance

Failure Mode Network timeout on application requests

Software Components Failing Over Address validation service

Load During Failover Peak transaction rate (2.4 TPS)

Performance Requirements
All non-new reservations operations
expected to meet original performance
requirements

Error Tolerance
Errors are tolerated for the new
reservations billing as long as the address
validation service is unavailable

Fail-Back Required?
Yes; when the address validation service is
restored, associated error rate should go
to zero without any operator intervention

AU5334.indb 187 11/19/07 7:50:09 AM

188  n  Patterns for Performance and Operability

net protocol) address that is not on the network. This would subject all requests
to the TCP (transmission control protocol) timeout which can be as high as 15
minutes.

Sustainability Testing
The aim of sustainability testing is to prove that there is no performance degrada-
tion or risk to availability over long term usage of the system. It is not uncommon
for an application to slowly bleed resources until it abruptly fails. Sustainability
testing is also referred to as soak testing in some circles.

The most difficult challenge in executing a sustainability test is the sheer length
of time it can take to complete. As a result, it is important to select a reasonable
duration that maximizes the utility of the test while minimizing your efforts.

As a starting point you should ensure that your system is operable for at least as
long as your longest operations window. For example, if your application must pro-
vide service for an 18-hour business window 5 days a week, your sustainability test
should, at a minimum, run for 18 hours. Should your application fail in the 19th
hour, this scheme means that you would need to restart the application 5 times a
week. This is hardly a characteristic of a highly available, operable system.

A better suggestion would be to run your sustainability test for 5 consecutive
days, or 90 hours. If your system fails in the 91st hour, your operations team has a
much longer maintenance window in which to restart the application, not to men-
tion that they are doing so less frequently. Of course, if we could run the applica-
tion for much longer—say, 4 weeks—this would improve our confidence level in
the application even further.

Unfortunately, what we are considering is a time-consuming endeavor. As we
have discussed previously, well designed tests are tests that can be run repeatedly
and conveniently. A 90-hour test will take almost 4 days to run, assuming we have
the resources to operate the test on a 24-hour basis. If we are running the test on a
10-hour workday, the test will still take 9 working days to complete. To make mat-
ters worse, if the test fails on the eighth day, perhaps because of a software failure,
we must restart the test.

Few organizations have the luxury of weeks of resource and environment avail-
ability in which to complete this type of testing. We can approach this difficulty
by changing the criteria for the test. Instead of planning our test based on elapsed
time, we can plan our test based on elapsed business volumes. For most software
systems, an idle system is not a very interesting specimen. In the 90-hour test we
have been considering, the system is idle or at least not very busy a large fraction
of the time.

In fact, the system may do 25% of its processing in a 1-hour window. Let’s con-
sider a content management application for a pharmaceuticals company. Employees
of the company use the content management system to look up documentation on

AU5334.indb 188 11/19/07 7:50:09 AM

Test Preparation and Execution  n  189

drugs that the company manufactures. A large number of employees actually update
and create new documentation in the system also.

The business usage for this system is normally distributed around two peaks
at 11:30 am and 3:30 pm. It appears that employees strive to finish documentation
tasks prior to lunch and again at the end of the day. The business usage for the sys-
tem has been documented as shown in Table 7.22.

In looking at the usage, it is clear that 60% of the transaction volumes are
expected within 2 two-hour windows. When we go to calculate the transaction
rate for these intervals, these will be our peak periods of usage. Next we look at the
operations window for the system and see that it is fairly generous. The system is
available from 7:00 am until 6:00 pm, seven days a week (as shown in Table 23).

Our objective is to prove that the system is sustainable for a four-week period.
Instead of elapsed time, let’s calculate how long it would take to drive our weeks of
business volumes based on the peak transaction rate for the system. We do this in
the calculation shown in Table 7.24.

In the previous calculation we see that we can drive four weeks of business
volumes in a little less than four days. Based on our schedule, it will be difficult to
accommodate a full four days of testing of this type. We have one week in which to
complete sustainability testing. Four days is less than the one week we have allot-
ted, but there is little margin for error.

If we need to repeat or restart the test, we will immediately overrun our activ-
ity. As a result, we compromise on 14 days’ sustainability and will run load for two
days. We will compensate for the abbreviated test duration with close attention
to system metrics while the system is under load. Our next point of business is to
discuss system monitoring during sustainability testing.

Table 7.22  Example Content Management System: Coarse Inputs

Usage Attribute Requirement

Busiest Interval(s)
11:00 am–12:00 noon (30% of volume)
3:00 pm–16:00 pm (30% of volume)

Document Retrieval 5,600

Document Search 9,800

Document Update 1,300

Document Creation 650

AU5334.indb 189 11/19/07 7:50:10 AM

190  n  Patterns for Performance and Operability

The most common mode of failure in sustainability testing is the exhaustion of
a finite resource such as memory. It is also common to exhaust a pooled resource
like connections. If you are exhausting a finite resource, there are two possible
explanations:

Table 7.23  Example Content Management System: Users and
Operations Window

Usage Attribute Requirement

Operations Window 07:00 am to 6:00 pm Monday to Sunday

Number of Users By Class

Supervisors – 55
Documentation – 75
Engineering – 35
Legal – 10
Quality – 60

Number of Users by Class (1 year) Assume 5% annual compound growth

Number of Users by Class (5 years) Assume 5% annual compound growth

Table 7.24  System Sustainability

Coarse Input
Daily

Volume

Peak Transaction
Rate

(operations/hour)

Time
Required
for One

Day’s
Volumes

Time Required for
28 Days’ Volumes

Document
Retrieval

5,600 5,600 x
30%

1,680 3.3 h 93.3 h 3.9 d

Document
Search

9,800 9,800 x
30%

2,940 3.3 h 93.3 h 3.9 d

Document
Update

1,300 1,300 x
30%

390 3.3 h 93.3 h 3.9 d

Document
Creation

650 650 x 30% 195 3.3 h 93.3 h 3.9 d

AU5334.indb 190 11/19/07 7:50:10 AM

Test Preparation and Execution  n  191

	 1.	Resource Leak: You have a resource leak in your application. That is, the
system is creating or requesting resources and then losing track of them. The
system continues to create or request resources until the requests cannot be
fulfilled. For lower-level programming languages like C/C++, it is entirely
possible to allocate physical memory and then obliterate all references to
this memory. This is a true memory leak in which the memory can never
be recovered. If this pattern continues, your process will reach the maxi-
mum process size for the operating system and be terminated or exhaust the
physical memory available on the server. On other platforms, including Java,
memory is managed by the execution environment (JRE), so it is not possible
to truly leak memory. However, if your application allocates memory into an
unbounded collection and never destroys references to this data, the effect
is the same: an increasing memory footprint that will eventually exhaust all
memory.

	 2.	Resource Sizing: You have sized a configurable resource in your system too
large or too small. For example, if your system has a hard limit of 250 MB of
available memory, and you configure an in-memory cache to contain 10,000
objects (each object being 25 kB or more), you will exhaust the memory you
have allocated. This problem is easily resolved by shrinking the number of
objects permitted in the in-memory cache. Of course, this may impact per-
formance, so configuration changes in this category will require performance
regression. A good illustration of where this type of sizing can be problematic
is in the area of sizing Enterprise Java Bean (EJB) cache sizes for the J2EE
platform. J2EE containers manage cached and pooled bean instances on your
behalf. The number of objects that can be pooled is set in XML deploy-
ment descriptors, which can be configured on a per-environment basis. If
these parameters are not sized properly, it is easy for the cache sizes to over-
run the physical limitations of the runtime environment and cause memory
exhaustion.

For you to be confident that your sustainability test is successful, it is not
enough to observe performance over the duration of the test and conclude that your
test has passed. It is equally valuable to monitor the system behavior throughout
the test and ensure that the system has reached a steady-state in which there is no
unbounded resource growth. The following metrics merit close attention during
sustainability testing:

	 1.	Memory: As discussed earlier, unbounded memory growth surely spells the
demise of your application. Some platforms allocate physical memory to the
process and then manage this memory internally. The Java platform can be
configured to work in this way. The Java heap can be allocated once at system

AU5334.indb 191 11/19/07 7:50:11 AM

192  n  Patterns for Performance and Operability

start-up. In order to have a view of the Java heap internally, you can configure
verbose memory logging for the JRE. For cases like this, be certain that you
measure the memory footprint at the OS level and internal to the process.

	 2.	CPU. You should monitor CPU during the course of your test. If the amount
of CPU that is required for the application is steadily increasing while load
remains constant, you may have a CPU leak. A CPU leak will eventually
exhaust the available processing power on your platform and cause your
application to fail.

	 3.	File System Growth: You should monitor the file system to ensure that the
application is using disk at a sustainable rate. In the production environment,
you will need to allocate sufficient storage for log files and transactional files
that are generated within the required retention period for the application.

	 4.	Internal Caches and Pools: Depending on your platform, you may be able
to monitor standard containers, caches and pools. For example, on J2EE-
based applications, most pooled resources for connections and EJB caches are
exposed through the Java Monitoring and Management API (JMX). There
is a growing population of monitoring tools that support this standard and
allow you to monitor your system over the duration of the test.

	 5.	Performance: The easiest way to measure performance for degradation is to
run a performance regression on your system at the conclusion of your sus-
tainability test. If you certified the application using a one-hour peak load,
then run this same test and compare the performance results against the
original baseline.

Sustainability testing is among the most important tests in your repertoire as
a non-functional expert. Sustainability testing can expose subtle defects that are
hard to detect in a production environment where you may not have the flexibility
of your test environment and the benefit of intrusive monitoring capabilities. You
should be satisfied with your efforts once you have demonstrated consistent per-
formance for a period at least as long as your longest operations window. At the
same time, you can improve your confidence level by carefully monitoring system
metrics and showing stable and predictable resource usage for your application at
steady-date.

Challenges
Test execution can be a trying activity fraught with system restarts, database
imports, data loading, and script warm-up, amongst other time-consuming events.
Before we move on to the next chapter, we would like to share some wisdom on the
challenges you may face during your test execution.

AU5334.indb 192 11/19/07 7:50:11 AM

Test Preparation and Execution  n  193

Repeatable Results
A great deal of coordination and planning is sometimes necessary to execute non-
functional tests. It can be a major inconvenience to repeat all of this effort in your
quest to achieve consistent, repeatable results. By now, you should know that you
can’t trust your results until they are repeatable. If your results are not consistent,
you should look to the following possible explanations:

	 1.	Isolation: If your test environment is not isolated from other activities, it is
possible that external influences are impacting your test results. The only way
to mitigate this is to discover who is impacting your environment and try to
schedule your tests during periods when they are inactive.

	 2.	Variable Load: If your test results are not consistent, you should verify that
you are running the same test. It is not difficult for a test operator to config-
ure the load with different scripts, or different parameters such as ramp-up or
think time. If response time is radically degraded, make sure the number of
virtual users hasn’t been increased.

	 3.	Example Size: If your results are not consistent, make sure your sample size
is large enough. You can also extend the duration of your test, if need be. A
statistical average will not be consistent if there aren’t enough data points in
the calculation.

	 4.	Rollback the Application: If you are seeing dramatically different results
for a new version of the application, you should try to execute an equivalent
test on the previous version of the application. This may indicate whether
the problem is in the application or the environment. If you’ve followed the
advice in Chapter 4 on test planning, you should have a logical instance of
the previous version in your environment already.

Limitations
Werner Heisenberg, a founding scientist in the field of quantum mechanics, is best
known for the uncertainty principle, which states that it is impossible to measure
the precise position and momentum of a particle at the same time. The basis for the
theory is that your measurement of position compromises measurement of momen-
tum. To put it more simply, it is impossible to measure an attribute of the particle
without exerting an effect on the particle that invalidates the other measurement.

The complexity of non-functional testing is not exactly on par with quantum
theory, but, interestingly, we consistently face the same challenge. When a phenom-
enon of the system occurs under load, it is often very difficult to conduct analysis
of the behavior without changing the phenomenon itself.

For example, a performance problem may arise once load has crossed a certain
threshold and we need to determine what is causing the degradation. Two strategies
come to mind: we could introduce custom instrumentation code (performance log-

AU5334.indb 193 11/19/07 7:50:12 AM

194  n  Patterns for Performance and Operability

ging; see Chapter 3) or, if our platform supports it, we could run the load with pro-
filing software attached. Unfortunately, in both cases the additional load imposed
by these alternatives will certainly change the performance characteristics of the
system. In fact, the specific performance degradation may not arise at all when we
run in this configuration. Perhaps more likely, we may not be able to achieve the
production load because of the additional overhead of our measurement. If we are
lucky, we may see a similar performance degradation and if we are luckier still,
our instrumentation may point to the source of the problem. All things said, it is
important that you understand that intrusive efforts to measure and understand
your system have the capacity to also influence system behavior.

Summary
The mechanics of test case preparation and execution take time and experience to
master. This chapter has equipped you with the tools you need to approach each set
of activities with confidence. By now, you should be comfortable with each of the
tasks that are prerequisite for your test execution. You should be familiar with per-
formance testing itself, including stress and regression tests. In devising test scripts,
we explored strategies for combining execution steps in scripts to achieve target
transaction rates. This chapter introduced two important concepts: mixed load and
performance baselines. A mixed load is a representative combination of test scripts
that can be leveraged for a variety of operability tests; a performance baseline is the
most recent successful performance test result that is used to contrast with new
test results. In this chapter, we also reviewed a number of categories of operability
testing including boundary conditions, failover, fault tolerance, and sustainability.
Based on our experience, we also discussed common frustrations including the
difficulty of achieving repeatable test results and in intrusively measuring system
behavior. In the next chapter we assume that your test activities have executed suc-
cessfully and move on to a discussion of deployment strategies that mitigate risk
and improve your chances of delivering successful projects.

AU5334.indb 194 11/19/07 7:50:12 AM

195

Chapter 8

Deployment Strategies

We have spent most of this book describing how to build and test software systems.
In this chapter, we shift our focus and begin to look at considerations for deploying
critical software into a production infrastructure.

Failed deployments are a nightmare for everyone. Your project team has spent
months building and testing your application only for it to fail business verifica-
tion when it is deployed. The ensuing weeks will be a scrambled, unplanned effort
to correct the issue and prepare for another deployment. Generally speaking, there
are two varieties of failed deployments, and this chapter provides you with tools to
mitigate the likelihood of either of them.

A deployment can fail because the deployment procedure itself is bungled. This
can happen for many reasons, the simplest of which is that the procedure itself can
be wrong. Alternately, an operator executing the procedure can make a mistake.
Or, an important set of configuration parameters may not be correct for the pro-
duction environment. Basically, the software itself may be fine, but the procedure
to implement it is not. For software systems that are large, complex, or both, the
deployment procedure can be equally large and complex.

A deployment can also fail because the new software itself does not anticipate
the production environment correctly. Rigorous functional testing does not always
ensure compatibility with the production environment. This is common for sce-
narios where your system must interact with complex legacy systems that do not
have well-defined behavior. In these cases, your functional testing may have relied
on a test system that is woefully out of synch with the production environment.

For new systems, you may also face a situation in which projected business
usage falls well short of reality. The result being that your application must cope
with volumes that were not part of your non-functional test scope. In this chapter
we will look at deployment strategies that help mitigate your risk in these types of
circumstances.

AU5334.indb 195 11/19/07 7:50:12 AM

196  n  Patterns for Performance and Operability

Procedure Characteristics
Risk management is an important theme throughout this book. A good deploy-
ment process is focused heavily on minimizing risk. Deployment strategies that
manage risk effectively have the following characteristics:

	 1.	Minimal: There is always the potential for error in a software deployment. By
minimizing the number of components that you are changing, you are likely
to shorten and simplify the deployment procedure. As we will see in this
chapter, structuring your applications in loosely coupled component architec-
tures helps to position you for future deployments with a minimal footprint.

	 2.	Automated: There are two key reasons why you should strive for automated
deployment procedures. Firstly, manual processes are executed by human
operators who are prone to error. Secondly, automated procedures deploy the
application in the same way in every environment. A human operator may
follow a deployment procedure and introduce subtle differences across dif-
ferent environments. The objective of a deployment is to propagate the exact
same system that was tested and verified in non-production environments
into the production environment. Automated deployments also tend to com-
plete more quickly and efficiently than manual deployments. This efficiency
gives you more time to verify the deployment and reverse the deployment if
necessary.

	 3.	Auditable: Each step in the deployment should be auditable. This means that
a person looking at the production environment should be able to reverse-engi-
neer the deployment procedure from the production environment and the out-
puts of the deployment. Many automated deployment procedures generate a
deployment log that can be used for this purpose.

	 4.	Reversible: Given that there is always risk that a deployment will introduce
serious problems in a production environment, it is always recommended to
have a back-out, rollback, or contingency procedure that resurrects the state
of the software system prior to your deployment. Of course, each of the char-
acteristics mentioned in this list should also apply to your back-out procedure
that reverses the deployment.

	 5.	Tested: If you have invested design and development effort in your deploy-
ment process, you need to ensure that it is fully tested and exercised. This
means that you should use it consistently to build all of your test environ-
ments. If possible, you should encourage the development team and indi-
vidual developers to use your process for building environments in their own
activities.

The approach you take to achieving an auditable, reversible, automated deploy-
ment will depend on your software platform. There are dozens of scripting lan-
guages and technologies that can be used to automate deployment procedures for
common enterprise platforms like UNIX and Windows.

AU5334.indb 196 11/19/07 7:50:13 AM

Deployment Strategies  n  197

Packaging
Packaging refers to the way in which your application code is bundled into deploy-
able units. Your packaging options will depend in large part on the software plat-
form with which you are developing. Many software platforms like J2EE and .NET
are designed to encourage and support component architectures.

Component architectures consist of a family of components that interoperate
in order to implement the overall software system. Individual components can be
upgraded (or downgraded) independently. In order for such a scheme to work, you
need to ensure that the combination of components you are deploying has been
certified to work together in your testing. Development activities also scale better
for component architectures; as developers can be aligned to work on different
components in parallel.

Component architectures are also efficient at supporting code reuse; individual
components can be shared among different applications.

In component architectures, you can group features and application code into
components that are likely to change together. For example, you may have a com-
plex set of application code that implements some industry-specific business logic.
Since business logic is more likely to change than structural and utility functions in
your application, you would be well advised to package all of the business logic into
a dedicated component. In minor releases that alter business logic, only the compo-
nent encapsulating business logic need be upgraded as part of the deployment.

The alternative to component architectures tends to be a monolithic application
that forces you to re-deploy the entire application every time you need to make a
single change. Re-deploying the entire application increases your testing obliga-
tions to confirm that nothing unexpected has been somehow introduced into the
deployment. The deployment procedure itself is likely to include many more steps,
increasing the number of opportunities for error.

Configuration

Technologies like XML and Spring for Java-based applications have made it
increasingly attractive for developers to make software systems highly configurable
through text files. Among other things, text file configuration is commonly used to
enable and disable business functions, size software resources (e.g., cache size), and
parameterize business logic.

The advantage of flat-file configurations is that they are highly transparent. It is
easy for a third-party to audit text file changes and be confident that a deployment
includes no more than the stated changes in configuration. Database-based con-
figurations offer a similar advantage as configurations are manipulated using SQL
(structured query language), which is also quite readable in plain text.

AU5334.indb 197 11/19/07 7:50:14 AM

198  n  Patterns for Performance and Operability

From a packaging perspective, it is always attractive when configuration can
be database- or file-based and packaged separately from application code. When a
component that includes application code undergoes a change, it is more difficult
for the testing organization to determine what to test. Also, it is more difficult for a
third-party to audit the change itself.

Text files can also be supported by version management strategies applied to
other project documentation (e.g., CVS [concurrent versions system]).

Deployment Rehearsal
In Chapter 6 we discussed the advantages associated with a production-scale
test environment used to support non-functional testing activities. A produc-
tion-scale environment is also advantageous for rehearsing your production
deployment.

The rehearsal process ensures that your deployment is compatible with all of
the infrastructure nuances of the production environment. It is a test where the
emphasis is not on the application itself, but rather on the mechanism by which it
is deployed.

Deployment rehearsals also create a familiarity with the deployment team so
that when the system is deployed to production there is reduced risk in human
execution. A deployment rehearsal is also often referred to as a dry run. Ideally, a
deployment rehearsal should also exercise the verification and back-out procedures
of the deployment.

Rollout Strategies
The deployment of your application is often only the first step in making new or
upgraded functionality available to end users. Once the software is deployed, you
can choose from different strategies for actually rolling out new features to users.
This section will look at common rollout strategies.

The Pilot Strategy

A pilot rollout strategy is one in which a new or changed application is introduced
to a small community of users prior to introduction to the entire user community.
Feedback is gathered from the pilot user group that may result in changes to the
system before rollout to all users. Pilots are common and often involve internal
users or preferred customers.

AU5334.indb 198 11/19/07 7:50:14 AM

Deployment Strategies  n  199

In many cases, for existing systems, pilot functionality is available at the same
time as the original system. If users have a negative experience with the pilot sys-
tem, they can always revert to the original system.

This is a good strategy for mitigating the reaction of sensitive end users to
major changes in an existing application. If the pilot system is hosted outside the
production system, this is also a good rehearsal for the deployment procedure
itself.

The Phased Rollout Strategy
In a phased rollout, deploying new or changed functionality to end users is a two-
part process. First, the software itself is deployed into the production infrastructure.
Second, a series of configuration changes is made to gradually introduce function-
ality to users.

Consider an ordering system for a manufacturing parts supplier. If a major
upgrade is applied to the production system, the business is at considerable risk
if none of the business’ suppliers are able to use the new system. However, if the
system is rolled out to customers one at a time, the business is able to manage the
risk incrementally.

This type of rollout strategy can be managed in two ways. In some cases you
may be able to run both systems in parallel and segment and transition users from
the old system to the new system through communications only. In other cases the
development team will need to build functionality into the system that exposes new
functionality to segments of users based on configuration.

If a phased rollout strategy is appropriate for your application, make sure that
you engage the development team and specify business requirements in the same
way as you would for any other feature.

A phased rollout is also a good way to mitigate risk when you lack confidence
in your non-functional testing efforts. As you gradually introduce users onto the
new system, you can monitor performance and capacity to ensure that the system
behavior is acceptable.

The Big Bang Strategy
As you might expect, big bang rollout refers to a scenario in which all users are
suddenly cut over to the new system. Obviously, this type of rollout does little to
mitigate risk. However, this strategy is acceptable for systems with a good release
track record and comprehensive non-functional testing.

Sometimes big-bang rollouts are foisted upon otherwise reluctant project teams
by management eager to see the conclusion of the project. In these cases you need
to help management understand that the project may take much longer if a big-
bang deployment is a failure and needs to be repeated.

AU5334.indb 199 11/19/07 7:50:14 AM

200  n  Patterns for Performance and Operability

The Leapfrog Strategy

Some systems reside in such a complex and heterogeneous production environment
that it is impossible to reliably back up the existing system and the new system onto
the same infrastructure within the allowable window. For these situations, you may
have no recourse other than to make a costly investment in a duplicate set of infra-
structure that will assume the production identity as part of the deployment.

Under this strategy, the back-out procedure is to revert users to the existing
production environment and leave the failed deployment intact on the leapfrog
infrastructure. The term leapfrog is used because the new production environment
(RN+1) “leapfrogs” over the current production environment (RN).

Upon subsequent releases, the previous production environment is upgraded
and it leapfrogs over the RN+1 environment to become RN+2. For most organizations,
this strategy is undesirable because of the cost associated with maintaining a twin
set of production infrastructure. In some cases, the leapfrog environment can also
be leveraged as the production-scale non-functional test environment.

As discussed in Chapter 6, the disadvantage of this approach is that you forgo
your non-functional test environment as soon as the new system is commissioned.
The authors do not recommend this approach unless it is impossible to safely com-
press your deployment procedure into the allowed change window.

Case Study: Online Banking
An interesting case study that combines many of the concepts in this chapter comes
from the financial services industry. An institution with more than 250,000 online
users was in the process of totally replatforming their online banking offering.
Web-based banking was a core channel for this bank; during typical busy peri-
ods, there were over 3,000 customers using the system concurrently. The system
upgrade included a totally rewritten software interface, a new vendor platform,
new hardware, and a new hosting partner to handle all operational aspects of the
new system. Thousands of customers depended on the existing system, and there
was virtually zero tolerance for any disruption in their abilities to conduct bank-
ing activities. Customers depended on the system as a critical service that was well
entrenched in their everyday lives.

Once the new system had been tested, the bank elected to combine a pilot and
phased rollout strategy. In the first step, the bank deployed the new system to the
new infrastructure and made it available as a pilot to internal users (as shown in
Figure 8.1).

In this pilot scheme, external customers continued to use the legacy system. The
bank’s internal employees and partners participated in a limited pilot by accessing
the new online banking system directly. This strategy allowed business users to

AU5334.indb 200 11/19/07 7:50:15 AM

Deployment Strategies  n  201

confirm application functionality in the production environment with full con-
nectivity to the bank’s back office.

Once the internal pilot had completed, the next step was to begin gradually
rolling out the new system to external customers. A big-bang rollout was considered
too risky for a core channel like online banking; management opted for a phased
rollout instead.

The total customer population was split into phases that could be incremen-
tally transitioned to the new system. Despite an intense performance and capacity
testing effort, this approach also mitigated any outstanding risk in terms from a
non-functional perspective. The visual architecture for the phased rollout strategy
is shown in Figure 8.2.

Once all external customer segments had been transitioned to the new sys-
tem, the legacy system could be fully decommissioned. The bank successfully
executed this strategy in replatforming a strategic and critical customer-facing
system.

New Online
Banking

Legacy Online
Banking

New Login
Module

Customer Login1 2

3

2

3

1 Internal Pilot users access the new online banking system directly using a dedicated pilot
URL. Access to the new system is un-published to external customers.

Customers access the Online Banking site through the original, legacy login form.

The new and legacy banking systems are both connected to the bank’s back-end systems
through a common services tier. Technically, customers can conduct banking from either
the new or the legacy site.

Legacy Login
Module

Pilot Internal Users

Enterprise Service for Back-end
Functionality

Legacy Service-
Provider

New Service-
Provider

Figure 8.1  The banking pilot.

AU5334.indb 201 11/19/07 7:50:16 AM

202  n  Patterns for Performance and Operability

Case Study: The Banking Front Office
A second case study demonstrates a much simpler implementation of a phased roll-
out strategy. The investment division of a major financial institution invested in a
multiyear effort to improve and optimize back-office operations using a new soft-
ware system.

A key factor in the success of this effort was the workflow integration of front-
office personnel, interacting directly with customers with back-office personnel
responsible for taking action on customer requests. Both front- and back-office
staff had access to a single workflow system.

The back-office employees using the new system were a small group who were
actively supervised and managed by people intimately involved in the creation of
the new system. The front-office user population was a much larger and unwieldy
group of 4,000 individuals.

New Online
Banking

Legacy Online
Banking

Phased Roll-
out Lookup

Login Module

Customer Login1

2

3

4

2

3

4

1 Customers access the Online Banking site through a single login form. The login
form is rendered by the new banking system login module as shown in the diagram.

Customers supply user information to the login module. The login module does
a determination based on user information whether the user should be redirected
to the new or legacy online banking system.

The login module redirects the customer to the new or legacy online banking
system as appropriate.

The new and legacy banking systems are both connected to the bank’s back-end
systems through a common services tier. Technically, customers can conduct
banking from either the new or the legacy site.

Enterprise Service for Back-end
Functionality

Legacy Service-ProviderNew Service-Provider

Figure 8.2  Visual architectural representation.

AU5334.indb 202 11/19/07 7:50:17 AM

Deployment Strategies  n  203

As new features were introduced, the institution needed a strategy for gradually
rolling out new business functionality to the front office in increments. Immedi-
ately following a release, the institution did not want all 4,000 front-office users
simultaneously attempting to access the same new feature.

Unfortunately, the front-office group could not be trusted to comply with a
phased rollout strategy, i.e., if you added additional capabilities to their current
interface, they would use those capabilities, irrespective of what had been com-
municated to them. Front-office users were located at retail branches across the
country. Each branch would have between 5 and 200 front-office users. A good
solution would have been to allow users to have access to new features based on
their associated branch. Branches could be added incrementally to the rollout.

The solution to this problem was solved programmatically in the application
itself by building an additional layer into the security model for the system.

The development team imposed a branch lookup prior to building the menu of
available options for front-office users. In this way, a list of branches could be con-
figured to have access to a given new feature, as shown in Figure 8.3. The branch
list was implemented in a database that could be altered via simple administrative
interface. This simple feature gave the transition team the control needed to imple-
ment a phased rollout strategy.

In the screen schematics above, you can see how the Transfer Securities menu
item is only available to users who are associated with branches that are included
in the rollout.

Front–Office User Screen

Transfer Securities link is only available
to users in the rollout branch list

Administration

Customer Accounts

Change Accounts

New Accounts

Transfers

My Profile

Transfers Securities

Transfers Cash

Front–Office User Screen

Administration

Customer Accounts

Change Accounts

New Accounts

Transfers

My Profile

Transfers Cash

ABC INVESTMENTS ABC INVESTMENTS

Figure 8.3  Functionality is selectively available to pilot users.

AU5334.indb 203 11/19/07 7:50:19 AM

204  n  Patterns for Performance and Operability

Back-Out Strategies
A back-out is usually what follows a failed deployment; it is required when a deploy-
ment fails and puts an existing business critical system into a state that is unusable
to end users. Backing out an application is itself a risk, but when you decide to back
out you are already in a situation where the production system is broken.

A deployment procedure for an enterprise application should always include a
back-out procedure. The back-out procedure needs to be tested with the same rigor
as the deployment process itself. Backing out an application is an embarrassing and
undesirable scenario for any project.

Complete Back-Out

A back-out procedure can follow one of two strategies. The most conservative
approach to back-out removes all traces of the new deployment from the produc-
tion environment. This approach reverts the production system to a state identical
to the pre-deployment state of the infrastructure. Your deployment plan should
always include a complete back-out procedure.

Partial Back-Out

As you might expect, a partial back-out removes a subset of the deployed changes
from the production general. In general, partial back-outs are heavily discouraged
for enterprise systems because it is too difficult to test and anticipate all of the pos-
sible combinations of partial back-out procedures.

Partial back-outs also have difficulty meeting our requirement that deployments
be fully auditable as it isn’t clear in the documentation which back-out procedures
were actually followed and which procedures weren’t. However, in some situations,
partial back-outs are a manageable way to mitigate the impact of a failed deploy-
ment. Your business verification should outline which test cases are associated to
which back-out procedures. If the components that are being left in versus the
components that are being backed out are sufficiently remote from one another,
this can be a reasonable strategy.

Logical Back-Out

An alternative back-out procedure leaves the deployed application intact, but dis-
ables the new or changed functionality. This type of back-out is quicker to apply,
but usually requires built-in support from the application. For this case, toggles can
be built into the database or text file configuration to enable and disable specific
business functions.

AU5334.indb 204 11/19/07 7:50:19 AM

Deployment Strategies  n  205

This approach to back-out leaves the door open to re-enable the new business
function—if for example, a required external dependency is met post-deployment.
Your deployment procedure will need to include technical and business verification
steps that also indicate the conditions for when a partial or complete back-out is
acceptable.

Summary
Any seasoned technologist will tell you that risk accompanies any change you make
in a production environment. You mitigate this risk in your deployment proce-
dure by ensuring that your deployments are minimal, automated, auditable, and
reversible.

Once you have deployed software into your environment, you can choose from
one of several rollout strategies including piloting, multiple and short phases, and a
big-bang implementation, depending on your risk tolerance. A rollout strategy is a
good way to compensate for shortfalls in your non-functional test coverage. Finally,
in the event that your deployment is unsuccessful, you will need to follow a pre-
determined back-out strategy.

In this chapter we have reviewed complete, partial, and logical back-outs as
alternatives if you are in this undesirable situation. In the next chapter we will look
at operations considerations including important topics like monitoring, trending,
and reporting.

AU5334.indb 205 11/19/07 7:50:19 AM

AU5334.indb 206 11/19/07 7:50:19 AM

207

Chapter 9

Resisting Pressure
from the Functional
Requirements Stream

Non-functional requirements make a system usable, while functional requirements
make the system itself. This distinction lies at the core of the challenges that are
faced when trying to balance project resources so that both requirement streams
can be successfully completed.

Functional and non-functional requirements must both be satisfied before a
nontrivial system can be built to run in the real world. However, in the real world,
the pressure to get the functional requirements stream completed often dominates
and results in neglect of the latter due to resource and time contentions. Actually,
the situation is even more complex, perhaps even insidious, as will be discussed
shortly.

The resources subject matter experts (SMEs), for example, need to construct
requirements are generally in short supply in most organizations. The knowledge,
experience, and ability of SMEs is required to support the operations of a company,
so just getting them focused on a project can be a challenge. There is usually unre-
lenting pressure from the business to get their services back to meet operational
obligations.

During periods when a business SME team can focus on project requirements,
there is going to be competition for their time from both the functional and non-
functional requirement streams. The former will almost always get the undivided

AU5334.indb 207 11/19/07 7:50:20 AM

208  n  Patterns for Performance and Operability

attention of the business team. There are several reasons for this, including the
following:

	 1.	Defining functionality is challenging and can become all-consuming in time
and effort. SMEs feel the need to focus all their efforts and energy to get the
functional requirements absolutely right.

	 2.	Non-functional requirements are considered important, but until the func-
tional requirements are clearly known, there is believed to be little point in
spending time on them.

	 3.	SMEs, due to their background, will focus on what they know best—driving
out the functional requirements, while viewing non-functional requirements
as being a technical issue only.

	 4.	Functional requirements are generally on the critical path on most project plans.
	 5.	Businesses do not pay for a system that is very fast, very secure, and highly

usable. They pay for functionality that is all of these things.

The importance and criticality of functional requirements cannot be reasonably
debated. This is what the business is buying; this is the reason the project exists in
the first place. Very few business resources would deny the importance of security,
availability, performance, and ease of use. This is where the insidious challenges
creep into the picture. Despite everyone’s best intentions and recognition of the
importance of non-functional requirements, this stream is still usually neglected,
incomplete, or incorrect. This is true even when the non-functional requirements
stream is launched at the same time as the functional stream.

On a continuum of focus, even when non-functional requirements are under-
way, when push comes to shove, the functional requirements stream will win the
competition for resources. The demands from the functional stream can insidiously
creep up and draw attention and resources away from the non-functional stream.
There clearly needs to be a balance in the pursuit of both functional and non-func-
tional requirements.

This chapter focuses on defining a framework that allows a project team to
resist continued and unrelenting pressure from the functional requirements stream
to draw resources and attention away from the non-functional stream despite
everyone’s best intentions to the contrary. Non-functional requirements require
attention, but the key is to maintain that attention for the duration of the project,
regardless of the pressure being felt to complete the functional requirements.

A Question of Degree
Functional requirements tend to be business-domain-specific, while non-functional
requirements tend to have several components. They are generic in the sense that
performance, throughput, and security requirements are universal. This implies

AU5334.indb 208 11/19/07 7:50:20 AM

Resisting Pressure from the Functional Requirements Stream  n  209

that non-functional requirements can be gathered and documented without con-
tinuous subject matter expertise. However, this is not enough.

Generic non-functional requirements must be customized to suit the specific
requirements of an application. Consider this example: both a banking applica-
tion and a video download application require a user/permission administration
function. The former however, requires significantly more controls and audit trails
than the latter. Making these requirements equivalent might be considered to be
overengineered in the latter application.

Non-functional requirements are clearly dependent on specific functional cases.
This means that they cannot be completed by themselves in isolation. This is both
the strength and the weakness that must be addressed to successfully implement
an application.

Table 9.1 describes the different approaches that are commonly used for tack-
ling this set of activities. Some are completely undesirable, but unfortunately not
altogether uncommon; others are commendable, but ultimately futile; while the
last one on the list is recommended.

These options show how non-functional requirements are viewed in different
organizations, beginning with neglect and moving toward a mature view of their
mandatory importance to the eventual success of the project.

Approach 5, parallel start and parallel completion, offers the most balanced and
optimal approach for consolidating functional and non-functional requirements.
Dependencies between the streams are considered and included in the project plan.
For example, the performance requirements for a specific user-input screen may not
be defined until the screen is mocked up to gauge its input complexity. Another
example consists of defining security requirements without getting a deep under-
standing of the potential application users and their profiles. This option requires
both requirement phases to be initiated and concluded based on mutual dependen-
cies and priorities—instead of as an afterthought. Some of the resources will be
shared between the streams, but there will also be additional experts: SMEs on the
functional side, architects and designers on the non-functional side.

Pressures from the Functional Requirements Stream
Given real-world experience, it is not surprising that Table 9.1 only shows one
desirable approach (approach 5) for handling both functional and non-functional
requirements. Approach 1 is sadly a reality in some instances, but the fact is that
very few organizations place little or no importance on non-functional require-
ments. This is refreshing, but only a starting point.

Most real-world situations start with the best of intentions by driving out non-
functional requirements early in the project, in conjunction with the application
functionality. These situations are covered by approaches 2, 3, 4, and 5. However,
approaches 2, 3, and 4, while starting strongly, end up competing for resources

AU5334.indb 209 11/19/07 7:50:21 AM

210  n  Patterns for Performance and Operability

Table 9.1  Approaches for Dealing with Non-functional Requirements

Approach Description Considerations Impact

1 Completely
neglected

Non-functional
requirements are not
included in the core
requirements
gathering phase.

Inadequate architecture,
design, and coding. Could
potentially result in project
failure.

2 Completed
separately

Non-functional
requirements are built
without input from
the SMEs.

Misalignment between the
requirement needs of the
business and those
believed by the technical
team. Will result in over- or
underengineering, and
additional time to align the
needs.

3 Parallel start,
but abandoned

Both streams are
started according to
plan; however, the
non-functional stream
begins to lose
resources to the
functional stream over
time.

Dealing with this situation is
a subject of this chapter.

4 Parallel start,
ad-hoc support

Both streams are
started according to
plan; however, non-
functional resources
are continuously used
to compensate for
work peaks in the
functional stream.

This situation is better than
approach 3, but will still
have negative impacts on
the project schedule. (This
is a subject of this chapter.)

5 Parallel start and
parallel completion

Addresses
dependencies
between the two
requirement streams.

Requires additional
attention by the SME team;
may delay the functional
specifications delivery, but
will produce a better
product in an overall faster
timeframe.

AU5334.indb 210 11/19/07 7:50:21 AM

Resisting Pressure from the Functional Requirements Stream  n  211

with the non-functional stream and drawing them away to meet their own schedule
at the expense of the project as a whole. The situation is insidious because it happens
slowly and innocently. The project team believes they are doing the right thing, not
realizing that they are postponing some of the most difficult requirements into the
time crunch that typically happens at the end of a project lifecycle.

The process starts simply enough. A project plan is constructed that shows,
among many other things, how functional and non-functional requirements are
going to be accommodated. More than likely, activities representing the start of
the functional requirements stream will be reflected in the project plan with ear-
lier start dates than their non-functional counterparts. The latter will also likely
reach completion sometime following the former’s end date. This is shown in Fig-
ure 9.1. Note that there is likely to be some degree of iteration and reworking in
the process.

Figure 9.1 also shows several points of dependency between the two streams.
The non-functional requirements stream can be initiated, but it requires input or
answers from the functional team at specific points. The figure shows a collection of
generic non-functional requirement categories that include the following:

Business Usage/System Availability
Performance
Operability
Maintainability
Expandability
Throughput
Hardware
Software/Licenses

n
n
n
n
n
n
n
n

Functional Requirements Definition

Non–Functional Requirements Definition

(interactions more frequent at the beginning of streams)

Business Usage/System Av
Performance
Availability
Operability
Maintainability

Expandability
Throughput
Hardware
Software/Licenses

Figure 9.1  Linking the requirements streams.

AU5334.indb 211 11/19/07 7:50:22 AM

212  n  Patterns for Performance and Operability

Figure 9.1 also shows that the functional requirements stream can be depen-
dent on the non-functional requirements stream. This may sound like a novel idea
to some purists, while others might be confused at this statement, believing it to
be completely obvious. The principle behind this is to produce a stronger return
on investment by aligning technical/non-functional capabilities with the objec-
tives sought by the business. It is possible for the business to modify their require-
ments in response to technical feasibility rather than to spend the extra money
(e.g., on hardware) to completely satisfy their wish list. This type of alignment is
only possible if the two requirement streams are jointly conducted and are equally
respected.

The two-way dependency between the phases results in resource contention on
project resources. The two streams can begin as per plan. As time progresses, how-
ever, we tend to start seeing a magnetlike attraction for resources in various areas,
including the following:

	 1.	 Attention
	 2.	 Human Resources
	 3.	 Hardware Resources
	 4.	 Software Resources
	 5.	 Issue Resolution

These are described further in the following subsections.

Attention
This really refers to the areas that are getting the attention of the project team
and stakeholders. While everyone is interested in non-functional requirements,
the level of detail in the functional stream—business rules, input screen layouts,
reports, interface dialogue—are the immediate artifacts for user signoff. These then
get the attention until signoff is achieved. In most projects, the complexity of the
functional requirements stream needs continued SME and business attention to get
the level of detail and accuracy to warrant user signoff.

Coupled with the architecture, modeling, and design teams to ensure that the
functional requirements are supported, a good portion of the extended project team
is involved in the activity. If—and this is usually the case—there are challenges
in getting signoff due to missing, incomplete or incompatible functional require-
ments, overlapping team members will delay involvement in the non-functional
stream.

Human Resources
This is the greatest point of contention in completing both the functional and
non-functional requirement streams per a project plan. The resources that are

AU5334.indb 212 11/19/07 7:50:23 AM

Resisting Pressure from the Functional Requirements Stream  n  213

required in both streams can include: SMEs, business analysts, architects, design-
ers, users, project sponsors, and modelers. Increasing complexity on the functional
side requires more attention from these resources, with a corresponding decrease in
attention to the non-functional requirements. These are discussed in further detail
later in this chapter.

Hardware Resources

Hardware for non-functional requirements such as stress testing, throughput veri-
fication, and end-to-end security is often neglected due to the high cost of acqui-
sition, setup, and maintenance. This pushes these activities well into the project
lifecycle and may delay them to a point where they cannot be completed in time to
meet the project deadline. This leads to a choice of delaying the project or imple-
menting the application without a full understanding of how it will behave in a
production environment.

Software Resources

This deals with the type of software and the number of licenses required by the
application. The focus of most project teams tends to be on the tools required
for designing, modeling, and building the application. Tools for non-functional
requirements are left until later or entirely written out of the budget. This also tends
to be a first point of reduction when the budget needs to be cut back. It is difficult
to see the impact of a delay here during development, while a missing development
tool is visible immediately.

Issue Resolution

As development progresses, many issues are identified by different members of the
project team. These are typically categorized, prioritized, and logged. As the pres-
sure to sign off on the functional requirements increases, related issues tend to have
a higher prioritization and an earlier resolution date. Non-functional issues tend to
be given lower priorities or longer resolution dates, which again removes urgency
and attention away from them to the point that there again may not be enough
time for resolution.

Defining Success
The definition of project success in the industry is fairly standard, and based upon
whether the project is completed on time and on budget. This also assumes delivery

AU5334.indb 213 11/19/07 7:50:23 AM

214  n  Patterns for Performance and Operability

of a mandatory set of functions that are within the project scope. The functions
themselves are governed by a set of non-functional specifications that drive out how
well and completely the functions behave. Consider the following examples:

A claim entry screen that requires more than one second to save or update a
claim is unusable
A funds transfer in a banking application that adds funds to one account but
breaks before subtracting them from the other is a complete disaster
A reporting application that needs information that is current to the hour
otherwise meaningful executive decisions cannot be made needs several non-
functional design solutions

Each of these examples begins with a business requirement that provides fur-
ther definition to the non-functional requirements stream. The project’s success
depends on both parts of the statement requirement being met. Without paying
full attention to non-functional business requirements, and maintaining that atten-
tion, the project cannot be successful. Completing either the functional stream or
the non-functional stream alone is not enough.

Setting the Stage for Success
A successful non-functional requirements stream involves three provisions that will
be discussed in this section:

	 1.	Identification of non-functional requirements.
	 2.	Alignment with the functional requirements.
	 3.	Avoidance of negative impact from the functional requirements stream.

Non-functional business requirements must go through the standard project
development lifecycle (as shown in Figure 9.2), which is generally used to satisfy the
functional requirements stream. Non-functional requirements cannot be an after-
thought only; clearly, lead time and planning is required to accommodate them
into the solution.

Specific milestones within the phase shown in Figure 9.2 are as follows:

n

n

n

1.0
Plan

2.0
Architecture/

Design

3.0
Develop

4.0
Test

5.0
Deploy

Iterative Through Successive Releases

Figure 9.2  The standard project development lifecycle.

AU5334.indb 214 11/19/07 7:50:24 AM

Resisting Pressure from the Functional Requirements Stream  n  215

Plan
Non-functional resource estimates complete
Budget secured for hardware/software needed

Architecture and Design
Non-functional test environment defined
Software testing tools defined

Develop
Non-functional requirements completed
Development completed with attention to performance/operability

Test
Deployment to non-functional test environment completed
Development for automation and load testing completed
Performance testing completed
Failover and operability testing completed
Sustainability testing completed

Deploy
Capacity model and plan completed

Successful inclusion of non-functional business requirements into the main-
stream of the project requires specific attention, and, more importantly, commitment
by the project team. Left alone, chances are that non-functional activities will be the
first to be shifted over time, in favor of protecting the timelines of the functional
stream. This section provides a set of principles for protecting the interests of the
non-functional requirements stream, described under the following categories:

	 1.	 Framework
	 2.	 Roles and Responsibilities
	 3.	 Raw Resources Required by the Non-functional Requirements Stream
	 4.	 Performance Metrics
	 5.	 Setting Expectations
	 6.	 Controls
	 7.	 Impact of Not Acting

Framework

The best way to protect non-functional requirements against the pressures of the
functional requirements stream is to build the activities directly into the standard
project-development lifecycle and to align delivery to the performance metrics of the
resources on the project team. Figure 9.3 shows a number of non-functional threads
that should be incorporated as a set of activities across the project lifecycle.

The non-functional requirements thread stretches across the entire framework.
It is not an afterthought. It has as much importance as the project management
thread. This should be complemented by a set of milestone deliverables in the project

n
−
−

n
−
−

n
−
−

n
−
−
−
−
−

n
−

AU5334.indb 215 11/19/07 7:50:25 AM

216  n  Patterns for Performance and Operability

plan (as shown in Table 9.2). The milestone deliverables can be further subdivided.
For example, Hardware requirements can be subdivided into development server,
stress testing server, testing server, development desktop, and external user accep-
tance area.

Roles and Responsibilities

The mandate to complete a full set of non-functional requirements on a project
is clearly in the mandate of the project manager. Table 9.3 identifies the other
critical roles and responsibilities needed to ensure this is done correctly. Out of
these, responsibility for delivery rests with the project manager and the project
sponsor.

Raw Resources Required by the Non-Functional
Requirements Stream

In addition to the roles and responsibilities defined in the previous section, this
section collects the other raw materials needed to ensure a proper handling of the
non-functional requirements stream.

The Core Project Team

A basic core team of a team lead, architect, business analyst, and technical resources
should be allocated to drive out the known or industry best practices around non-
functional requirements. The business analyst and team lead coordinate with the
project manager to work along the dependencies with the core team.

1.0
Plan

2.0
Architecture/

Design

3.0
Develop

4.0
Test

5.0
Deploy

Iterative Through Successive Releases

Non–Functional Requirements

Business Analysis and Functional Design

Project Management

Change Management

Risk Management

Quality Assurance and Testing

Figure 9.3  Project threads.

AU5334.indb 216 11/19/07 7:50:26 AM

Resisting Pressure from the Functional Requirements Stream  n  217

Extending the Project Framework

The non-functional requirements framework can be further defined with the follow-
ing major activities that fit into the generic project lifecycle shown in Figure 9.3.

 Fast-Track Definition: This involves identification of the categories (e.g., as shown
in Figure 9.1) and basic requirements, as known within Industry best practices.
Requirements Gathering: This involves working with the SMEs to elaborate
on the specifics of each Functional Requirement by Category.

n

n

Table 9.2  Non-functional Requirement Milestones

Milestone
Deliverable

Draft
Availability
Date Review Date 1 Review Date 2 Signoff Date

System Availability
Defined

[dd/mm/yyyy] [dd/mm/yyyy] [dd/mm/yyyy] [dd/mm/yyyy]

Performance
Expectations

[dd/mm/yyyy] [dd/mm/yyyy] [dd/mm/yyyy] [dd/mm/yyyy]

Interoperability
Requirements

[dd/mm/yyyy] [dd/mm/yyyy] [dd/mm/yyyy] [dd/mm/yyyy]

Security
Requirements

[dd/mm/yyyy] [dd/mm/yyyy] [dd/mm/yyyy] [dd/mm/yyyy]

Maintainability
Requirements

[dd/mm/yyyy] [dd/mm/yyyy] [dd/mm/yyyy] [dd/mm/yyyy]

Expandability
Requirements

[dd/mm/yyyy] [dd/mm/yyyy] [dd/mm/yyyy] [dd/mm/yyyy]

Throughput
Requirements

[dd/mm/yyyy] [dd/mm/yyyy] [dd/mm/yyyy] [dd/mm/yyyy]

Hardware
Requirements

[dd/mm/yyyy] [dd/mm/yyyy] [dd/mm/yyyy] [dd/mm/yyyy]

Software/Licenses
Requirements

[dd/mm/yyyy] [dd/mm/yyyy] [dd/mm/yyyy] [dd/mm/yyyy]

AU5334.indb 217 11/19/07 7:50:27 AM

218  n  Patterns for Performance and Operability

Table 9.3  Roles and Responsibilities

Role Responsibility Comments

Project Manager Project planning, controls, and
successful delivery of the
application.

Cannot be successful if any
of the critical project
requirements are not met.

Subject Matter
Expert

Provides input into the non-
functional requirements. Should
also sign off on the documented
requirements.

Project Lead Managing the work stream for the
non-functional requirements.

Project Sponsor Removing obstacles and
supporting the non-functional
stream.

Can provide substantial
support when there is
pressure to focus only on
the functional
requirements.

Project
Stakeholders

Providing additional SMEs where
required to meet the demands of
the project.

May need to adjust
operational needs to meet
increasing demands of a
project.

Technical Architect Defining the overall technical
environment of the application.

Should include timeframes
and lead times.

Data Architect Possibly the owner of the data and
the database. Must lead efficiency
of the data architecture.

Works closely with the data
modeler and the database
administrator.

Application
Architect

Defining the overall application
environment.

Business Analysts Coordinating the collection and
documentation of the functional
and non-functional requirements.

AU5334.indb 218 11/19/07 7:50:27 AM

Resisting Pressure from the Functional Requirements Stream  n  219

Architecture and Design: These need to align the functional requirements
with specific metrics e.g., what performance level (average, slowest, and best)
is required by the business when a user hits enter on the claim screen.
Testing: This generally involves different flavors of stress and throughput test-
ing. A separate test team may be required to test for the specifics of Non-
functional Requirements as a lot of environment setup may be required.

The other project development lifecycle activities apply around these specific
ones. In constructing a framework for dealing with non-functional requirements,
consider these objectives:

get specific requirements and measurements for each non-functional require-
ment in a system
get broad agreement on system metrics or service level agreements
incorporate non-functional requirements into a master project plan
deal with the requirements from the beginning of the lifecycle
architect and design with these in mind
dedicate specific resources
measure the performance of resources against the defined performance metrics

Technology and Tools

The major issue for technology and tools revolves around the industry-strength
nature of what is required by the non-functional requirements stream. We need to
support requests such as the following:

n

n

n

n

n

n

n

n

n

Table 9.3  (continued)

Developers Sounding the alarm when non-
functional requirements are not
being identified or addressed.

Technical
Resources

Including setup and execution of
hardware and software tools.

Includes systems
administration, networking,
and tuning skills.

Testers Specializing test team. Needs to be able to repeat
and regress large series of
tests.

AU5334.indb 219 11/19/07 7:50:28 AM

220  n  Patterns for Performance and Operability

Major increases in concurrent users
Major increases in data transfer and date updates
Administration functions
Stress testing
Throughput testing
Single Sign-on
Sub-second performance
Regular maintenance releases

Requirements such as these may require additional technology and tools to
build and test. The architecture and design should be built upfront assuming the
worst-case, expected, and best-case scenarios.

Some types of requirements end up falling into the non-functional category by
omission. For example, screen usability might be considered a functional require-
ment if the business users are discussing specific dropdown lists, entry codes, search
criteria, and colors. But they might not consider the overall framework, navigation,
metaphor, and fast links. Other areas that could fall into this category include the
following:

Usability
Documentation
System Help
Call Center
Ease of Future Enhancements
Audit Reports
Ad-hoc Reports

Project Sponsorship

While the project manager has the ultimate responsibility to deliver the suc-
cessful application, the project sponsors play a key role. As the ultimate source
of problem resolution on the project, they must ensure that non-functional
requirements are not ignored if deadlines begin to slip or resources begin to
get drawn in different directions. They can also work with other stakeholders
to bring additional resources onto the project to ensure that the project plan
continues to be met.

Ideally, a business and a technical sponsor will jointly have access to all the
other resources in the organization required to complete the project. While
these resources may be involved in operational activities, the combined spon-
sor team can work with senior management to affect other priorities in the
organization.

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

AU5334.indb 220 11/19/07 7:50:28 AM

Resisting Pressure from the Functional Requirements Stream  n  221

Performance Metrics
We have discussed the importance of non-functional requirements and ensuring
that they are included in the project plan. We have also discussed the fact that the
project manager and the project sponsors have the ultimate responsibility for ensur-
ing that resources are in place to adequately address these. However, members of
the project team must have the incentive and initiative to also play a key role in the
fulfillment of these.

In an ideal stiuation, all the members of the project team would share in the
prioritization of non-functional requirements. However, many different priorities
emerge in the project trenches. The real-world situation is generally far from ideal,
and so we need a vehicle to share the responsibility. Neither the project manager
nor the stakeholders can be successful only by themselves. It is also difficult for
them to ascertain the truth or ambiguity of statements they will undoubtedly hear
from project team members that satisfying both requirement streams is impossible
due to time considerations or other reasons.

Performance metrics need to be extended to the key project team members
that are needed to adequately address the non-functional stream. Working on
the functional stream should not be enough to give them an excellent perfor-
mance review. Signoff of the non-functional requirements, per the key mile-
stone deliverable list, should be included in their success criteria. This should
be regularly revisited with the project team members until the dependencies
have all been met.

With the performance metrics in everyone’s mind, a regular (e.g., weekly) sta-
tus report should track each of the non-functional requirements so that progress is
clearly visible.

Escalation Procedures

With the other tools in place, the non-functional requirements stream should be
positioned to resist pressure from the functional side. However, feedback from dif-
ferent members of the project team may still identify risks, future or immediate,
that need to be processed. The feedback may also show that the non-functional
stream is starting to be neglected or is falling behind.

A published escalation procedure is needed from the start of the project to deal
with issues where this stream is still being neglected. This should include a process
for establishing project responsibilities above stream responsibilities. This could
mean that a specific function may actually not get the resources that are needed to
work on backup and recovery capabilities, for example.

The escalation procedures should go through the project manager into a regu-
larly occurring meeting with business users, stakeholders, and the project sponsors.
Lack of resolution may lead to an executive steering committee that has the author-
ity to provide any of the following:

AU5334.indb 221 11/19/07 7:50:29 AM

222  n  Patterns for Performance and Operability

Additional funding for resources, tools, and technology to deal with compet-
ing requests
Ability to divert knowledgeable resources from operational responsibilities
Ability to divert knowledgeable resources from other projects to provide relief
Ability to modify the scope or timeline of the project

Setting Expectations
Clarity at the outset of a project around risk management, problems that may
occur, and what is expected to resolve them from anyone involved in the project is
the only way to ensure that there is the will and ability to deliver both requirements
streams within the constraints of the project. Expectations need to be established
in the following areas:

Resolving conflicting requests
Resolving conflicting demands on resources
Change Management and prioritizing
Conditions under which funding, time, or scope will change
Any critical requests

These should be written and shared with the project sponsors at the start of a
project. With their agreement, the expectations should be shared with the team
leads and then the rest of the project team. They should also be communicated to
executive management.

Controls
Controls are needed to ensure that the functional stream does not encroach on the
non-functional stream. Indeed, they are also needed to ensure that the converse
does not occur, either. Projects that are driven by the business tend to be the former;
projects that are dominated by the IT (information technology) team can easily
slant toward the latter. The following controls offer balance to a project:

Regular Team Status Reports
Executive Dashboard
Risk Assessment
Issues Log
Change Request log
Project Plan

n

n
n
n

n
n
n
n
n

n
n
n
n
n
n

AU5334.indb 222 11/19/07 7:50:29 AM

Resisting Pressure from the Functional Requirements Stream  n  223

The Impact of Not Acting
It is useful to document impacts on the project of not acting on non-functional
specifications. This documentation can form a core part of the risk assessment,
which can be included in the project charter. The worst-case impact of not acting is
clearly project failure. However, in the thrall of an intense project, the team may not
believe that this is a likely outcome. And it may not be. The project plan is the best
document to demonstrate the impact on what matters most to the project sponsors.
This includes the delay in the project schedule when non-functional requirements
are neglected. The following list identifies additional likely impacts of not acting
when the functional stream begins to take resources to meet their own deadlines:

Higher overall project cost
Higher maintenance costs
Increased risk of application failure in production
Delayed project implementation
Lower team morale
Missing functionality

Summary
Businesses do not make money by constructing systems that are defined by typical
non-functional requirements such as fast response time, being highly secure, or
being immensely scalable. Businesses spend money and time to get systems that
satisfy specific functions. However, many of these are complex and time-consum-
ing to define, design, and build. Most times these functions are at odds with non-
functional requirements.

There are many factors that drive tight—but usually competitive—relationships
between meeting functional and non-functional requirement streams. There will
be pressure on dedicating resources to define, design, and build. But they generally
do not get the same “mind space” of a project team. Nobody is going to say that
response time or security is unimportant. But do project teams make the invest-
ments of time, money, and other resources commensurate with the importance of
response time? The answer is generally no. In the subset of cases where this level of
attention if made, does it remain? Again, the answer is generally no. The reasons for
this are complex, and not due to any planned negativity.

This chapter described situations where a functional requirements stream can
begin to draw resources from the non-functional requirements stream, thereby put-
ting that stream and the project as a whole at risk. This chapter also presented a
framework for ensuring that this does not occur, along with suggestions on how
to deal with the inevitable pressures to do so when the project timeline becomes
threatened.

n
n
n
n
n
n

AU5334.indb 223 11/19/07 7:50:29 AM

AU5334.indb 224 11/19/07 7:50:30 AM

225

Chapter 10

Operations Trending
and Monitoring

No amount of careful design and testing can substitute for a thorough and effec-
tive operations strategy. From an availability standpoint, monitoring and trending
are critical. Eventually, things will go wrong at some point in your operations and
you will be measured by how quickly you detect and respond to the failure. The
organization’s profitability and perhaps even survival may depend on minimizing
or neutralizing the impact of any problems that occur. Setting up early warnings
may make all the difference between successfully dealing with a problem, or per-
haps avoiding it altogether.

Monitoring
Monitoring your system has two distinct objectives:

Detect and alert for problems as quickly as possible
Provide maximum diagnostic information

If you can detect problems early, you may be able to correct them before they have
any end-user impact. Your ability to resolve an issue quickly depends on the quality
of diagnostic information you have available at the time of the failure. Consider the
difference between these two failures for a production system (Table 10.1).

n
n

AU5334.indb 225 11/19/07 7:50:30 AM

226  n  Patterns for Performance and Operability

In the first scenario, users begin to report that they are no longer receiving e-
mail from the production system. At this point, there is already a business impact.
Users are likely consorting with one another, comparing experience, and complain-
ing about the impact. They may be questioning the validity of the work they are
doing on the system. This lost productivity is a financial impact that could have
been avoided.

In the second scenario, a series of errors are logged by the application when
individual e-mail requests are attempted and failed. Each attempt results in a gen-
erated alert. Because errors are at the level of an individual transaction, they are
logged and alerted with ERROR severity. This may attract the attention of the
operations team, depending on their training and the criticality of this application.
It is certainly preferable to the first scenario. A proactive operations team may be
able to do further investigation and discover the root cause of the failure. Unfortu-
nately, other than reporting that the error is associated to the e-mail capability for
the system, there is very little diagnostic information to help the operator.

In the third scenario, we see a much better level of service from our monitoring
infrastructure. Additional monitors in the system have detected that the simple

Table 10.1  Error Message Comparative Examples

Bad Users report that they are no longer receiving e-mail from the production
system

Good Tuesday, 2 January 2007: 14:14:56 ERROR <Application Alert>: Email
failure
Tuesday, 2 January 2007: 14:21:05 ERROR <Application Alert>: Email
failure
Tuesday, 2 January 2007: 14:22:33 ERROR <Application Alert>: Email
failure

Better Tuesday, 2 January 2007: 17:14:56 FATAL <Infrastructure Alert>: SMTP
Server process at 10.192.14.15 not responding
Tuesday, 2 January 2007: 17:14:56 FATAL <Infrastructure Alert>: SMTP
Server process at 10.192.14.15 not reachable from 10.192.14.23
Tuesday, 2 January 2007: 14:14:56 ERROR <Application Alert>: Email
failure for request: 456
Tuesday, 2 January 2007: 14:21:05 ERROR <Application Alert>: Email
failure for request: 457
Tuesday, 2 January 2007: 14:22:33 ERROR <Application Alert>: Email
failure for request: 458
Tuesday, 2 January 2007: 17:14:56 FATAL <Application Alert>: Email failure
for request: 459

AU5334.indb 226 11/19/07 7:50:30 AM

Operations Trending and Monitoring  n  227

mail transfer protocol (SMTP) gateway process is actually down. Because this is
such a clear mode of failure, the alert level has been correctly raised as FATAL.
This is certain to command the full attention of the operations team. Furthermore,
a correlating alert has been raised from the application server indicating that the
SMTP gateway is not reachable on the network. This event is consistent with the
fact that the SMTP server is down. This alert shows the link between the applica-
tion errors and the root cause failure of the SMTP gateway. Again, this connectiv-
ity failure is logged as FATAL; if the SMTP gateway is not reachable, it is clear
that e-mail services are totally compromised. Because the diagnostics are so clear
and precise in this situation, the operations team is able to restore the SMTP server
quickly.

The operations team does not need to escalate involvement to the infrastructure
or development teams. Most importantly, the business user community may never
learn that there was a temporary failure for e-mail services on the application. Of
course, this would require a defensive design pattern that supports automated retry
to recover failed transactions. Readers of this book will have acquired this knowl-
edge in Chapter 4.

In the previous example, there can be no disputing how valuable a comprehen-
sive monitoring strategy can be for high-availability applications. In this section,
we will look at how to wdevelop such a strategy for your application.

Attributes of Effective Monitoring

Using the previous example of an SMTP gateway failure, let’s enumerate the attri-
butes that provide for effective monitoring solutions:

Redundant Monitoring: When designing a monitoring solution, it is tempt-
ing to omit monitors because they can appear to be redundant. Redundancy
is an important attribute in the application itself to support high availability.
Why should monitoring be any less highly available? There is no guaran-
tee that any one monitor will succeed for every mode of failure. In addition
to providing better and more detailed information, redundant monitors are
backups to one another, ensuring that no failure will go undetected.
Monitors that Correlate: In the previous example, the second FATAL alert
that showed that the SMTP server was not reachable from the application
server appears to be redundant. Root cause was evident from the first infra-
structure alert that showed the SMTP gateway process itself was down. How-
ever, the second alert was indeed valuable. It established a link between the
cause (the first alert) and the effect (application errors in the logs showing that
e-mail attempts were unsuccessful). If there were multiple SMTP gateways
in the infrastructure, this alert will show you precisely which systems are
affected by an outage for any single gateway.

n

n

AU5334.indb 227 11/19/07 7:50:31 AM

228  n  Patterns for Performance and Operability

Detailed Alerts: If we look at the FATAL alerts generated in the previous
example, we also see that they provide detailed information on the nature
and source of the failure. For example, the second infrastructure event
clearly indicates a network failure, and shows the source and destination
for the network communication in the alert itself. This detail minimizes
the effort required from the operator. It also accelerates the process of cross-
referencing alerts to one another. For the application alerts, we see that the
alert has scraped the request information from the log itself; we can see that
the errors correspond to consecutive requests. This type of information is
useful in understanding whether the failures are affecting all or a subset
of requests. Failures with consecutive request IDs likely point to a total
failure.
Consolidation: As much as possible, monitors for the software system need
to be consolidated and presented to operations through a single interface. If
your monitors generate e-mail or alerts to a variety of monitoring platforms,
your environment is overly complex and will be more difficult to manage.
Your operations team will struggle to correlate events if they are being gener-
ated to multiple disparate interfaces.

Monitoring Scope

An approach that is useful in assessing your application for monitoring starts with
dividing the application into layers and evaluating each layer independently. In this
approach, we will also see how roles and responsibilities can be defined for each
layer.

This approach begins by considering your sysem as a composition of the follow-
ing elements:

Infrastructure: This refers to the hardware and software components that are
part of the base platform for your application, and includes network connectiv-
ity between servers, server availability, storage devices, and network devices.
Infrastructure monitors also apply to commoditized resources like the central
processing unit (CPU), available disk, and memory. We will look at example
monitors in this category later in this section.
Container: Container monitors are resources that are explicitly configured
and installed in the infrastructure to support your application. Container
resources are typically vendor software applications. Your application may
use services from these components, as in the case of the SMTP gateway
example from earlier in this chapter. You application may also be deployed
into a container provided by a software vendor. We will also see examples of
this type later in this chapter.

n

n

n

n

AU5334.indb 228 11/19/07 7:50:31 AM

Operations Trending and Monitoring  n  229

Application: Monitors that target your application look up application-spe-
cific messages or conditions to verify application health. The most typical
example is application-generated log files.
End User. End-user monitors observe the application from the point of view
of the end user. These types of monitors will respond and report on error
conditions in the same way that a user would.

Before we discuss these types of monitors in more detail, we should first outline
roles and responsibilities. Defining good monitoring interfaces requires application
knowledge, so it is important to have the right people engaged. At a minimum,
your project should designate one person who is responsible for the monitoring
strategy as a whole. This person will need to be a liaison to infrastructure, devel-
opment, and business participants. Usually a technical person is best equipped to
function in this capacity. It may make sense for the monitoring task owner to also
be engaged with non-functional test activities. In this way, verifying monitors can
be interwoven with non-functional tests.

Your approach to building monitoring capabilities into your platform will
need to follow the same guidelines as the rest of the functionality in a project
lifecycle. You need to define requirements, design a strategy that meets these
requirements, and then test and implement your solution. When you are solu-
tioning a new system with high-availability requirements, it is key to designate
an individual with overall responsibility for executing a plan that delivers the
intended strategy.

On most projects, whether you are hosting your application or outsourcing, you
will have an infrastructure lead. This person is responsible for building and main-
taining the production infrastructure. This same person needs to be accountable
for the quality and depth of infrastructure monitoring. Fortunately, as we will see
shortly, infrastructure monitors are fairly commoditized and there are management
platforms that can be purchased for this purpose. The monitoring strategy lead will
challenge the infrastructure monitoring lead to ensure that the appropriate moni-
toring is in place.

Container monitors require a joint effort from the infrastructure and develop-
ment teams. The development team will need to designate a monitoring lead for
defining custom application monitors. It is recommended that this same person
work in tandem with the infrastructure lead to define appropriate container moni-
tors. Again, the monitoring strategy lead should challenge the other participants to
ensure maximum coverage from custom and configured monitors.

Finally, end-user monitors require cooperation between the development and
business teams. The development team is positioned to recommend a series of
monitors that exercise application functionality in a way that efficiently monitors
overall availability. A business participant is usually required to validate that these
monitors are permissible and do not have any negative business impact. Business
participants may also need to provide suitable data for end-user monitors. The busi-

n

n

AU5334.indb 229 11/19/07 7:50:32 AM

230  n  Patterns for Performance and Operability

ness user in this case is an advisor and participant only. It is recommended that the
development monitoring lead or the overall monitoring strategy lead own end-user
monitoring.

We summarize the roles and responsibilities we have defined in Table 10.2.
Please note that this is by no means the only way to structure your efforts, but it
is a proven configuration that will work for many types of projects. For small or
medium-sized projects, these roles are usually not full-time commitments.

Now that we have introduced high-level categories for monitoring, we will look
at each of these categories in detail in the following sections.

Infrastructure Monitoring

Infrastructure monitors are low-level monitors that verify hardware availability and
capacity. For highly available systems, Table 10.3 provides a reference for com-
mon, critical metrics for some example device types. You should consult vendor
documentation for specific devices to identify additional metrics. Many of these
metrics are threshold based—that is, you specify a threshold based on percentage
utilization.

In setting a threshold, you need to appreciate the granularity over which you
are taking measurements. For thresholds that are applied to rate, this is particu-
larly important. In CPU measurement, the instantaneous CPU utilization may be
100% for a small fraction of a second, but the steady-state average CPU utilization
based on measurement at 1s intervals may be only 30%. For CPU monitors, a suit-
able polling interval for CPU measurement is 1 minute.

Table 10.2  Role Owners

Role Recommended Owner

Monitoring Strategy Lead Technical resource (possibly designated from
non-functional test team)

Infrastructure Monitor Lead Infrastructure lead

Container Monitor Lead Development resource

Application Monitor Lead Development resource

End-User Monitor Lead Monitoring strategy lead

End-User Monitor Advisor Business analyst

AU5334.indb 230 11/19/07 7:50:32 AM

Operations Trending and Monitoring  n  231

Though it is possible to write custom software and scripts to perform infrastruc-
ture monitoring on your behalf, it is far more efficient to procure a vendor solution
for this purpose. Management and monitoring software is a mature and growing
industry; there is no shortage of options.

Infrastructure monitors are implemented largely with the help of the simple
network management protocol (SNMP), which is a lightweight protocol originally
designed for managing and monitoring network devices. The SNMP specification
has been in existence since 1988 and is widely implemented, in large part because it
is fairly simple. Figure 10.1 shows an overview of an example SNMP apparatus.

A central management interface, referred to as a network management system
(NMS), captures monitoring and management information and consolidates it for
an administrative user. Network nodes that are under management of the NMS are
referred to as managed devices. A managed device can further have agents installed
on it that communicate with the NMS using the SNMP protocol. The agent soft-
ware responds to SNMP requests and also maintains a local database of monitoring
and management information. The SNMP protocol itself is also simple. It supports
the following commands:

Table 10.3  Metrics for Device Types

Device Type Metric

Server Server availability (Boolean)
Available CPU (threshold)
Available memory (threshold)
Swap versus virtual memory (threshold)
Network input/output (I/O) utilization (threshold)
Disk I/O utilization (threshold)

Storage Device available (Boolean)
Free space (threshold)
I/O speed (threshold)

Switch Device available (Boolean)
Available CPU (threshold)
Error rate (threshold)
Error count by port (threshold)
Network speed (threshold)

Router Device available (threshold)
Available CPU (threshold)
Error rate (threshold)
Network speed (threshold)

AU5334.indb 231 11/19/07 7:50:32 AM

232  n  Patterns for Performance and Operability

Read: The NMS can interrogate a managed device to collect data on device
health.
Write: The NMS can also issue configuration commands to devices to con-
trol them. This is less interesting to us from a monitoring standpoint.
Trap: Managed devices can also asynchronously send messages to the NMS.
These events are called traps.
Traversal: Traversal operations are used by the NMS to determine supported
variables on the managed device.

Monitoring and management information on a managed device is organized
into the management information base (MIB). The highest level of information
exposed to the NMS by an SNMP agent is an MIB. An MIB is a hierarchical col-
lection of managed objects. Each managed object is further comprised of object
instances. Individual object instances contain data that describes the state and con-
figuration of the device. Ultimately, object instance data is the “variable” data that
is reported back to the NMS via read operations. This data can be compared to a
threshold value and then used to trigger alerts when appropriate.

Many enterprise monitoring and management vendor solutions also include
their own proprietary distributed agent architecture. For these systems, a custom
agent is typically installed on each device under management. This custom agent
may or may not support SNMP itself. Any enterprise solution will also support
SNMP at the level of the NMS.

At the time of this writing, the most widely used enterprise management and
monitoring solution by far is the Hewlett Packard OpenView platform. HP and
software vendors partnered with HP provide over 300 OpenView-based programs
that provide application-specific monitoring capabilities. HP OpenView is readily
configurable to support all of the infrastructure metrics we have looked at in the
chapter. As software solutions become an increasingly integral part of most busi-

n

n

n

n

NMS

Managed
Device 3

Managed
Device 1

Managed
Device 2

Agent A

Agent B

Agent C

Agent A

Agent A

Agent B

SNMP

SNMP

SNMP

Figure 10.1  SNMP specification overview.

AU5334.indb 232 11/19/07 7:50:34 AM

Operations Trending and Monitoring  n  233

ness operations, monitoring and management software is an industry that is grow-
ing quickly. BMC Software and NetIQ are also significant players in the system
management and monitoring business who offer products with rich monitoring
capabilities. There are dozens of competing solutions, many of which are very cost-
effective—if not free—alternatives to HP OpenView.

Container Monitoring
Container monitoring refers to the installed vendor software in your infrastructure
and its attributes. This category of monitoring can be further broken down into the
following types:

Availability Monitoring: This is the most basic level of monitoring for soft-
ware containers and services. Basically, this type of monitoring determines
if the software itself is available. In the SMTP gateway example from earlier
in this chapter, the monitor for SMTP availability is clearly an example in
this category. Some vendor software supports a “ping” capability that can be
used to ensure that it is responding normally. This type of capability may be
exposed via SNMP or through a custom plug-in for a well-penetrated vendor
solution like HP OpenView. In the absence of anything else, you can always
configure a vendor monitoring solution to detect processes at the operating
system level. If you are running an application server, you may expect four
processes with a specific footprint to be running at all times and this can eas-
ily be configured.
Dependency Monitoring: If the vendor software you are running is depen-
dent on specific services in the infrastructure (e.g. an SMTP gateway), you
should consider introducing additional monitors that will create alerts when
this dependency is broken. For example, for Oracle to run efficiently, you may
decide that no tablespace configured on physical storage should ever exceed
60% capacity. This is a finer-grained monitor than the available disk storage
that would be part of infrastructure monitoring. This Oracle-specific monitor
is a type of container monitor.
Vendor Messages: Most vendor software applications will report errors to an
exception log. As part of your container-monitoring strategy you should ensure
that you are monitoring and alerting on these errors. Vendor software may also
be capable of generating SNMP traps that can be caught and alerted for using
your management and monitoring solution.
Container Resource Monitoring: Container resources are specific resources
configured in the container to support your application. These resources can
be heavily impacted by the runtime behavior of your application and require
the most sensitivity when applying monitors. Resource monitors are the most
interesting aspect of container monitoring, and we will spend the rest of this
section on them.

n

n

n

n

AU5334.indb 233 11/19/07 7:50:34 AM

234  n  Patterns for Performance and Operability

In this book we have intentionally tried to engineer examples that will appeal
to a broad audience and are not vendor- or technology-specific. However, container
monitors are by definition vendor-specific, so much of the discussion in the follow-
ing example will revolve around the BEA Application Server. Fortunately, BEA
exposes its monitoring interfaces using the Java management extensions (JMX)
standard. All of BEA’s competitors, including JBoss and WebSphere, have chosen
the same direction conceptually; thus, everything we discuss in this example will
apply to you if you are writing software applications that are deployed to J2EE-
based containers.

Resource monitors are really the meeting point between development and
infrastructure team responsibilities. Resource monitors need to be implemented in
a standardized way. This inclines us to involve the infrastructure team, which can
equip the infrastructure with generic monitoring capabilities for the containers in
the environment. On the other hand, the development team is specifying and siz-
ing the resources that are important to the application. Consequently, only a joint
effort between teams is effective in specifying and implementing a proper container
monitoring solution.

The BEA example we will look at next is ideal because it includes resources
that are widely used by applications. For our purposes, let’s revisit an example from
Chapter 4. The example shown in Figure 10.2 is a conceptual architecture for a
fulfillment service that includes a retry capability and a software valve. (You may
wish to revisit Chapter 4 to familiarize yourself with this example if you have not
done so already.)

As our first step, let’s recast this example using J2EE constructs (as shown in
Figure 10.3). We will then look at the example from the perspective of how we
would monitor container resources within the application server.

YesNo

Fulfillment Service

Request 1
Request 2
Request 3
Request 4
Request 5
···

Request
Queuing
Service

Application
Processing

Third-Party
Service

Ful�llment
Scheduling

Service

Ful�llment
Service

Ful�llment
Valve

Figure 10.2  Conceptual architecture for a fulfillment service.

AU5334.indb 234 11/19/07 7:50:36 AM

Operations Trending and Monitoring  n  235

Our fulfillment service implementation now includes two types of enterprise
Java beans (EJBs). It is also dependent on Weblogic data sources for database
updates. The initial fulfillment request arrives via a persistent Weblogic Java mes-
sage service (JMS) queue as well. There are also two additional characteristics of
our design that cannot be reflected in the diagram. First of all, we have configured
the EJBs in the fulfillment service to run on a dedicated execute queue. (Execute
queues are basically Weblogic thread pools). We have done this to ensure that the
fulfillment service does not compete with the online service for execute threads.
Second, the fulfillment service has been packaged as an Enterprise Application
Resource (EAR). This allows us to deploy and update the fulfillment service as an
independent component. As you should expect, we have container resource moni-
toring options for each of these references and constructs. Before we describe these
in detail, we first need to discuss a technology highly relevant to this example:
JMX.

JMX (Java Management Extensions) is a specification for building monitoring
and management capabilities into Java-based applications. Like SNMP, the JMX
architecture is not complex. At the time of this writing, it is also not complete. In
particular, it is not yet a distributed architecture, as noted in Figure 10.4.

Individual Java applications are able to implement the JMX specification, but
the specification itself does not require remote lookup and management. A distrib-
uted connector architecture is a planned future addition to the JMX specification.
The basic architecture is hierarchical with a collection of managed objects, called
MBeans, belonging to an MBeanServer. Individual MBeans have attributes that
can be referenced as purely read-only objects for monitoring or can be set with con-

Persistent
JMS Queue

Application
Processing

Third-Party
Service

Request 1
Request 2
Request 3
Request 4
Request 5
···

Request Queuing:
Message-Driven

Bean

Ful�llment
Scheduling:

Stateless EJB Service

Ful�llment Service

Ful�llment
Service: POJO**

Ful�llment
Valve

Yes No

JDBC update
via WLS*

DataSource

Database: Ful�llment Schedule Table

Notes:
* WLS = Weblogic Server
** POJO = Plain Old Java Object

JDBC read via
WLS* DataSource

Database: Valve Con�guration Table

Figure 10.3  J2EE implementation of a fulfillment service.

AU5334.indb 235 11/19/07 7:50:37 AM

236  n  Patterns for Performance and Operability

figuration values for control purposes. For our immediate use, application server
vendors like BEA have implemented their own connector architecture that can be
used to expose JMX MBeans to monitoring software. This means we can use JMX
to interrogate and monitor J2EE components in the infrastructure. You will find
that many enterprise monitoring solutions have built-in capabilities for looking up
JMX-exposed objects and attributes on J2EE application servers.

Let’s now look at the JMX attributes that apply to our example. They are as
follows:

Enterprise Application Resource (EAR): As our first point of business, we
should ensure that the application component is deployed in the environ-
ment as expected. Following a system upgrade, this component could fail to
deploy. It is also possible that an operator could mistakenly compromise the
configuration and take it out of the active cluster. Alternately, the application
could fail to deploy following a server restart. The deployed status of the EAR
can be easily verified using JMX-based application programming interfaces
(APIs) on the application server.
Execute Queues: In Weblogic, execute queues are also exposed as JMX
MBeans. From a monitoring perspective, we can monitor that there is always
at least one idle thread available on this execute queue. In our design, we
should have sized the thread pool to easily accommodate the expected load.
An exhausted thread pool is symptomatic of blocking behavior, which is a
problem that warrants immediate investigation. Fortunately, the number of

n

n

Current
Specification

Future Part of
Specification

JMX Agent

JMX Agent

JMX Agent

MBean Server
MBean A

MBean Server
MBean A
MBean B
MBean C

MBean Server
MBean A
MBean B

Proprietary
Connector

Proprietary
Connector

Proprietary
Connector

Proprietary Management
Console

Figure 10.4  Java management extensions.

AU5334.indb 236 11/19/07 7:50:39 AM

Operations Trending and Monitoring  n  237

idle threads is a JMX-exposed attribute on the execute queue and can also be
easily monitored in the container.
Message-Driven Beans (MDBs) and Stateless Enterprise Java Beans
(EJBs): The EJBs in our design are also exposed as JMX MBeans. We can
use APIs provided by the application server to ensure that both of the EJBs in
our fulfillment service are deployed at all times.
Data Sources and Connection Pools: Both the connection pool and the
data source abstraction that gates application access to the connection pool
can also be monitored through JMX APIs. In our case, we should monitor
that both of these resources are deployed and that the number of available
connections is always one or greater. This ensures that there is always a data-
base connection available for a thread if it needs it.
JMS Queue: Lastly, the JMS queue is the asynchronous messaging interface
between the rest of the application and the fulfillment service. We expect
messages to be consumed from this queue immediately after they are depos-
ited from the requesting application. Consequently, we can verify that the
queue is deployed and that the message depth in the queue never exceeds a
threshold value that is reasonable based on the expected business usage.

In this exercise, we have introduced seven container-based monitors for our
fulfillment service. None of these monitors require any custom application devel-
opment, but they each provide detailed diagnostic and alerting information that
will be helpful in a troubleshooting situation. We summarize the new container
monitors in Table 10.4.

n

n

n

Table 10.4  Resource Monitors

Resource Monitoring Capabilities

EAR File Verify component is deployed

Execute Queue Verify idle threads exceeds 1

Message and Stateless EJBs Verify components are deployed

Data Source and Connection Pool Verify components are deployed
Verify idle connections exceeds 1

JMS Queue Verify queue is configured and deployed
Verify that queue message depth does not
exceed threshold

AU5334.indb 237 11/19/07 7:50:39 AM

238  n  Patterns for Performance and Operability

In summary, container monitors are an important category of monitoring, but
they cannot be implemented by the infrastructure team without clear input from
the development team. Our next section will introduce application-specific moni-
tors where responsibility lies primarily with the development team.

Application Monitoring
In our discussion thus far, application monitors can be described as monitors that
are custom built or rely on custom application outputs. Container and infrastruc-
ture monitors tend to be supported through configuration of vendor monitoring
solutions. Application monitors require a little more work, but we are rewarded for
our efforts with improved diagnostic information.

For most software systems, application alerts are derived from application
errors logs. Software packages like HP OpenView include capabilities for monitor-
ing application log files and generating alerts based on text-based pattern match-
ing. This is a powerful and flexible mechanism but it requires careful thought and
consideration.

If you have adopted a universal logging severity level in your software imple-
mentation, you will be well-positioned to take advantage of log-file monitoring.
This will enable you to establish policies like for every log message with a FATAL
severity, generate an alert with FATAL severity. Further, you can include the full text
of the error message and an excerpt of the surrounding log file with the alert that
is generated.

If you are monitoring a log file for messages that do not include severity, or—
worse—your log file includes severities that are not dependable, then you will need
to inventory error messages that can be generated from your application, assess
them for criticality, and then configure your log file monitoring solution to watch
for these messages. This is error-prone, unreliable, and time-consuming. You are
highly recommended to adopt and enforce a universal log severity strategy to avoid
this manual effort if at all possible.

If your development team has been strict in applying correct log levels to applica-
tion logs, then you are well positioned for FATAL events. You will also want to consider
ERROR events. A common pattern is to assign ERROR severity to errors that the
application believes are specific to a transaction or request. FATAL errors are reserved
for exceptions that indicate a common component or service is down or unavailable.
Failures in the FATAL category indicate that service is totally disrupted.

What if you application begins to generate hundreds or thousands of logged
events with ERROR severity? Does it make sense to ignore them if there is no
corresponding FATAL event? Probably not. To address this scenario, you are rec-
ommended to implement frequency-based monitoring for log events with ERROR-
based severity. You would implement such a rule with the logic, If there are more
than 100 errors in a sliding 10 minute window, raise a single FATAL alert. You may

AU5334.indb 238 11/19/07 7:50:40 AM

Operations Trending and Monitoring  n  239

wish to implement this additional logic for specific types of error messages or as a
general rule. This decision will depend on your application.

In addition to log-file-based application monitoring, there are many other types
of monitors that we encourage you to consider. Most of these monitors are easy to
script and/or are supported by vendor monitoring platforms.

File system condition-based monitors: It is common for software systems
to exchange data with each other using files. File-based processing can be ad
hoc or scheduled. For scheduled processing, you should consider monitors
that ensure file creation or receipt at expected times. For example, if your
system must meet a service level agreement (SLA) that expects a file to be
generated and available for pick-up via secure file transfer protocol (SFTP) by
another system at 5:00 pm each day, then you should implement a monitor
that verifies that the file exists prior to 5:00 pm. File-system based monitors
can also be used to sweep the file system for undesirable file outputs like pro-
cess dumps (e.g., a core file on a UNIX-based file system)
Database monitors: Databases will often express the state of your software
system and can be used to evaluate its overall health. There are scenarios in
which an SQL (structured query language)–based database monitor is an
effective monitor. If records in a transaction table are expected to be marked
with a success status, you can implement a database monitor to calculate the
error rate and generate alerts when it exceeds a threshold value.
Log file growth monitors: You should understand the expected growth pat-
terns for the log files that your application generates before your application is
deployed to production. If the log file experiences a sudden surge in volume,
this is indicative of a problem. A common exception pattern causes infinite
loops that generate an infinite number of exceptions. This can overflow the
log file and, ultimately, the file system.

Application monitors rely on intimate knowledge of the application design to
function. Since they are devised by the development team, there is really no limit
to what can be implemented and we encourage you to be thorough and creative in
your efforts. As you walk through your application design, ask yourselves what met-
rics are reliable indicators of application health. For each of these metrics, consider
ways of exposing these metrics to the monitoring infrastructure by implementing a
custom application alert.

End-User Monitoring

If you are resource-constrained and have very little capacity to implement a monitor-
ing strategy, you should implement end-user monitors. End-user monitors generally
do not require technical expertise, and they can usually be implemented without

n

n

n

AU5334.indb 239 11/19/07 7:50:40 AM

240  n  Patterns for Performance and Operability

deploying additional software into the production environment itself. End-user
monitors exercise the application in the same way as users and, consequently, are a
very reliable measure of application health. The most typical example of an end-user
monitor is an automated service that exercises a user interface. Such a service may
login to the application, execute some read-only operations, and then logout. End-
user monitors are not limited to user-interface driven systems. If your system has a
transactional SLA that is file- or message-based, you are well-advised to implement
monitors based on these transactions. In many circles, these types of operations are
referred to as artificial transactions. Artificial transactions may not exercise the full
breadth of system functionality, but if they are carefully planned, can provide you
with a wealth of information.

Firstly, end-user monitors are also very helpful for correlating with other alerts
in your infrastructure. If you receive a sudden deluge of container-based alerts, but
you do not receive any end-user alerts, then you can assume that the issue is not
user-facing.

You can also implement multiple end-user monitors, designed to align with
technical dependencies. If you are designing monitors for an online reporting sys-
tem that supports reports drawn from three underlying databases, you would be
prudent to implement three end-user monitors that create a report from one of
each of the three databases. If only one of the three end-user monitors fails on any
given occasion, you may prioritize verification of the database used by the failing
end-user monitor.

Monitors that operate from the end-user perspective are very useful in tracking
system performance against the requirements that were originally committed to
the user community. End-user monitors can also be used to verify quality of service
from different geographic locations. Many monitoring solutions allow you to inject
artificial transactions from remote sites based on the installation of a piece of agent
software. This capability can be very useful in assessing the performance impact
of network latency. We will come back to this topic in the next section. For the
moment, our focus is on monitoring for incidents that compromise availability.

Lastly, end-user monitors are also critical because they are the most reliable
monitor in your infrastructure. End-user monitors see the application as a black
box. Success is measured at the level of the business operation. End-user monitors
may not tell you what is wrong, but they are unlikely to fail to alert when your
system is experiencing problems.

For many systems, there are limitations to what you can achieve in a production
system with respect to end-user monitoring. Many systems limit you to read-only
operations in the production environment. For some systems, providing a generic,
authenticated user that can be used for monitoring is an insurmountable challenge.
Privacy and security issues can factor heavily in the decision to implement end-user
monitoring. In your discussions with business users, you may need to make a force-
ful case for the need for end-user monitoring, as it will require their cooperation
to implement.

AU5334.indb 240 11/19/07 7:50:40 AM

Operations Trending and Monitoring  n  241

Trending and Reporting
Monitoring is an important activity for detecting problems that have already hap-
pened. Trending is about identifying potential problems before they happen. In this
section, we will look at categories of problems that foreshadow their own occurrence
with warning symptoms. We will also look at reports that require regular review
and analysis in order to ensure smooth long-term operation of your system.

Historical Reporting
As we will see in Chapter 11, when a problem arises it is extremely valuable to have a
historical view of your system. Information that has been recorded by your monitor-
ing solution will give technical resources information on system state in the period
leading up to the failure. If a resource is exhausted, data logged by your monitors
will show the depletion of the resource over time. Further, logged metrics can often
answer the important question, When did this problem first start to happen? Finally,
historical information for your system is also critical from a tuning, sizing, and
capacity-planning standpoint. We will come back to this topic later in this chapter.

Performance Trending
As systems mature, performance can gradually change over time. From an opera-
tions perspective, it is in your best interests to monitor your system and detect this
before it is reported to you by your users. Responding to an issue in its infancy will
give you time to plan a suitable resolution. If you wait until the problem is percep-
tible to your users, you will find yourself referencing the materials in Chapter 11
on crisis management.

Fortunately, performance trending is readily supported by a host of vendor
software solutions. Earlier in this chapter we discussed artificial transactions as a
technique for end-user monitoring. In order to perform trending against artificial
transactions, you need to ensure that the software package you are using is capable
of storing historical data over a sustained period (i.e., years). Trends are easily iden-
tified graphically. If your software package supports long-term reporting, it is also
likely to support graphing. If you graph response against time, your graph is likely
to resemble one of the examples shown in Figure 10.5.

In example A of Figure 10.5, we see steady-state response over time. Example
A is what you should expect from a properly designed and tested system, assuming
constant business usage. In example B we see a more worrisome scenario. Response
appears to be gradually increasing over time. From looking at example B, we have
no way of knowing if response time will ultimately plateau to a value within the
stated requirements for the system. Example C is also a problematic scenario; in it
we see a dramatic spike in response over time. The increase in response time seems

AU5334.indb 241 11/19/07 7:50:41 AM

242  n  Patterns for Performance and Operability

to have been a one-time event, but performance has not returned to its original
level. Let’s now look at a list of frequent explanations for the patterns we see in
these examples.

Increased or Changing Business Usage: The smoother your system oper-
ates, the more likely it is that your business users will take it for granted.
A consequence of this is that they may make sudden changes in business
volumes or usage schedule without informing the operations team respon-
sible for the technology. Business volumes may also increase naturally as the
business itself expands. Hopefully, your non-functional requirements have
anticipated the impact of either of these events and your system is resilient
under the new volumes. Despite your best efforts, there is never a guarantee
that your non-functional requirements or testing is 100% reliable. If you see
a sudden or gentle degradation in performance, your first step should be to
try to correlate this to changing business usage.
Diminishing Capacity: If your application is running in a shared infra-
structure or depends on services that support other applications, performance
may be affected by diminishing capacity in this infrastructure or for these
services. You should be able to correlate your observations of response time to
trends for other infrastructure metrics like CPU and network performance.
Accumulating Business Volumes: As business volumes accumulate in your
system, performance can steadily degrade. The most frequent culprit is the
database where business data is usually stored. Today’s databases do an excel-
lent job of storing and retrieving data efficiently, but they require some guid-
ance from the application development team. Your development team should
be well aware of the need to create indexes to allow the database to optimize
access paths to find data. However, for some tables, the need for indexes
may only become obvious once a critical mass has been reached in terms of
record count. Database performance can also be impacted by more subtle
configuration changes once accumulated data has reached a certain thresh-
old. For example, your production DBA (database administrator) should be
monitoring the cache hit ratio for the database on an ongoing basis. As the

n

n

n

Response Response Response

Time Time Time
(a) (b) (c)

Figure 10.5  Graphical views of system performance over time.

AU5334.indb 242 11/19/07 7:50:42 AM

Operations Trending and Monitoring  n  243

volume of data increases, the proportion of that data that can be accommo-
dated in memory will steadily decrease. Degraded performance is not only
associated with database behavior. In the shorter term, your application may
traverse data structures or caches that have steadily increased in size, causing
a gradual impact to system performance.
System Changes. In example (c) of Figure 10.5, we see a sudden, drastic
impact to performance. Depending on the sensitivity of your end users, this
may or may not be reported. Following any system change, you should con-
trast the new system performance against response time prior to the change.
If you have worsened performance as a result of an application or infrastruc-
ture change, you will need to determine the explanation, evaluate the impact,
and then take action if necessary.

Error Reporting
Large, complex, and especially new enterprise software systems will create errors.
If your system processes thousands or millions of records every day, your applica-
tion may log hundreds or thousands of errors. It is non-tractable for an individual
or support team to manually assess application log files and evaluate which errors
merit investigation. As a further complication, it is not uncommon for systems
to have many known errors that can be safely ignored by the operations and sup-
port teams. The development team may have gone so far as to request that alerts
be suppressed for specific error events. There can be no disputing that fixing real
errors and erroneously logged error messages alike is an important priority for the
development team. However, cluttered log files are a reality for many systems and
it may take some time before a new system has settled and is no longer generating
large volumes of error-log output.

An effective strategy for managing error output is to process it into a summary
format as part of an automated daily routine. This summary report categorizes
error using text-match patterns for severity and uniqueness. This is easier to illus-
trate with an example than it is to describe; see Figure 10.6.

In this example, errors have been force-ranked by severity and frequency. There
are some significant advantages to having information in this format. First of all,
the support team can more readily identify new errors in the log output. If an exist-
ing error suddenly shows a higher incidence rate or loses its position to a new error,
the support organization can hone in on this particular error. In the next chapter,
application log output is an important input to your troubleshooting efforts.

When you are investigating a production issue, you will find it useful to consult
this report to look for changes over time. This report is also a useful mechanism
for setting priorities for the development team. Obviously FATAL events and high-
incident ERROR log events should be addressed by the development team. As your
application matures, your objective should be to drive your application logs to zero

n

AU5334.indb 243 11/19/07 7:50:43 AM

244  n  Patterns for Performance and Operability

length. This strategy can still be applied to systems for which there are no standard-
ized log severities. As you would imagine, all of the log events will be force-ranked
in a single category.

The script that generated this report used a raw application log file as input
and outputted this result. You may want to configure such a script to e-mail the
error report to the support team on a daily basis. As an alternative, you could
also have the script deposit the report to the document root of a Web server.

Reconciliation

Reconciliation is another category of reporting that is an important check for
many types of applications. Reconciliations balance business inputs with applica-
tion outputs to ensure that no records have been omitted from processing. Some
reconciliation reports are simple counts that match the number of inputs with the
number of outputs. You may also have reconciliation reports for your application
that applies business logic to calculate expected values for a given set of inputs.
More sophisticated reconciliation and balancing is common in the financial ser-
vices industry. In Chapter 4 we outlined the circumstances under which a recon-
ciliation process is recommended. We mention reconciliation again in this chapter
because it is an important safety net for detecting failed processing. You should
consider automating your reconciliation if possible and generating alerts when the
reconciliation fails.

 Tue Jul 10, 2006 09:08:22 -- FATAL --
QuoteHelper.java:67 “InvalidQuoteRequest exception being thrown
for request:

 Tue Jul 10, 2006 13:14:01 -- FATAL --
QuoteHelper.java:67 “InvalidQuoteRequest exception being thrown
for request:

--

--

Date:
Source:

FATAL

Count Description

ERROR

Count Description

10/07/2006 19:00:34
app_error.20060802.log

2

1

97 Tue Jul 10, 2006 10:12:06 -- ERROR --
QuoteHelper.java:67 “InvalidQuoteRequest exception being thrown

Figure 10.6  Summary report generated from application log file.

AU5334.indb 244 11/19/07 7:50:44 AM

Operations Trending and Monitoring  n  245

Business Usage Reporting

In our earlier discussion on the topic of performance trending, we mentioned the
importance of being able to trend business usage against system response. For
transactional systems, business usage reports can frequently be driven by the data-
base. You may be able to count business operations based on transaction volumes as
they accumulate in database tables. For Web-based systems, there are a number of
software packages that monitor detailed usage patterns in the application. At time
of writing, the dominant software product in this space is WebTrends. The require-
ments for this category of monitoring will often come from the business commu-
nity itself. Business usage is input to marketing, business strategy, and operations
decisions and planning. If your system does not have requirements for business
analytics, you should think about how you can use the database and/or application
logs to derive the approximate business usage. This will be useful information for
troubleshooting and capacity planning alike.

Capacity Planning
There are entire books on the topic of capacity planning, and many of these books
are academic and theoretical in their approach. Capacity planning is an essential
part of operating an enterprise software system and we would be remiss if we did
not address it in this book. Capacity planning is the exercise of determining the
required hardware for a given software system. This includes CPU, memory, net-
work, and storage requirements. In this section we will outline some practical strat-
egies and advice on the topic of capacity planning. Our goal is to equip you with
the knowledge to develop an accurate capacity model based on the right inputs for
your application. First, we will present a set of best practices and then we will illus-
trate the use of these recommendations using a detailed example.

Planning Inputs

A capacity model states the infrastructure requirements for your system over time.
In the end, your capacity plan may simply draw the conclusion that you have ade-
quate capacity on the existing hardware for the foreseeable future. Alternately, your
capacity model may point to an impending problem unless additional hardware is
provisioned in the very near future. In either case, your capacity plan will be based
on an analysis performed using a capacity model. A capacity model is a theoretical
view of your system that considers load requirements over time mapped against
required physical resources in the infrastructure. Once you have established an accu-
rate capacity model, you will be equipped to define your capacity plan, which will
specify exactly what hardware purchases and upgrades are required to maintain your

AU5334.indb 245 11/19/07 7:50:44 AM

246  n  Patterns for Performance and Operability

system over time. As we will see, most of your efforts will be expended in building a
capacity model in which you are confident.

Capacity planning and modeling starts before a software system is commis-
sioned and is ongoing over the lifetime of the system. This activity is at its most
challenging before your system is in production. For many endeavors you are
required to order hardware before your application has even been built in order to
meet timelines. At this point, capacity planning is best described as a mixture of art
and science. Hardware sizing is based on a combination of inputs, including:

	 1.	Vendor recommendations: If you are able to quantify your business usage,
many software vendors are willing to provide recommendations for your
hardware configuration. These recommendations can be a good source of
input, as the software vendor may have broad experience working with cli-
ents who have similar needs to your own. On the other hand, vendors often
license their product based on hardware configuration, so they may have a
stake in sizing your system towards the high end. And of course, your hard-
ware vendors may have input to your sizing efforts but their objectivity is even
more questionable for obvious reasons.

	 2.	Equivalence estimates to existing, similar systems: If the system you are
building is similar in terms of technology and business usage, you may be
able to draw comparisons to existing systems. If you do not have existing sys-
tems suitable for basing estimates, you may want to involve consultants who
can make this expertise available to you.

	 3.	Growth and business criticality of the system: You may also wish to apply
some subjective factors to your decision making. If your software system is
considered strategic and business-critical, then additional cost may be a good
trade-off to ensure a wider margin for error. Also, if your system is expected to
experience rapid growth that has not been well quantified by the business you
may want to provide more capacity rather than less.

	 4.	Technology platform: The technology platform that has been selected for
your architecture will influence your hardware options. Some software is
not supported or runs better on specific hardware platforms. This could eas-
ily mean the difference between a large farm of Windows-based x86 servers
and a single multiprocessor reduced instruction set computer (RISC)-based
server.

In your sizing decisions, you will likely have the option to purchase hardware
that provides varying levels of flexibility for future expansion. It may be more cost-
effective to purchase a fully loaded entry-level server, but you will soon strand this
investment if you grow outside of its capacity. You may elect for a more expensive
midrange server that is not fully configured with CPUs and memory to provide for
future growth. Hardware costing is complex, and vendor strategies are designed
to try to maximize your expenditure. Beyond this brief introduction, there is little
advice we can offer you to make this decision any easier.

AU5334.indb 246 11/19/07 7:50:45 AM

Operations Trending and Monitoring  n  247

A more preferable circumstance is one in which you have time to test your
system under load before making procurement decisions for your infrastructure.
In your non-functional test cycles, you will have prepared load scenarios that are
representative of the forecasted business usage. In Chapter 7 we described strategies
for execution of sustainability testing. We proposed that you run your mixed load
of performance scenarios at peak transaction rate to perform the required number
of business operations in the shortest amount of time. If you record system metrics
during execution of a similar test in which you run your application mixed load at
peak, these metrics are good predictors of the required capacity you will need in the
production environment. It is important to note that these measurements are based
on a model that approximates the actual business usage. This is clearly superior to
no measurement at all, but it can only project the required capacity within a certain
degree of accuracy.

For most systems, you determine required capacity based on peak usage plus
a contingency factor based on risk tolerance. Software systems do not run well on
hardware that is almost fully utilized. You will usually see performance begin to
degrade significantly once CPU utilization passes the 75% point on most systems.
The contingency factor is there to ensure that your application runs below this
threshold. The contingency factor is also there to compensate for any inaccuracy in
your measurement or estimate of the system load.

A standard contingency for enterprise systems is 40% over and above the mea-
sured system load. In other words, you require 140% of the measured hardware
capacity required by your mixed load at peak. A contingency factor can also be
designed to account for increased load due to a failover scenario. If your application
is load balanced across two application servers, you need to consider the effect of
failover. If a single server fails, and the second application server is overwhelmed by
the additional load, then you may as well have not bothered to implement failover
for your application. For your application, you may decide on a higher or lower
contingency factor; this is not written in stone, but 40% is a good value for most
systems.

The accuracy of your capacity plan will depend on the quality of the capacity
model you are able to devise based on available inputs. You may have no choice but
to estimate your system load if your application is yet to be built. If your application
can be tested, you can measure system load based on the business usage model that
you constructed from the non-functional requirements. However, neither of these
inputs is superior to actually measuring system capacity for a production system.
As a result, once your application is rolled out to production users, you should
measure the actual capacity and feed this back into your capacity model to ensure
it is accurate.

Once you have real production measurements, there is no need to rely on hypo-
thetical or experimental values in your capacity model. If you are completing a
capacity plan to determine hardware requirements based on increased business
usage, then you may be able to use exclusively production measurements in your

AU5334.indb 247 11/19/07 7:50:45 AM

248  n  Patterns for Performance and Operability

model. Later in this chapter we will look at an example that employs this strategy
as part of building a complete model.

Best Practice
Let’s review the key points from the preceding discussion. The following list enu-
merates our view on best practice in the area of capacity planning.

	 1.	The accuracy of your model will depend on the accuracy of your inputs. Use
production measurements, test measurements, and estimates based on equiv-
alent systems in that order. Some capacity models will require a combination
of these three inputs.

	 2.	Your planned capacity should be based on a mixed, representative business
load running at peak volume.

	 3.	You should decide on a contingency factor and apply this on top of the esti-
mated or measured needs of the application; 40% of the required system
load is a standard contingency. Do not add contingency to each input as you
build the model. You should use the most accurate, yet conservative, estimate
available and apply contingency once when the capacity model is nearing
completion.

	 4.	When possible, use measurements based on the full application load. If logis-
tics do not permit for this, you should assume that hardware capacity is a lin-
ear commodity, i.e., you can stack application load and the required capacity
will sum together.

	 5.	Express all present and future capacity as a percentage of your existing hard-
ware platform.

The remainder of this chapter will illustrate the application of these best prac-
tices in a detailed example.

Case Study: Online Dating
Example is the best teacher, so let’s look at a specific case and apply some of what
we have discussed so far. For our example, we’ll consider an online dating service
with a large presence in Canada and the United States. Based on the success of the
service in North America, the business plans to expand operations to the United
Kingdom at the beginning of the next fiscal year, approximately one year away.
We have been asked to assess the required hardware capacity for this expansion.
The release to the United Kingdom will include all of the standard North Ameri-
can functionality. However, the release will also include two new features that are
not currently supported. These two new features will be available to all users in
North America and the United Kingdom. The first feature allows customers to
make third-party introductions between online users or between an online user

AU5334.indb 248 11/19/07 7:50:46 AM

Operations Trending and Monitoring  n  249

and an external person. For introductions to nonusers, the introduction is made via
e-mail, with the goal being to draw additional users onto the network. Normally,
customers contact other customers directly, so the notion of third-party introduc-
tions is a significant enhancement. We will refer to this feature as introductions in
the rest of this example. The second new feature allows customers to post recom-
mendations for date venues to a bulletin board. The bulletin board is accessed by
online users who are looking for ideas on where to go for dates. In a future release,
the business would like people to actually initiate dates based on mutual interest in
different date venues. This feature is referred to as date venues.

As a simplification, we will focus our example on the application server tier for
the online dating service. For a software system like this we would normally need
to consider multiple software tiers, including Web, application, and database. The
logic we will follow is identical for each component in the infrastructure; we do not
want to clutter our example, so we will focus on a single tier.

We start by looking at the current and forecasted business usage for the online
dating service. The current service has over 250,000 customers in North America.
This number is expected to grow at the established rate of 15% per year for at least
the next five years. The total UK market is estimated at 150,000. In the first year,
marketing anticipates 10,000 users. The number of users is expected to double
in each of the first three years and then grow at a rate of 15%. These statistics are
shown in Table 10.5.

It is reasonable to assume that the number of business operations will vary
directly with the number of users on the system. The best quality information we
have for this system is the actual business usage and production utilization for
the current system. A graph for CPU utilization of the current system is shown in
Figure 10.7.

Table 10.5  Usage Attributes and Requirements

Usage Attribute Requirement

Operations Window 12:00 midnight to 11:59 pm, Monday to Sunday

Number of Users by Class North America: 250,000
United Kingdom: 0

Number of Users by Class (after 1
year)

North America: 287,500
United Kingdom: 25,000

Number of Users by Class (after 5
years)

North America: 502,839
United Kingdom: 132,250

AU5334.indb 249 11/19/07 7:50:46 AM

250  n  Patterns for Performance and Operability

In this graph we clearly see an evening peak-usage period starting at 7:00 pm
and lasting four hours until approximately 11:00 pm. This busy interval is fairly
wide because it spans all North American time zones. Let’s start by trying to antici-
pate the additional required CPU based on the 15% increase in North American
usage. Again, if we assume that 15% more users will execute 15% more business
operations, we are able to simply apply a factor of 15% to our CPU requirement.
Let’s see what this looks like on our graph (shown in Figure 10.8).

Adding 15% to our volumes has moved our peak CPU to almost 60% utili-
zation of our current infrastructure. If we add our 40% contingency factor, the
required hardware capacity is 83.7%. We are already starting to tax our existing
infrastructure heavily and we have not added UK volumes or increased usage based
on the new features that are being added. Our assumption here is that the CPU
requirements for the system will scale linearly with increased user volumes. This is
acceptable for purposes of our capacity model, but this does not substitute for the
need to actually perform testing in a non-functional environment to validate the
assumption.

Our next step is to add the additional volumes from the United Kingdom.
The business has given us no reason to believe that the usage profile in the United
Kingdom will be any different from usage in North America. The United Kingdom

0%

100%

52%

0:00 0:600 12:00 0:600 12:00 0:600 12:00

Time

0:00 0:00 18:00 18:00

CPU
Utilization

Peak Period: 19:00 – 23:00 Peak Period: 19:00 – 23:00

Figure 10.7  Online dating example: current capacity model.

0%

100%

59.8%

0:00 0:600 12:00 18:00 0:600 12:00 18:00 0:600 12:00 0:00 0:00

CPU
Utilization

Peak Period: 19:00 – 23:00 Peak Period: 19:00 – 23:00

Figure 10.8  Online dating example: capacity mode with additional U.S. usage.

AU5334.indb 250 11/19/07 7:50:48 AM

Operations Trending and Monitoring  n  251

spans fewer time zones, so our spikes will probably be somewhat more compressed.
One year from now, the UK market as a percentage of the North American market
will be

	

25 000
287 500

8 6,
,

. %= .

To apply the additional UK usage, we can inflate our model by 9%. We must
also time shift this usage to account for the time zone difference between North
America and the UK. Time shifting in this case works in our favor as it distributes
our peaks and smooths our CPU usage, as shown in Figure 10.9.

Our next step is to sum the time-shifted UK contribution to the required
CPU with the forecasted North American CPU requirements. When we do
this, our graph of the outcome is a smoother utilization as predicted (see
Figure 10.10).

The North American and UK evening peaks do not overlap. The UK non-peak
usage does contribute to the original North American peak, shifting it up slightly
to 61.6%. Management will be happy to learn that in the first year of operation, the
UK expansion makes more efficient use of the existing hardware capacity without
introducing the need for additional expenditure. Remember, we still haven’t looked
at the impact of the additional features that are being introduced, nor have we con-
sidered the five-year outlook for this system.

CPU
Utilization

0%

100%

0:00 0:600 12:00 18:00 0:00 0:600 12:00 18:00 0:00 0:600 12:00

Figure 10.9  Online dating example: capacity model for additional UK usage
only.

CPU
Utilization

0%

100%

61.6 %

0:00 0:600 12:00 18:00 0:00 0:600 12:00 18:00 0:00 0:600 12:00

UK peak

N.A. peak

Figure 10.10  Online dating example: capacity model for combined UK and
U.S. usage.

AU5334.indb 251 11/19/07 7:50:50 AM

252  n  Patterns for Performance and Operability

Let’s complete our one-year outlook before we generate a five-year forecast. All
of the inputs to the model have been based on the one-year forecasted business vol-
umes, so all that is remaining is to add the business usage for the two new features
that are being bundled with the release. We start by looking at the business usage in
Table 10.6 as it is defined for the North American user community. (A similar table
would exist to describe the UK usage, but it is omitted for brevity.)

Table 10.6 is taken from the updated non-functional requirements for the
online dating service. We see that the busiest period for site activity is between 7:30
pm and 9:30 pm, which aligns with our production CPU measurements. The busi-
ness feels that for every two individual contacts that are made on the site, approxi-
mately one introduction is likely.

Posting date venues is forecasted to be far less common than browsing data
venues. In fact, the marketing team plans to supplement postings if take-up is not
high among users. Finally, for every ten personal profiles that are viewed marketing
feels that there will be at least one data venue that is also browsed. The business
has posted the expected one- and five-year business volumes based on the projected
increase in usage.

Business volumes for this online data service are not seasonal, nor is there much
weekly variation in online usage. (This may or may not be true. Feel free to write
to us should you have information that contradicts this assumption.) As a result,
we need to calculate what the incremental peak load is expected to be for the sys-
tem and then add it to our current model in order to determine the new hardware
capacity.

Table 10.6  Business Usage in North America

Usage Attribute Requirement

Busiest Interval 7:30 pm to 9:30 pm, weekday evenings (40% of average day’s
business volume)

Search Personals 38,500 48,125 97,790

View Personal Profile 52,300 65,375 132,842

Contact Individual 1,800 2,250 4,572

Make Introduction 900 1,125 2,286

Post-Date Venue 200 250 508

Browse Date Venues 5,230 6,538 13,284

AU5334.indb 252 11/19/07 7:50:51 AM

Operations Trending and Monitoring  n  253

Fortunately for us, the non-functional testing team had previously identi-
fied that the North American and UK peak loads do not intersect one another.
Accordingly, they have devised two mixed load scenarios, one for each of the North
American and UK peaks. As you may have guessed, they are actually the same
mixed-load scenarios run at different transaction rates. For the two new features,
the non-functional test team added additional load scenarios to the original mixed
load for the dating service.

The transaction rates for the three coarse inputs defined by the business were
calculated as follows. For these volumes, rates are calculated in transactions per
minute (TPM). We assume 40% of business operations will be completed in the
two-hour window indicated. Remember, the calculations below describe North
American usage only; an equivalent set of calculations would be required for the
UK usage to derive the UK transaction rates.

	
Transaction Rate Transactions

InIntroduction =
tterval

x
m

TPM= =
900 0 4
120

3 75. .

	
Transaction Rate Transactions

InterPostVenue =
vval

x
m

TPM= =
250 0 4
120

0 83. .

	
Transaction Rate Transactions

IntBrowseVenue =
eerval

x
m

TPM= =
6538 0 4
120

21 79. .

In order to complete our model, we ask the non-functional test team to exe-
cute two sets of performance trials in which they run load for the incremental
scenarios that exercise the new business features in which we are interested. The
performance team fulfills our request and provides two numbers that reflect peak
CPU usage under both the North American and UK transaction rates (as shown
in Table 10.7).

Before we can incorporate these inputs into our model, we need to convert them
into our standard units of measurement. Our capacity model is currently expressed
in terms of percentage of current capacity. The non-functional test environment is
actually half the size of the production infrastructure. The application server has
half the number of CPUs as its production counterpart. As a result, the numbers
we need to use in our analysis are actually 6.5% and 3.5%. If we add these numbers
to the two observed peaks in our capacity plan, we arrive at the conclusions shown
in Table 10.8 for our one-year capacity model.

AU5334.indb 253 11/19/07 7:50:55 AM

254  n  Patterns for Performance and Operability

At the end of the next year, the online dating service will be straining the limits
of its current infrastructure based on the North American peak business usage. The
advantage in building this model incrementally is that you can summarize results
for management so that they can see the impact of different factors on hardware
requirements. By creating an incremental view of your capacity model, you provide
the visibility management needs to make more efficient business decisions. Based
on the work we have done, it is clear that expansion to the United Kingdom does
not impose an urgent need for increased capacity.

You should also complete this same exercise based on the five-year business vol-
ume. The one-year view of the capacity plan indicates that the business will need to
make an additional investment in infrastructure very shortly. The five-year view of
the capacity plan will give them a perspective on how big an infrastructure invest-
ment is required in the long term. In this example, we have seen that the impact
of new features is the single largest contributor to the need for more capacity. In a
real situation, we would emphasize this in reporting results to management. The
five-year plan will not show the need for increased processing power based on fea-
tures that will no doubt be introduced as the platform matures. Conversely, as the
development team refines the application, you may see a significant drop in the
capacity requirements for the system. This can only be evaluated on an ongoing
basis using an approach that strongly positions current production measurements
in the revised capacity plan.

Table 10.7  Peak CPU Usage in North America and the United Kingdom

Scenario CPU Measurement

New Feature Incremental Load—
North American Transaction Rate

13%

New Feature Incremental Load—UK Transaction Rate 7%

Table 10.8  One-Year Capacity Model Conclusions

Required
Capacity

Forecasted
One-Year
Baseline

Incremental
Performance
Test

System
Capacity
Required Contingency

Total
Capacity
Required

NA Peak 61.6% 6.5% 67.1% 40% 93.9%

UK Peak 42.3% 3.5% 45.8% 40% 64.1%

AU5334.indb 254 11/19/07 7:50:55 AM

Operations Trending and Monitoring  n  255

Maintaining the Model
In a capacity model based on experimental results, business usage is a key factor in
the accuracy of your model. If the actual production usage turns out to be double
the volume you used during testing, then your capacity model is unlikely to make
very accurate predictions. Another potential weakness in your capacity model can
result from load scenarios that are not representative of the actual usage. Load
scenarios may create coarse inputs in the quantities specified in the non-functional
requirements and still seriously misstate the future system load. Users may adopt a
different usage pattern than what you have modeled in your load scenarios.

Another serious gap can come from your business usage model. You may
totally fail to include key user activities that require significant capacity from the
infrastructure.

For all of these reasons, we recommend that you make maximal use of produc-
tion business usage and CPU measurements when you are assembling a capacity
model. It is tempting to think that your load scenarios are a pure representation of
the production system, but there is a good likelihood that one or more of the above
factors may be at play for your system. Non-functional testing is always an approxi-
mation of the actual production usage. It should never be substituted for the actual
usage when the actual usage is available.

In the previous example we used an incremental approach to add the fore-
casted load for new features on top of the measured production load. You may have
thought that this was inappropriate as there is no guarantee that the incremental
load of the new features will add linearly to the baseline load; you would be correct
in this suspicion. However, this risk is substantially smaller than the risk that one
of the factors we have just described will have an even more serious impact on your
model.

In our example, you may also remember that the non-functional test envi-
ronment was not large enough to conduct a full-scale test. The one-year forecast
predicted by our model showed the production infrastructure to be almost fully
utilized. It would have been impossible to conduct a test under the full load of
the system in an environment that is half the size. Many projects do not have the
luxury of a non-functional test environment that is at least as large as the produc-
tion infrastructure.

Completing a Capacity Plan
The trickiest part of any capacity exercise is in formulating the best possible capac-
ity model. As we have seen, a capacity model is a description of the forecasted
resource requirements for the system under an expected business usage. Once you
have established a good model, you complete your efforts by documenting a capac-
ity plan. A capacity plan specifies exactly how your infrastructure needs to evolve

AU5334.indb 255 11/19/07 7:50:56 AM

256  n  Patterns for Performance and Operability

over time to meet the needs projected by your model. The capacity plan specifically
addresses which hardware expenditures will be needed and when, and will make
statements along the lines of the current Sun Enterprise 10K (40 x 400MHz Ultra-
SPARC II) servers will need to be upgraded to Sun Fire 6900 (16 x 1.8GHz 48GB
UltraSPARC IV+) servers no later than July of next year in order to sustain performance
for projected volumes.

The capacity plan typically makes considerations as to when the best time for
your organization to accommodate an upgrade would be. For example, the plan
may recommend that the total upgrade be accomplished in stages over the course
of 16 months. The capacity plan will also need to factor in the requirements of
non-production environments (e.g., if the production environment is expanding,
a cost-benefit analysis will be required for whether to expand the pre-production
non-functional testing environment as well).

Since cost is a factor for every organization, it is the responsibility of the capac-
ity plan owner to make judicious decisions about which hardware vendor and plat-
form are appropriate for the organization. In some cases, the capacity plan may
recommend retiring equipment from one production platform to be re-introduced
as part of the infrastructure for another smaller, existing production system.

Summary
This chapter has covered a broad range of topics that come into play for systems
that are already deployed to production environments. We have looked at appli-
cation monitoring from an operations perspective spanning application, infra-
structure, container, and end-user categories of monitoring. This chapter has also
emphasized the importance of trending and reporting as a means of understanding
system health and predicting future system failures. The second half of the chapter
explored the complex topic of capacity planning based on measurement of the pro-
duction system combined with test results from non-functional activities. We illus-
trated how to define a capacity model based on multiple inputs and how to draw
conclusions and make recommendations based on that model. In Chapter 11 our
focus shifts to the topic of troubleshooting and crisis management. Despite your
best efforts to design, test, and operate highly available systems, you must still be
prepared to respond quickly and effectively to production incidents if they occur.

AU5334.indb 256 11/19/07 7:50:56 AM

257

Chapter 11

Troubleshooting and
Crisis Management

It is with great sincerity that we hope you never have need for any of the material in
this chapter. Yet, despite your best efforts to design and test for robustness in your
applications, you may be required to manage and resolve unforeseen issues for your
production applications. You may also have the misfortune to inherit responsibility
for applications that have not been designed and tested using the expertise in this
book. In either case, this chapter enumerates a list of troubleshooting strategies and
outlines crisis management techniques developed by way of hard-earned experi-
ence. Much of what we describe in this chapter is common sense, but in a crisis,
discipline and calm are required to work through the situation in a structured
fashion. This chapter is a good reference for situations in which things are quickly
going from bad to worse.

Reproducing the Issue
Reproducing the issue is critical to your success for two reasons. First, by reproduc-
ing the issue at will in a non-production environment you are validating that you
understand the issue correctly. Second, once you can reproduce an issue you can
develop, apply, and prove your solution. Given that you already have a serious pro-
duction issue, your credibility with business users is already in a weakened condi-
tion. If you are going to persuade them to allow you to make an expedited change
in order to correct the problem, you will need to demonstrate beyond reproach that
your solution will fix the issue without introducing any harmful side effects. The

AU5334.indb 257 11/19/07 7:50:56 AM

258  n  Patterns for Performance and Operability

mindset of the business may be severe, i.e. If these guys knew what they were doing in
the first place, we wouldn’t be in this mess. And now they want me to authorize more
tinkering in the environment?

In earlier chapters on project initiation and test planning, we recommended
that you plan for a logical environment in your non-functional test environment
that is at all times synchronized with the version of your application that is in pro-
duction. If you have followed this advice, you are well positioned for your efforts in
reproducing a production issue. If you do not have such an environment, you will
need to acquire or designate a suitable environment. This may mean repurposing
an existing environment and deploying the production version of your application
in there.

Reproducing the problem usually precedes your determination of root cause. In
fact, once you have reproduced a problem, it doesn’t tend to take long for capable
technical resources to hone in on the underlying issue. In the next section, we will
look at the difficult task of troubleshooting a problem, including scenarios that are
not readily reproduced.

Determining Root Cause
Your efforts to resolve a production crisis are ultimately about determining root
cause. Root cause will fall into one of the following categories:

	 1.	A software defect in your application: A defect in your application is usu-
ally the easiest root cause to identify and to resolve, assuming the application
is fully within your control and the support team has the necessary develop-
ment expertise.

	 2.	A software defect in a vendor application: Defects in vendor software can
be more difficult to isolate and resolve. Vendors are reluctant to investigate
issues until you can present convincing arguments that the issue is not an
application issue of your own. Frequently, you will not have access to vendor
code or insight into the internal design of vendor components. Vendors may
also be unwilling to engage in a collaborative technical discussion if they feel
that such a dialog is proprietary.

	 3.	An illegal input or usage for which your application was ill-equipped:
This scenario can occur in any number of ways. A common scenario is when
requirements do not anticipate the actual usage of the system. Functional
requirements can fail to capture all possible data inputs, causing system
failure when the application must react to unrecognized inputs. Defensive
design and implementation should never cause a total system failure, but
a high volume of errors can be as serious as total system outages for many
applications. Note that inadequate requirements can also be non-functional

AU5334.indb 258 11/19/07 7:50:57 AM

Troubleshooting and Crisis Management  n  259

in nature. Consider a case in which business volumes suddenly surge well
beyond the levels described in the business usage.

	 4.	An illegal or mistaken procedural error by an operator: You may impose
strict controls on access to the system. You may make every effort to automate
operations processes, but a potential will always remain for a user to compro-
mise the system through human error. These problems can be difficult to pin-
point as humans will sometimes compound the original error with reluctance
to admit their involvement. It is worth mentioning that study after study has
shown that operator error is responsible for the preponderance of system outages.

	 5.	An infrastructure event: Depending on the level of capacity and redun-
dancy in your environment, there will be scenarios in which an infrastructure
event causes issues for the end users of your application. This category of
error includes hardware failures such as memory corruption and disk failure.
Highly available applications can be designed and deployed to highly avail-
able hardware, but there are limits to what can be accomplished.

In some rare cases it is even possible that a combination of the above is the root
cause of your problem. For instance, a vendor’s clustering product has a bug that
failed to detect an infrastructure event that should have triggered the cluster to
failover the application, or an application that is ill-equipped to deal with problem
situations has crashed because of a simple operator mistake.

In the following section, we will look at troubleshooting strategies that will help
you to isolate the type of failure responsible for root cause. As you rule out catego-
ries of root cause, you will be able to engage resources in the most efficient way. For
example, a problem that has been identified as an infrastructure event will be less
dependent on input from the application support team or representatives from the
end user community.

Troubleshooting Strategies
For tough problems, it can be difficult to know where to start. The strategies we
discuss in this section are a reference for these types of situations. This material
will also be helpful to you if you find that you are completely blocked because you
believe you have exhausted all avenues of investigation.

Understanding Changes in the Environment
If a system is running trouble-free and suddenly begins to encounter difficulties,
this will almost always be traceable to a change in application, runtime environ-
ment, or usage by the end users. This pearl of wisdom is commonly understood,
and so the first question in a crisis is, What changed? If your organization adheres
to detailed change-control procedures, you will be able to reference the system and

AU5334.indb 259 11/19/07 7:50:57 AM

260  n  Patterns for Performance and Operability

begin to answer this question. In many cases, this exercise will yield nothing or a
list of changes that have no discernable linkage to the symptoms of your failure.
Consequently, you must do two things: look harder, and cast a wider net. You must
capture all changes in the system, including those that are not documented in your
change control process. The full list of changes that can be responsible for a sudden
system failure are:

	 1.	Documented Changes: These include application upgrades, bug fixes, vendor
patches, scheduled maintenance tasks, and hardware migrations. If a problem
arises following a significant change in the environment, it is obvious that this
should be the focus of your initial investigation, as discussed above.

	 2.	Undocumented Changes: In some organizations, changes are made in the
production environment without the benefit of an audit trail. A well-inten-
tioned technical resource may perform a seemingly harmless maintenance
activity unrelated to your application. You should challenge the operations
team to be forthcoming about any of these undocumented activities no mat-
ter how benign or irrelevant they may seem at the time. Remember that the
operations team may be reluctant to volunteer this information if it exposes
a flaw in their operations, so this may take some coaxing. In many environ-
ments, the application support team may have access to the production envi-
ronment, so ensure that you clearly understand the full population of users
with access to the production environment.

	 3.	Scheduled Jobs: You should look at the execution schedule for batch jobs.
If jobs run on an infrequent basis, there may have been a change since the
last job was executed that triggered the failure. Many systems have multiple
subsystems or scheduling components that can launch jobs so make sure
you inventory everything including operating system (OS) schedulers (e.g.,
CRON, Windows Scheduling), custom application scheduling (e.g., in J2EE,
Java Message Service (JMS) supports deferred message delivery. Also, the
EJB 2.2 specification includes support for timed operations) and third-party
scheduling software.

	 4.	Usage: You should question the user community to understand how the
application usage may have changed. About eight years ago, I was part of a
technical team supporting the rollout of a call center application. Without
any notice to the operations or support teams, the call center manager decided
to triple the usage of the online system when he moved training activities into
production one Monday morning, unexpectedly. This decision triggered a
serious degradation of service that required immediate intervention. Unfor-
tunately, the technical team wasn’t expecting a surge in business usage and
wasted considerable time looking at alternative explanations and scenarios.

	 5.	External Systems: If your application interfaces with external systems, you
should verify that those systems are available and ask for an inventory of
recently applied changes.

AU5334.indb 260 11/19/07 7:50:58 AM

Troubleshooting and Crisis Management  n  261

	 6.	System Administration: Many applications support administration inter-
faces that allow business users to make configuration changes in the appli-
cation. In working with users you need to impress upon them the need to
understand all recent changes of this type. If your system follows the design
best practice described earlier in this book, all administrative actions should
be audited in the application. You can cross-reference the usage that is
reported by the business with the system log.

	 7.	Time: If nothing else has changed, time itself has elapsed. There are a host of
failures possible for systems as they age, mostly related to the accrual of data in
system files, databases, or any other long-term data store. This is a special cat-
egory of problem, so we will look at this as a special case later in this chapter.

The key point to understand is that computer systems are not capricious and
emotional. A computer system that is functioning properly will continue to do
so until something changes. If all of your inputs are telling you that nothing has
changed, then you need to keep looking.

Gathering All Possible Inputs

In this activity you need to put aside any bias you have and ensure that you capture
and understand all of the inputs that are available to you. The most important
inputs you gather are related to changes in the production environment or the
application usage. We have emphasized this category of input in the previous sec-
tion. Additional inputs that will aid your investigation include:

	 1.	Business Usage Timeline: At the time of the failure, what business operations
were active? What scheduled jobs and automated application function can be
correlated to the time of the failure? If a specific business function is only
active in the evenings, and you experience a system failure at 10:00 am, then
that evening’s business function is unlikely to be implicated in the problem.

	 2.	Error Distribution: At the time of the failure, which business functions
experienced errors and which business functions did not? Answering this
question may help to establish a common dependency for applications that
failed. This can refine your investigation to look more closely at the availabil-
ity of specific resources. This includes looking at other unrelated systems that
are hosted on the same infrastructure or that share dependencies.

	 3.	Application Logs: You should gather all application logs in which error
information may be deposited. Are there unfamiliar errors in these logs? Do
the errors correlate to the time of the system failure? If the logs are void of
errors, are there unusual or unrecognized log entries of any type? Logs that
are available are usually a combination of vendor and custom application
logs; make sure you are looking at both. Vendor products will often create a
series of log files; make sure you are looking at all of them.

AU5334.indb 261 11/19/07 7:50:58 AM

262  n  Patterns for Performance and Operability

	 4.	Cross-Reference Business Inputs: Business users are notoriously poor at
describing problems. They may be angry at the system failure, and may feel
frustrated that they need to participate in the problem determination. To
many users, a “technology problem” is something that technologists should
fix themselves once they have been told that there is a problem. Given this
potential for bias, business users do not always accurately describe a problem.
They may exaggerate the problem to try to escalate urgency. Encourage busi-
ness users to forward information directly to you for interpretation; encour-
age them to quantify information. Business users will tend to report problems
using phrases like: “the system is slow” or “there were lots of errors.” Neither
of these comments is very useful. You need to coach them towards statements
like, “login is taking 20 seconds on every attempt—login usually takes less
than 1 second” and “We have attempted 100 requests in the last hour and
50% of them experienced the error shown in the screen capture attached to
this email.” Don’t be reluctant about asking the same question twice or involv-
ing multiple business users to improve the quality of your information.

	 5.	Exception Outputs: If your system has failed completely (i.e., crashed), it
is possible that it produced a core file or process dump at the time of fail-
ure. Vendor software and custom applications can both produce these types
of outputs. If vendor software has created a core file or process dump, you
should engage the vendor to help scrutinize the output. Software that is writ-
ten defensively should never crash. If a process belonging to a vendor program
has crashed, you have become the victim of a known issue or you are about
to help the vendor debug and document a new issue. If your own custom
process has crashed, you are most likely looking for a bug in your own soft-
ware—short of a flaw in the operating system, that is.

	 6.	System State: If the system is in a failed state, make sure you extract as much
state information from the system as possible before restoring service. For
example, J2EE systems expose a large number of runtime metrics through a
JMX (Java management extensions) interface, including the active number
of database connections for connection pools and the number of available
execution threads on the server. For systems that are running but unrespon-
sive, the amount of information you can capture may be limited. In previous
chapters we emphasized the importance of system trending and monitoring.
If your application is totally unresponsive, you will need to rely more heavily
on the outputs of your monitoring. There will be pressure to restore service
as quickly as possible, but you must balance this against the potential for the
problem to happen again if the problem is not properly understood.

	 7.	Previous Failures: You should also assemble a list of previous system fail-
ures. Ask yourself, has a similar problem happened in the past? Did we resolve
that problem and if so, how? What is common about the circumstances or
symptoms of this problem with recent previous problems?

AU5334.indb 262 11/19/07 7:50:59 AM

Troubleshooting and Crisis Management  n  263

By assembling information and generating discussion in an open forum that
includes a spectrum of technical resources, you will catalyze analytical thinking.
Be certain to encourage discussion as each input is introduced. What one person
perceives to be obvious or common knowledge may be a critical new piece of infor-
mation for another participant.

Approach Based on Type of Failure

In a large or complex environment, isolating the source of a problem can be dif-
ficult when there is a lot of concurrent processing. If there are hundreds of parallel
threads of execution, which one is responsible for a sudden failure of the system?
Your options for isolating the source of a problem will be different depending on
the type of failure.

For systems that fail suddenly and fatally (i.e., a system crash), your best quality
information will come from any process dump information that was generated at
the moment the server crashed. Process dumps will tell you exactly what machine
instruction was executing when the process died. If the process crash does not cre-
ate any output (and often it will not), then the next best source for information is
the log files. Log files will not give you information that is as granular as what you
can expect from a process dump, but it is the next best thing. If your application
logged an exception and then failed upon further processing, you may be in luck.
If, however, your application processes high volumes, then it is unlikely that your
logging is granular enough to inform you what the application was doing at the
time of the crash. If there is no process dump information and logs are not helpful,
then your only recourse is to establish the business usage at the time of the failure
and attempt to reproduce the problem. If you can reproduce the problem, your next
steps should include:

Verify the Application Configuration: You may find that a process dump
was not created because of an OS or application configuration. In one expe-
rience, we failed to capture a core dump from an Oracle database failure
because the system was not configured to deposit core files onto a file sys-
tem with sufficient capacity. On another occasion, a multiple virtual storage
(MVS) system we were working with was not configured with the correct job
control language (JCL) settings to create a detailed dump on system ABEND
(abnormal ending or termination) codes.
Enable Additional Logging and Trace Information: If you were attentive
to the recommendations in Chapter 4, your application should include exten-
sive debug and informational logging. You can reproduce the issue with these
settings enabled to glean more insight into the problem.
Run Incremental Load: Once the problem is reproduced, you should con-
tinue to try to reproduce the problem with an objective of using the mini-

n

n

n

AU5334.indb 263 11/19/07 7:50:59 AM

264  n  Patterns for Performance and Operability

mum possible business load. If you reproduce the problem with seven load
scenarios, you may find that it only takes two of the seven scenarios to actu-
ally cause the failure. This allows you to focus on what distinguishes those
two load scenarios from any others.

If you cannot reproduce the problem, then you should think about what addi-
tional monitoring may be helpful should the problem happen again. If you do not
understand the root cause of the problem, you should assume that the problem will
happen again. Sometimes you have no choice but to wait for another occurrence
of the problem, but there is no excuse for not capturing more information on sub-
sequent occurrences. It is tempting to conclude that the problem was a one-time
glitch, especially if the problem appears to go away once the system is restarted.
This is ill-advised; if you do not understand the root cause of a problem, you should
assume that it will happen again.

Another common failure scenario is one in which the application enters a state
from which it begins to experience a high number of application errors. In this situ-
ation, it is common to have to restart the application in order to restore service. For
these types of incidents, it may be obvious what is causing errors. What is not clear
is the event that forced the system into this state in the first place. For this type of
problem, a reliable strategy is as follows:

	 1.	Determine the time of the last successful transaction: You need to estab-
lish a timeline for the events that led up to the failure. The last successful
transaction completed is usually a good starting point. For busy systems
under constant load, the timestamp of the last good transaction will be very
close to the commencement of the failure condition.

	 2.	Inspect application logs and outputs at that time: From the point of the last
successful transaction, look closely at logs and application outputs. If you are
lucky, these inputs will provide an indication of what triggered the failure.

	 3.	Inspect data and system state at that time: It is worthwhile to look at the
last valid data that was processed by the system and compare it to the data of
transactions that are now failing. Differences in what you see may lead you to
an explanation.

	 4.	What was the business usage and application behavior at that time: A
sudden change in business usage or unusual inputs may have forced the sys-
tem into a state that compromised future processing. There may not have
been errors at the time, but the actual usage may be the cause of the errors
you are seeing now.

	 5.	Reproduce the problem: Using the information gathered, try to reproduce the
problem by subjecting the system to the equivalent load and set of inputs.

We’ve looked at two template approaches for two different types of system failures.
Many of the problems you face will fall into one of these two categories. In the sections
following, we will look at more specific techniques and examples for troubleshooting.

AU5334.indb 264 11/19/07 7:51:00 AM

Troubleshooting and Crisis Management  n  265

Predicting Related Failures

There are times when a problem appears to have no explanation; it is not reproduc-
ible in any test or development environment. Configuration and environment have
been confirmed multiple times, and the application does not produce any useful
error information. The only advantage you may have is that the business usage has
been isolated to a single simple test case that reliably reproduces the problem. This
same scenario works as expected in every other environment, and the technical
team is running out of ideas. In this type of situation, it is time to get more creative.
As we discussed earlier, you need to cast a wider net and acquire more information.
We know that the application fails when it is supposed to work; now let’s see if the
application fails when it is supposed to fail. A useful technique for extracting addi-
tional information from a problematic system is to:

Subject the system to negative inputs and observe how it reacts
Introduce failures for its dependencies and observe how it reacts

As a simple example, let’s consider a backend system that processes a loan
application. In this example, the development team for a financial institution has
upgraded a loan application and approval system. Approximately two hours into
the operations window for the new system, users are reporting that they consis-
tently get errors when submitting new loan applications. All other aspects of the
system appear to be functioning normally, and the development team is perplexed.
Loan application processing was tested and verified during the system upgrade.
There is no reason to expect errors.

Before we look at troubleshooting approaches to this scenario, let’s understand
the high-level architecture for this application. Loan applications are input by back-
end operations users based on handwritten applications. When the loan request is
accepted, a confirmation number is returned by the application. The operator uses
this number to continue with additional processing, including contacting the cus-
tomer to inform them of their loan status.

The development team has asked the users for information, and they have pro-
vided a screen capture that is not helpful. It is a generic system exception that
does not include any information that is useful in determining the nature of the
problem. For our failure scenario, we know that the request is causing a failure,
but we are not certain where or why. We do not see any data in the structured
query language (SQL) Server since the error was reported. This in itself isn’t helpful,
because the persistence of form data to the SQL Server database is part of the same
transaction as the posting of the fulfillment message. The fulfillment system has
not received any loan requests since the time that the problem was reported either.
This isn’t helpful, because we don’t know if the application is attempting to send
fulfillment requests or if it is failing when it does so. For both the database and the

n
n

AU5334.indb 265 11/19/07 7:51:00 AM

266  n  Patterns for Performance and Operability

fulfillment service, we can’t tell if the transaction is attempted and rolled back or
never attempted at all. We need to get more information.

Our first approach will be to subject the application to negative inputs. This
should tell us whether the form validation itself is functioning correctly. We ask
the business user to submit a valid loan application, but omit a required field. The
business user does this and finds that the loan application is immediately rejected.
The business user attempts various combinations of illegal inputs and finds that the
loan application is rejecting them all, as expected. Based on this, we conclude that
it doesn’t look like there is a problem with the form validation processing itself.

Our next effort is to submit a well-formed loan application that purposefully
triggers a business rule that causes the loan application to be rejected. Loan appli-
cations that are rejected are not persisted to the SQL Server, nor are they posted
to the IBM MQ Series for fulfillment. Again, our business user attempts multiple
loan application inputs and, as expected, the bad loan applications are rejected with
the correct business error, and the eligible applications produce the same error as
was originally reported. Based on this evidence we conclude that the business rules
engine for loan processing is working correctly.

So far our efforts seem to be pointing to an issue in either persisting or fulfill-
ing valid loan application requests. We need to continue our efforts to isolate the
problem. We ask a database administrator (DBA) to temporarily remove the insert
privilege from the SQL Server table into which the record is being recorded. If we
see the same error, then this is evidence to support the theory that there is a prob-

Application
Server

Loan Calculation
Module SQL Server MQ Series Fulfillment

Validation

Loan Request

Approve Loan?

Return Loan
Application Number

Persist Form Values

Transmit Successful Loan
Application

Figure 11.1  Loan application example: sequence diagram.

AU5334.indb 266 11/19/07 7:51:01 AM

Troubleshooting and Crisis Management  n  267

lem with the database operation. If we see a different or more informative error,
then this means it is less likely that the database is implicated in our problem. The
DBA accommodates our request and we repeat our testing. To our surprise, we see
the same obtuse error message that we have been struggling with since the prob-
lem was first reported. It seems that the error handling for database operations
has been poorly implemented. At this point, it would be prudent to ask a support
resource to look at the application code and confirm that a SQL Server exception
would result in the observed error. At the same time we decide to look closely at
the insert operation and try to formulate theories that explain this behavior. Fol-
lowing the advice from earlier in this chapter, we ask the DBA to tell us when the
last successful insert was made on the database. The DBA reports that inserts were
made successfully today at 11:01 am. This closely corresponds with the first reports
from the field that the system was experiencing errors. We ask the DBA to forward
the last 6 successful entries in the loan application table and they appear as follows
(see Table 11.1).

In inspecting the data, the technical team very quickly identifies that the last
successful input is suspiciously 999,999. When the data type for the primary key
column is scrutinized, the team realizes that it was improperly designated as a
character field instead of a numeric field. The field width was suddenly exceeded
at 11:00 am when an attempt was made to process the millionth loan application.
Unfortunately, this field overflow coincided with deployment of a new version of
the application. This coincidence distracted the team, causing them to focus on
application changes that were introduced as part of the system upgrade.

Table 11.1  Loan Application Example: Database Records at Time of Failure

Application
ID Agent Date and Time Last Name First Name …

999994 blacksa 02/01/07 10:56:06 Tomken Glenda …

999995 browne 02/01/07 10:58:51 White Barbara …

999996 pascalti 02/01/07 10:58:57 Howard Michael …

999997 williamvi 02/01/07 10:59:21 Milton David …

999998 laderoupa 02/01/07 11:00:07 Druze Sandy …

999999 emondgr 02/01/07 11:00:14 Pate Emily …

AU5334.indb 267 11/19/07 7:51:02 AM

268  n  Patterns for Performance and Operability

Discouraging Bias

In a crisis situation, you cannot afford to let bias play a role in problem determina-
tion. The following list includes common sources of bias. You will need to work
actively to encourage open-mindedness. As a general rule (and unlike our criminal
justice system) everything is suspect until proven otherwise.

	 1.	Politics: In many organizations, politics are an unfortunate and inescap-
able part of getting things done. In a crisis situation, politics can be very
counterproductive. Spinning a problem as an “application problem” is a con-
venient way for the infrastructure or operations team to shift emphasis and
responsibility in an investigation. This type of bias works in many different
directions. The application team will often cite “environmental issues” as the
most likely explanation even when there is little or no evidence to support
this claim.

	 2.	Pride: No one likes to think that they are responsible for a problem. Technologists
can be fiercely proud and opinionated. However, good technologists also appre-
ciate that anyone can make a mistake, an oversight, or a flawed assumption.

	 3.	Expertise: If you have a task force comprised mostly of DBAs that are looking
at a problem, then this team will do a great job of formulating theories based
on their own expertise. In other words, the database may quickly become the
focal point of your investigation. We often become beholden to the theories
we understand best, but these are not necessarily the correct theories. In a
crisis situation, you need to stretch yourself and your team to ensure that
theories and speculation are grounded and supported by evidence. If you
don’t have sufficient technical coverage for the application, be honest about it
and escalate the investigation to get the right people involved.

	 4.	Communication: Don’t assume that everyone knows everything that you
do about the system. If you find yourself thinking, “that person should know
this already,” then take the time to confirm that they, in fact, do.

Pursuing Parallel Paths

Finding a solution needs to be a team effort if it is going to happen quickly. In a
team environment, there is a temptation for participants to focus on or yield to the
front-runner or most likely theory at any given moment. Team members will wait
until the current theory is fully played out before reinvigorating efforts on alterna-
tive trains of thought. In a crisis, where there is little time to waste, your team needs
to be disciplined about working on parallel tacks. If a team member identifies a
promising avenue of investigation, ensure that that person is well supported and
then move on and continue looking at the problem from as many different angles
as possible.

AU5334.indb 268 11/19/07 7:51:02 AM

Troubleshooting and Crisis Management  n  269

Considering System Age

Once you have exhausted all possible sources of change for an application, the only
remaining category is that of time itself. As systems age, they experience changes in
a number of ways, including:

	 1.	Overflows and Exceeded Resource Limits: Earlier in this chapter we saw
an example in which an autogenerated sequence created a primary key value
that overflowed the database column in which it was stored. For applications
that do not consider the long term, it is possible for a sudden resource limit to
become an issue and cause failures for the application. Hopefully, this type of
failure causes a descriptive error message so that it can be identified quickly
in your system.

	 2.	Performance Characteristics: As a system accumulates transactional data
over time, the performance characteristics of the system can change signifi-
cantly. This should be mitigated by your approach to non-functional testing
as described in Chapters 6 and 7. If you loaded transactional volumes dur-
ing your testing, you should already have certified your application for the
worst-case scenarios for data accumulation. If this testing was never done,
it is even more critical that you follow the advice in Chapter 10 on moni-
toring and trending. Regularly benchmarking applications, response times,
and database metrics is an important safety net for performance issues that
can gradually worsen over time. If monitoring and system trending have not
given you any warning of impending disaster, database statistics and analysis
can usually identify performance bottlenecks quite quickly. Your challenge
will be how quickly you can resolve the issue in the event that it requires
application changes.

Working Around the Problem

Sometimes you don’t need to fix a problem; sometimes it isn’t even necessary to under-
stand what is causing a problem. Your business users are interested in conducting busi-
ness; your application enables them to complete specific functions. If there is a way
to work around a problematic technology or interface, this is sometimes preferable to
fixing the root cause, especially if the root cause is not readily understood or requires
a high-risk fix. Vendor problems are good examples, since they are often found to be
in this category. If a feature in vendor software is fragile or unreliable, then despite
vendor proclamations that the component will be “better in the next version” it is often
worthwhile to design around the feature rather than wait for a fix from the vendor. If
you wait for a vendor fix, you are trusting that they will understand the problem fully
and implement a quality solution that does not introduce any other problems. Your
application and environment are unique; not all vendors deserve this level of trust.

AU5334.indb 269 11/19/07 7:51:03 AM

270  n  Patterns for Performance and Operability

As painful as it may be, there will be situations where a subtle design change in your
application is the best way to mitigate risk and satisfy your end users.

Applying a Fix
Determining root cause for a problem is usually the hardest part of responding to
a failure in a production system. Developing, testing, and applying a fix, however,
may be less challenging work but just as much effort. In this section we will look at
processes and considerations for introducing a fix into a production environment.

Fix versus Mitigation versus Tolerance

Introducing changes into a production system is usually and rightfully met with
resistance. Mission-critical software systems achieve high availability by closely man-
aging and limiting change. When a fix for a serious production problem becomes
available, it is preferable to align this fix with the natural maintenance release sched-
ule for your system. Aligning your change with an existing release schedule gener-
ally ensures that it will be thoroughly tested as part of a standard process.

If business reasons are such that you cannot wait for a scheduled release, you
should fully explore alternatives that mitigate the problem and do not require an
intrusive change to the system. In the loan application example from earlier in this
chapter, it is unlikely that mitigation would be found. The loan application system
was no longer capable of processing any new loan applications. For sake of our
discussion, let’s consider a situation in which the loan system was only rejecting
loans that were for amounts over $50,000. If the business informed us that less
than 5% of all loan requests are for this amount or greater, it may be preferable to
process these loan requests manually until a fix can be introduced under the normal
release management cycle.

Our point is that you will always need to assess problem severity in a way that
weighs business impact against technical risk. The simplest imaginable application
fix still entails a change to a production system. There is always room for human
error to creep in and cause problems that are bigger than those you are trying to fix.
If there is no non-intrusive mitigation for your issue, you may decide that the safest
course of action is to simply tolerate it. As we’ve described it, our loan application
is not a good candidate for tolerance; however, many systems are. Let’s revise the
problem for our loan application again. Perhaps the loan application kicks users
out of the system randomly and causes them to lose any information they were in
the process of inputting. This problem would be enormously frustrating, but it is a
problem that your organization may decide to tolerate if the technical risk associ-
ated with the fix is considered to be high.

AU5334.indb 270 11/19/07 7:51:03 AM

Troubleshooting and Crisis Management  n  271

Assessing Level of Testing

In the previous section we introduced three ways in which you can react to a known
production issue: fix, mitigate, or tolerate. In this section, we will look at consider-
ations in determining the level of testing required for a known fix. At a minimum,
fixes should be functionally verified in a UAT (user-acceptance testing) environ-
ment or a controlled production-support environment. The full spectrum of levels
of verification is represented in the figure below.

Factors that should figure in your assessment of where you should be on this
sliding scale are as follows:

	 1.	Complexity of the Fix: If the fix itself is complex, then this warrants a higher
degree of testing. It is more difficult for the development to foresee the impact
of a complex fix. Any changes that alter data exchanged between your system
and external system or between major subsystems are going to be complex.

	 2.	Business Impact: If there is an ongoing financial impact to the business, you
may decide to waive some testing and accept higher risk.

	 3.	Complexity of Testing: If the complexity and duration of testing when
weighed against the current business impact is overly cumbersome, then you
may accept higher risk.

	 4.	Complexity of Deployment and Back-Out: An important consideration in
assessing the level of testing you require is how involved the deployment and
rollback of the change will be in the production environment. If the change
is simple to apply and can be reverted quickly and safely, then you may com-
promise on the level of testing you accept for an expedited change.

Low Risk
Fix is bundled with Scheduled
Maintenance Release
Integrated System Testing
and Regression Testing
User Acceptance Testing
Performance and
Operability Regression

Manageable Risk
Fix is deployed in a dedicated
minor release
Some focused Regression
Testing
User Acceptance Testing
Some focused Performance
and Operability Regression

High Risk
Fix is deployed in a
dedicated minor release
User Acceptance Testing

Risk

Figure 11.2  Applying a fix and associated levels of risk.

AU5334.indb 271 11/19/07 7:51:04 AM

272  n  Patterns for Performance and Operability

	 5.	Comfort Level Regarding Root Cause Analysis: In many cases you may
think you have found the root cause of your problem but you are not quite
certain. When you are acting on a hunch or don’t have undeniable proof that
root cause has been found then make sure that your uncertainty is compen-
sated by sufficient verification.

It is never a comfortable option to waive testing cycles when considering a pro-
duction implementation. Ultimately, the decision to put a change in production
without the benefit of testing needs to be an objective business decision that weighs
business benefit against technical risk.

Post-Mortem Review
Once you have implemented a successful fix for a production incident, your last
obligation in emerging from the crisis is to conduct a post-mortem review. The
goal of the review is to ensure that you never wind up in a similar predicament ever
again. In the review you need to look at the root cause of the problem, whether
it was preventable, and whether it is theoretically possible for anything similar to
happen again. You are also encouraged to review your monitoring and operations
procedures and score your organization on how effectively you reacted to the crisis.
We will discuss these topics next.

Reviewing the Root Cause
Your organization should ask itself different questions depending on the type of
root cause that was ultimately implicated in your failure. This is best expressed in a
tabular format. In Table 11.2 we refer to the types of failures that we listed earlier
in this chapter.

Reviewing Monitoring
In addition to preventing problems from happening in the first place, you also need
to ensure that you detect them as quickly as possible. As we discussed in Chapter
10, monitoring is about detecting problems and capturing the maximum amount
of supporting information. If the alert that is generated contains enough informa-
tion for the support team to immediately hone in on root cause, then it has done its
job admirably. In reviewing your problem-detection capability, your organization
should ask itself the following questions:

AU5334.indb 272 11/19/07 7:51:05 AM

Troubleshooting and Crisis Management  n  273

Ta
b

le
 1

1.
2 

Fa
ilu

re
 T

yp
e

an
d

 C
o

rr
es

p
o

n
d

in
g

 P
o

st
-M

o
rt

em
 A

ss
es

sm
en

t

Ty
p

e
o

f F
ai

lu
re

A
ss

es
sm

en
t

A
p

p
lic

at
io

n
D

ef
ec

t
H

as
 th

e
de

fe
ct

 b
ee

n
fix

ed
?

Is
 th

e
fix

 n
ow

 u
nd

er
 s

ou
rc

e-
co

de
 m

an
ag

em
en

t?
H

as
 th

e
ap

p
lic

at
io

n
b

ee
n

re
vi

ew
ed

 to
 e

ns
ur

e
th

at
 it

 is
 c

om
p

le
te

ly
 fr

ee
 o

f t
hi

s
or

 a
ny

 s
im

ila
r p

ro
b

le
m

?
H

as
 th

e
ro

ot
 c

au
se

 b
ee

n
co

m
m

un
ic

at
ed

 w
id

el
y

to
 th

e
de

ve
lo

p
m

en
t t

ea
m

 to
 e

ns
ur

e
th

at
 n

o
ne

w
 c

od
e

is
 w

rit
te

n
w

ith
 th

is
 ty

p
e

of
 fl

aw
?

H
as

 th
e

ap
p

lic
at

io
n

er
ro

r h
an

dl
in

g
b

ee
n

st
re

ng
th

en
ed

 to
 e

ns
ur

e
er

ro
r m

es
sa

ge
s

ar
e

as
 d

es
cr

ip
tiv

e
as

 p
os

si
b

le
?

Ve
nd

or
 D

ef
ec

t
H

as
 th

e
ve

nd
or

 fi
xe

d
th

e
p

ro
b

le
m

, o
r d

id
 w

e
w

or
k

ar
ou

nd
 it

?
Fo

r a
 v

en
do

r fi
x,

 h
av

e
al

l e
nv

iro
nm

en
ts

—
in

cl
ud

in
g

de
ve

lo
p

m
en

t e
nv

iro
nm

en
ts

—
b

ee
n

up
gr

ad
ed

 to
 th

e
ne

w
 v

er
si

on
?

H
as

 th
e

ve
nd

or
 s

ta
te

d
th

at
 th

e
fix

 w
ill

 c
on

tin
ue

 to
 b

e
in

cl
ud

ed
 in

 fu
tu

re
 v

er
si

on
s

of
 th

ei
r p

ro
du

ct
?

Fo
r a

 w
or

k-
ar

ou
nd

, h
as

 it
 b

ee
n

co
m

m
un

ic
at

ed
 w

id
el

y
to

 th
e

de
ve

lo
p

m
en

t t
ea

m
 th

at
 th

is
 v

en
do

r f
ea

tu
re

 is
 p

ro
b

le
m

at
ic

?

O
p

er
at

or
 E

rr
or

H
as

 th
e

op
er

at
or

 b
ee

n
id

en
tifi

ed
 a

nd
 in

fo
rm

ed
 o

f t
he

 e
rr

or
?

H
as

 o
p

er
at

io
ns

 d
oc

um
en

ta
tio

n
b

ee
n

re
vi

ew
ed

 a
nd

 u
p

da
te

d
if

re
qu

ire
d?

Ill
eg

al
 o

r
U

ne
xp

ec
te

d
U

sa
ge

Fo
r i

lle
ga

l i
np

ut
s,

 h
as

 a
 b

us
in

es
s

an
al

ys
t r

ev
ie

w
ed

 th
e

un
ex

p
ec

te
d

in
p

ut
 a

nd
 u

p
da

te
d

re
qu

ire
m

en
ts

?
H

as
 th

e
de

ve
lo

p
m

en
t t

ea
m

 re
vi

ew
ed

 th
e

ap
p

lic
at

io
n

fo
r a

ll
ot

he
r p

ro
ce

ss
in

g
th

at
 m

ay
 h

av
e

to
 p

ro
ce

ss
 a

 s
im

ila
r i

np
ut

?
Fo

r u
ne

xp
ec

te
d

us
ag

e,
 h

as
 a

 b
us

in
es

s
an

al
ys

t r
ev

ie
w

ed
 th

e
ob

se
rv

ed
 u

sa
ge

 a
nd

 u
p

da
te

d
th

e
b

us
in

es
s

us
ag

e
m

od
el

 in
cl

ud
in

g
fu

tu
re

 fo
re

ca
st

s?
Fo

r u
ne

xp
ec

te
d

in
p

ut
s

fr
om

 o
th

er
 s

ys
te

m
s,

 h
av

e
ex

te
rn

al
 p

ar
tie

s
b

ee
n

co
nt

ac
te

d
to

 c
on

fir
m

 th
e

p
os

si
b

le
 ra

ng
e

of
 in

p
ut

s
fr

om

th
ei

r s
ys

te
m

s?
H

as
 th

e
de

ve
lo

p
m

en
t t

ea
m

 re
vi

ew
ed

 a
nd

 s
tr

en
gt

he
ne

d
(if

 n
ec

es
sa

ry
) t

he
 a

p
p

lic
at

io
n

ha
nd

lin
g

fo
r u

ne
xp

ec
te

d
in

p
ut

s?

–
 c

on
tin

ue
d

AU5334.indb 273 11/19/07 7:51:05 AM

274  n  Patterns for Performance and Operability

Ta
b

le
 1

1.
2 

Fa
ilu

re
 T

yp
e

an
d

 C
o

rr
es

p
o

n
d

in
g

 P
o

st
-M

o
rt

em
 A

ss
es

sm
en

t

Ty
p

e
o

f F
ai

lu
re

A
ss

es
sm

en
t

In
fr

as
tr

uc
tu

re

Fa
ilu

re
D

id
 re

du
nd

an
cy

 in
 th

e
in

fr
as

tr
uc

tu
re

 c
om

pe
ns

at
e

fo
r t

he
 fa

ilu
re

?
D

id
 w

e
co

nfi
rm

 o
ur

 c
ur

re
nt

 h
ar

dw
ar

e
co

nfi
gu

ra
tio

n
w

ith
 v

en
do

rs
, a

nd
 m

ak
e

ch
an

ge
s

if
ne

ce
ss

ar
y?

W
as

 th
is

 m
od

e
of

 fa
ilu

re
 te

st
ed

 p
rio

r t
o

im
pl

em
en

ta
tio

n,
 a

nd
 d

id
 th

e
pr

od
uc

tio
n

be
ha

vi
or

 c
on

fir
m

 th
e

te
st

 re
su

lts
 w

er
e

ac
cu

ra
te

?

C
on

fig
ur

at
io

n
Er

ro
r

H
av

e
al

l r
el

at
ed

 c
on

fig
ur

at
io

ns
 b

ee
n

re
vi

ew
ed

 b
y

th
e

de
ve

lo
p

m
en

t a
nd

 d
ep

lo
ym

en
t t

ea
m

 fo
r c

or
re

ct
ne

ss
?

H
as

 th
e

de
p

lo
ym

en
t t

ea
m

 id
en

tifi
ed

 w
hy

 th
is

 p
ar

am
et

er
 w

as
 n

ot
 c

on
fig

ur
ed

 o
r w

as
 m

is
co

nfi
gu

re
d

in
 th

e
en

vi
ro

nm
en

t?
Is

 th
er

e
a

ris
k

th
at

 th
is

 p
ar

am
et

er
 is

 m
is

co
nfi

gu
re

d
in

 o
th

er
 n

on
p

ro
du

ct
io

n
en

vi
ro

nm
en

ts
 o

r o
th

er
 a

p
p

lic
at

io
ns

 u
nd

er
 y

ou
r

m
an

ag
em

en
t?

AU5334.indb 274 11/19/07 7:51:06 AM

Troubleshooting and Crisis Management  n  275

	 1.	Through what channel was the problem first reported? (If the answer is, “a
business user called the help desk,” then you have a problem.)

	 2.	Did the monitoring infrastructure detect the problem through multiple inter-
faces? If not, what additional monitors should have recognized a problem?

	 3.	Did each monitor include as much diagnostic information as possible to aid
in the technical investigation?

	 4.	Did the monitors produce alerts with the correct severity for the urgency of
the problem?

	 5.	Did the monitors produce alerts with an appropriate frequency for an ongo-
ing problem?

	 6.	Did technical support resources have efficient access to data and alerts gener-
ated by the monitoring infrastructure?

Improving your monitoring and diagnostic capability is an ongoing responsi-
bility for owners of mission-critical systems. There is an applicable expression that
comes to mind: what doesn’t kill you makes you stronger. Every application failure is an
opportunity to improve your monitoring and response capability. Failures can also be
canaries in the coal mine: they can alert you to more serious, imminent, problems.

Summary
We hope that this is a chapter that you will not reference very often. This chapter
is an admission that we will occasionally face problems in our production envi-
ronments. We have provided you with practical advice on how to minimize the
impact of production incidents and optimize your efforts around troubleshooting
and problem resolution. This includes properly assessing the severity, managing
all stakeholders in the incident, and prioritizing mitigation activities against root-
cause analysis and resolution. We have emphasized the importance of being able to
reproduce issues in nonproduction environments. This approach insists that fixes
are fully verified and tested prior to implementation. In this way, you are assured
that you are solving the “right” problem and mitigating the risk associated with the
technical change under consideration.

This chapter also introduced a series of troubleshooting strategies that you may
find helpful. We discussed the need to evaluate all changes to the environment
irrespective of how unrelated they may seem. When faced with a difficult problem,
we recommend capturing all possible inputs and discouraging bias on the part of
the technical team that is tackling the problem. We have also looked at specific
examples of failures and proposed methods for poking and prodding the system
into revealing more information. This chapter also discussed the criteria by which
you should assess the required level of testing for a fix that is proposed for produc-
tion. Finally, we have explored the post-mortem process and challenged you to
review all aspects of the incident management with an emphasis on whether or not
the monitoring infrastructure performed to expectations.

AU5334.indb 275 11/19/07 7:51:06 AM

AU5334.indb 276 11/19/07 7:51:06 AM

277

Chapter 12

Common Impediments
to Good Design

Design is the cornerstone for supporting performance, operability, and other non-
functional requirements in an application. It is the point of intersection where
many different project streams converge and is the place to confirm that all the
different pieces fit together. Design activities sit between the conceptual, logical
view of an application and the physical one that will ultimately be deployed into
the production environment.

In terms of the system lifecycle, the design phase precedes development but fol-
lows the requirement-gathering activities. Design usually follows architecture, but
is often described as being the “architecture/design phase,” which in itself can be a
problem that we will examine later in this chapter.

Performance and operability are dependent on design. An inefficient or inap-
propriate design will destroy the possibility of meeting both of these non-functional
requirements, as well as other functional ones. Improper design can also make it
impossible to scale the application without violating these requirements. There are
several common impediments to establishing good design on most nontrivial proj-
ects. This chapter looks at these and describes ways to mitigate their impact.

Design Dependencies
Design has a dependency on the requirements—functional and non-functional—
and the overall architecture. Architecture is constructed to satisfy both the defined
requirements and the anticipated requirements if there is enough information to

AU5334.indb 277 11/19/07 7:51:06 AM

278  n  Patterns for Performance and Operability

forecast the future needs. Architecture is constructed through a series of activities
that begin at an abstract level. With the finalization of a business definition and
sign-off of the business requirements and functional specifications, the architecture
transitions through states that include conceptual, high level, and detailed. The
latter state can be driven out further with additional levels of progressively more
detailed views of the architecture.

As shown in Figure 12.1, a solution’s design relies on a set of detailed views of
the architecture. It also relies on other considerations, such as the business require-
ments, budget, and timelines. The architecture can also address a broader set of
requirements than what is currently described, by anticipating future needs based
on some assumptions. The architecture blueprint can be far reaching and extensive
without requiring all of it to be available on day one.

Design extends architecture into a precise physical implementation of how
technology, data, and the application will interoperate. Design needs to be more
pragmatic than architecture, as it is the single point where all the requirements
converge and must be maintainable. If the design cannot support a need, it cannot
be used to support a proposed solution. The known requirements can be viewed as
filters that keep the design in line with what is really needed.

Architecture is typically separated into several subcategories: technical, data,
and application. Each of these architectural streams can be further extended into
their design counterparts. Technical architecture becomes technical design. Data
architecture becomes data design. Application architecture becomes application
design. You generally go from the detailed architecture deliverables to the high-
level design deliverables. Unless otherwise specified, design refers to all three of the
technical, data, and application categories.

Functional
Requirements

Non–Functional
Requirements

High–Level
Architecture

High–Level
Design

Detailed
Design

Integrated
Architecture

Detailed
Architecture

Abstract
Architecture

Conceptual
Architecture

Specifications

Other
Considerations

Figure 12.1  Design dependencies.

AU5334.indb 278 11/19/07 7:51:08 AM

Common Impediments to Good Design  n  279

What Is the Definition of Good Design?
The answer to the question of what defines good design would be completely dif-
ferent if we had an infinite amount of money and time available to us. In the real
world, design objectives must be more modest and affordable because of the limita-
tions placed on both of these resources.

Agreeing on a clear definition for what can be described as good design is a
problem that often confounds project sponsors, project managers, architects, and
designers. The answer is not absolute and is, in fact, partly objective, partly subjec-
tive, and partly intuitive. It might be easier to start this discussion with an agree-
ment on the objectives of design.

What Are the Objectives of Design Activities?
Design brings the documented or modeled ideas of functional and non-functional
requirements together and combines these with the architectural considerations
that have been defined. Design begins to show how the details of what is being
asked for will fit together and work. The high-level objectives of design can be
described as follows:

	 1.	Bring together the requirements and the architectural decisions and show that
they are consistent or show where they are inconsistent. This includes con-
firming the architecture and showing the impact of different requirements.

	 2.	Support non-functional requirements.
	 3.	Drive out a detailed solution that shows how the technical, data, and applica-

tion streams will operate and interoperate.
	 4.	Allow for future changes or additions to the requirements.
	 5.	Show overall gaps in the proposed solution.

The design activities and the completed design deliverables are positioned to
feed several activities that provide additional structure to the project. This includes
addressing a couple of broad categories that include validation, cost, and planning.
A detailed list of activities supported by design deliverables are identified in the
following list:

	 1.	Confirm the project plan or update it where additional details have changed
previous assumptions.

	 2.	Cost out the technical solution, hardware, and software, or calculate a nar-
rower range based on a smaller number of assumptions.

	 3.	Right-size the project team in terms of number of resources and the skills that
are needed, and when they will be needed in the project lifecycle.

	 4.	Demonstrate the physical impact of the functional and non-functional speci-
fications that are defined for the solution (e.g., a 24/7 fault-tolerant system
might add $1 million to the project capital budget).

AU5334.indb 279 11/19/07 7:51:08 AM

280  n  Patterns for Performance and Operability

Defining Good Design

Good design must satisfy the objectives described in the previous section. For
example, a design must be capable of showing how the functional requirements will
be met by the application that is being built. This needs to address all the design
categories—namely, data, technology, and application. Application design is used
to show how specific functions will be supported in the application. Data design
shows the data elements and data stores that are used for persistence. Technology
design shows everything from the software tools to the hardware that will be used
to support the application and the data.

For example, consider what is required to save a user profile and use it to support
workflow. Data design needs to support the related application requirements, but
also the non-functional requirements (e.g., performance) as well. In this instance,
the data structures must be constructed to save the elements of the user profile. They
must also account for the performance requirements and be efficiently designed to
support transactions such us save, update, retrieve, and search. Architecture typi-
cally would not go to this level of detail. Technical design would be extended with
this requirement to show how the database will be accessed, along with the related
software components, communication protocols, and the hardware that runs the
solution.

Design activities need to address the known requirements, but must also define
a solution that does not break down with the slightest change in the future. For
example, an application may be required to support 100 concurrent users when it
is launched. What happens if another 20 concurrent users are added three months
after launch? How much effort will be required to support this change at the appli-
cation level, the technology level, or the data level?

A design for an application or solution must be built with the following non-
functional requirements as key considerations, as well as supporting, point by point,
the defined functional requirements.

Performance: This must be within the service level agreement, but have the
capability for improvement through some easy-to-access focal points.
Completeness: The design should be an end-to-end solution in being able to drive
an architecture to a lower level of detail to satisfy all the defined requirements.
Flexibility: The design must be flexible enough to accommodate future busi-
ness requirements without requiring extensive rework. More on the meaning
of this later in this chapter.
Modern: The technology and techniques used in the design should be within
the industry mainstream. Design that requires techniques or technology that
is legacy or too bleeding edge results in very similar problems. This includes
the difficulty of finding appropriate resources to build out the design and
having to pay a premium for their services.

n

n

n

n

AU5334.indb 280 11/19/07 7:51:09 AM

Common Impediments to Good Design  n  281

Extensible: The design must be open and connectable to a range of technical
solutions while also being flexible enough to support future expansion with-
out requiring massive rewrites.
Scalable: Growing load on the application should be supported by the design.
This may still require additional technology or software upgrades to support
the design.
Right-sized: The design must solve a business problem and not try to be all
things to all people.
Throughput: Ability to handle increasing volumes of data by the application
throughout a day and at peak points in time. The application should respond
reasonably well under increasing loads (e.g., not result in an exponential
impact). For example, say it takes 30 minutes to process one million records.
Two million records should take 60 minutes or so. Bad design would start to
see the curve rise much more rapidly with increasing throughput.
Operability: This refers to how well the application works and is maintained,
as well as how it operates within the entire environment.

Rating a Design

Good design is not always possible because of real-life resource constraints that
restrict implementation of the solution that was defined. There are several evalua-
tion criteria elements that can be applied to a given design to determine an objective
rating for it. Figure 12.2 shows several other ratings that can be considered, with
the desirable ones shown near the top of the list.

The design ratings on the left side of the figure lead toward excellent design.
Increasing time and money can take an incomplete design and still move it forward
on an iterative and manageable basis. Excellent design is a desirable project goal,
but generally unattainable in the real world. Bad design cannot be improved by
spending more time on it, nor by increasing the financial investment. It has too
many inherent flaws to be iteratively improved. In fact, the only way to react to bad
design may be to throw it out and start over, making sure that the same thing does
not happen again.

Designs on the left side of Figure 12.2, below the good rating level, can be
augmented by a set of conditions and clarity that describe when and where further
investment should be made to adjust the design to the next level.

The ratings on the left side of Figure 12.2 are characterized by degree of com-
pleteness and the ability to anticipate future needs. The ratings at the bottom of the
list are focused on supporting immediate requirements. Moving up the list intro-
duces support for future anticipated needs. The following sections of this chapter
describe each of the evaluation categories in the context of the design components
and the criteria that should be applied to decide where a given design lies.

n

n

n

n

n

AU5334.indb 281 11/19/07 7:51:09 AM

282  n  Patterns for Performance and Operability

The ratings shown in Figure 12.2 are defined here. Subsequent sections expand
on the attributes and their values in each of the rankings below.

Excellent Design: As mentioned previously, this rating may be virtually
unattainable due to internal contradictions. An excellent design will need
to be immensely flexible and open, yet affordably priced. It must also be
completed within a timeframe needed by an organization. Trying to build
an excellent design can also be a trap. An excellent design may draw a lot of
resources and energy in a futile attempt to complete it, or development time
may run out and the effort may need to be abandoned part way. This may
force the team to settle for something at a far lower rank.
Good Design: This is arguably the desired level of design for modern proj-
ects. It balances the ability to scale a solution in the future and be flexible, but
be achievable within realistic budgets and timelines. Good design focuses on
the requirements at hand, but anticipates what will be required in the future
as enhancements. Good design builds an infrastructure that can scale to this
future view using a positive return-on-investment analysis.
Sound Design: This is a step lower than good design because budget and
timeline pressures may force a good design to be compromised. A sound
design should be extendable into a good design at some point in the future.
Adequate Design: This may be driven by timeline and budget pressures.
Adequate design provides a solution to documented current business require-
ments, and does not necessarily address any future requirements.
Incomplete Design: An incomplete design only solves a partial business
problem. While an incomplete design might be used to implement a solu-

n

n

n

n

n

Excellent Design

Good Design

Bad DesignSound Design

In
cr

ea
si

ng
 C

os
t

Ti
m

e
to

 Im
pl

em
en

t

Adequate Design

Incomplete Design

Figure 12.2  Design evaluation.

AU5334.indb 282 11/19/07 7:51:11 AM

Common Impediments to Good Design  n  283

tion iteratively, it is also highly risky as future details might cause substantial
reworking. This can be a result of bad planning or because of trying to do too
much and then having to settle for a lot less in a worried hurry.
Bad Design: A bad design means that one or more components do not
adequately address the business requirements. This could involve building a
batch solution for a real-time application or setting up a database to satisfy
update/insert requests with no consideration for massive searches in a call
center application.

The following subsections discuss what the design attributes and their values
would need to be to fall within each of the rankings shown in Figure 12.2.

Excellent Design

An excellent design requires a thorough understanding of current requirements,
but also requires an ability to forecast or anticipate the future—generally 2–5 years
out—to build a design that requires minimal redevelopment or new code while
being able to deal with the domain of known non-functional requirements and
business/functional requirements. The design also needs to consider a range of
potential technologies and techniques as well. A design that is ranked as excellent
would also need to be adaptable to a range of future outcomes. This level of design
is characterized by reaching an excellent rating in each of the following functional
areas:

Performance: Design should meet the current performance requirements as
per a service level agreement, but be capable of scaling into the future with
iterative design enhancements.
Completeness: The design needs to cover end-to-end functionality, be fully
reused and leveraged wherever possible without creating redundancy.
Flexibility: Highly table driven, built on a sea of reusable components, and
support future requirements at an environmentally configurable level.
Modern: As technology moves into the legacy space, it becomes increasingly
difficult to support, as fewer resources are knowledgeable and available in
the marketplace. The technology itself also becomes unsupported over time.
On the flip side, bleeding edge technology is often unproven and technical
bottlenecks may not be clearly known. Bleeding edge design needs to be thor-
oughly tested. Resources may still be costly to acquire.
Extensible: The degree to which a solution can be extended in the future with-
out significant reinvestment or rework must be very broad at this rating level.
Scalable: The design needs to scale to multiple scenarios inside the future
timetable defined by the organization.

n

n

n

n

n

n

n

AU5334.indb 283 11/19/07 7:51:11 AM

284  n  Patterns for Performance and Operability

Right-sized: This may not apply to an excellent design in a meaningful way
because the scope is large and goes beyond known requirements. An excellent
design, by definition, cannot be right-sized.
Throughput: Needs to accommodate multiples of known and acceptable
throughput going through the system.
Operability: Can operate under any situation.

The problem with excellent design is that it tries to do too much. After the
known business requirements, and some meaningful forecasting, the situation
begins to get hazy—after, say, 2 years. At this point, design considerations become
highly speculative and based on assumptions that may not come to pass.

Excellent design is expensive to define and build. It also requires a significantly
long timeline. The need to support multiple years, multiple technologies, and
multiple business scenarios requires a valiant amount of work and assumptions.
Many projects cannot afford these. Even worse, once the process starts, valuable
deliverables may not even be created, before management determines that there is
not enough time to finish the design and to mandate a switch in strategy.

Good Design

As stated previously, a good design is a reasonable and achievable objective for most
modern systems. It is built to support known functionality, but uses a forecasting
approach to anticipate future business needs, possibly based on business forecasts,
to build a set of likely scenarios. A good design also needs to consider reality in
terms of the resources (money and people) available and the timeline that exists
to be able to support the design. During aggressive timelines, a good design can
be formulated but implemented in stages based on the resources available and the
needs of the business. The following design considerations apply.

Performance: Meet the known requirements, forecast for future requirements
based on known business scenarios, and define an enhancement roadmap.
Completeness: The design needs to support end-to-end functionality and
still be reusable wherever possible across the solution base.
Flexibility: Still needs to be table driven, not hard coded, and reusable wher-
ever possible. Future demands should not require changes to the code base as
a starting position.
Modern: Technology should be mainstream with a wide support base. There
should be other implementations of the design in the marketplace that can be
referenced so that best practices can be employed in the design.
Extensible: Should examine likely business scenarios for a period of 1–3
years. There can be assumptions and limitations in some areas.

n

n

n

n

n

n

n

n

AU5334.indb 284 11/19/07 7:51:11 AM

Common Impediments to Good Design  n  285

Scalable: Should support known requirements and likely business scenarios
for a period of 1–3 years.
Right-sized: The design should be appropriately sized for the application.
This means reasonable and practicable in terms of what is trying to be
achieved by the business.
Throughput: Should support known requirements and likely scenarios for a
period of 1–3 years.
Operability: Can operate under the known business scenarios.

Sound Design

Sound design can be viewed as a scaled-down version of good design, one that
needs to be filled out over a period of time. The principle behind a sound design is
that it can support known requirements, but can be extended for future require-
ments as they emerge. Forecasting is kept to a minimum. A sound design should
be used as a stepping stone to good design if there are time or resource limitations
that keep a good design from being constructed. It is best to define a good design
and implement at a sound design than to operate only at the sound design level. The
following design considerations apply at the functional requirements level.

Performance: Meet the known requirements but have a roadmap for satisfy-
ing future requirements.
Completeness: Addresses all the functional needs of the application.
Flexibility: Defines flexibility, but may have compromises to meet a timeline
within a set of resources.
Modern: Same as good design.
Extensible: Should have a roadmap for the future, but details may be missing.
Scalable: Roadmap for scaling the application.
Right-sized: The design is suited to the implementation schedule.
Throughput: Designed for the known throughput, with a roadmap for
future likely scenarios.
Operability: Can operate under the known business situations.

Adequate Design

Adequate design is a dramatic compromise to meet a current business need, but
with an understanding that reworking will be required to improve the design at
some point in the future. It is better to define at the good design level, but imple-
ment at the adequate design level, than to define at the adequate level and then try
to move up. However, the former approach may not be possible given resources or
budgets available to the initiative.

n

n

n

n

n

n
n

n
n
n
n
n

n

AU5334.indb 285 11/19/07 7:51:12 AM

286  n  Patterns for Performance and Operability

An adequate design needs to be clearly communicated to the project sponsors
as such, because it is a compromise that will exhibit limitations much sooner than
later. An adequate design will cost more in the long term, even though it may allow
a short-term implementation.

Trying to define an excellent design often leads to this compromise when inter-
nal contradictions show up, too much time has already been spent on the design
process, and a compromise must be reached to meet a business deadline.

Incomplete Design

An incomplete design is work in progress; time for the design activities has run out.
This could be due to bad project management, or focusing on the wrong things,
or some change requirements, or some combination of all of these and more. An
incomplete design may show up during testing. It could be apparent in a couple of
places in the overall design. An incomplete design needs to be moved up before an
application can be deployed into a production environment.

Bad Design

The worst side of the design process is ending up with a bad design that does not
and cannot meet the functional and non-functional requirements of the applica-
tion. This can be the result of many factors, including the following functional
areas.

Performance: Insufficient to meet the business requirements.
Completeness: Does not address all the business requirements.
Flexibility. Not flexible—rigid for a set of requirements. Requires code
modifications.
Modern: Inappropriate use of tools for the resources available.
Extensible: Not extensible at all.
Scalable: Will not scale.
Right-sized: Not sized for the business requirements.
Throughput: Insufficient ability to meet the required throughput.
Operability: Does not operate within the business service service level
agreements.

Testing a Design
Testing a design requires a combination of inspection techniques and tool sets.
Inspection techniques involve activities such as design reviews, expert reviews, expert
analysis, and evaluation templates. One such form these can take is in the way of

n
n
n

n
n
n
n
n
n

AU5334.indb 286 11/19/07 7:51:12 AM

Common Impediments to Good Design  n  287

questions that can detect the soundness of a design through workshops involving
business users, designers, architects, and other stakeholders on the project team.

Design testing requires a focus on the known requirements, likely scenarios,
and anticipated requirements. Tools include simulation tools, measurement tools,
regression tools, and automated test scripts.

Contributors to Bad Design

Bad design is not entirely the opposite of good design. Depending on the amount
of time and money available to a project team, a given application may only be able
to afford a less-than-ideal design. An incomplete design may sometimes be barely
satisfactory for a limited number of scenarios. Here the implication is that enough
work was not done to complete the design, which could mean that some money was
left over for future enhancements in a just-in-time design philosophy.

Bad design is worse. It implies that both effort and money were spent. The
result, however, is going down the wrong path. One of the implications shown in
Figure 12.2 is that bad design does not get better with further investment—neither
in terms of money nor time. Trying to fix a bad design is doomed to fail. A bad
design should be abandoned as soon as it is detected.

Common elements of bad design include the following.

Does not solve the business problem.
Difficult to modify for changing conditions.
Cannot be built within the constraints available.
Too expensive.
Does not have any standards.
Solves the wrong business problem or one that will likely never materialize.
Does not meet the functional requirements.
Does not meet the non-functional requirements.

Project delivery risk greatly increases with a less-than-optimal design.

Common Impediments to Good Design
Achieving a good design solution faces many obstacles and impediments from a
wide array of places. These risk factors need to be evaluated and addressed in order
to have a fighting chance at avoiding bad design altogether. However, information
technology (IT) is a combination of science and art that complicates the ultimate
outcomes of every deliverable.

n

n

n

n

n

n

n

n

AU5334.indb 287 11/19/07 7:51:13 AM

288  n  Patterns for Performance and Operability

Confusing Architecture with Design

Design has a completely different set of deliverables from architecture, yet these
deliverables are often confused with each other. Specifically, architecture is often
described as design, when it clearly is not. This creates a false sense of security in
project planning and budgeting because there may be a belief that more work has
been completed than actually has been.

Design requires detailed analysis of all the information that is available, while
also anticipating future changes, to drive out details of how the technical, data,
and application components will work together. Architecture examines integra-
tion activities and channels between these components. Not having information
at the design level leaves holes in the project plan and increases the project risk
level.

Insufficient Time/Tight Timeframes

Architecture is often confused with design for expediency because there is not
enough time in the project timeline to support a detailed design phase. The risk
of doing this is no different than starting to build a solution without having clear
business requirements signed off. This is a big risk factor, as design suffers due to an
inattention to details, rushing at the last minute, and having to settle for an inferior
deliverable. A last-minute rush to complete a design will generally leave it in noth-
ing higher than the inadequate or sound design states.

Missing Design Skills on the Project Team

In addition to confusing architecture and design, relevant skills are sometimes
lacking in the team members doing the design work. Most project managers have
experienced this frustrating situation. Architecture is not design; neither is devel-
opment. Yet, it is not uncommon to have either architects or developers act as
designers. Design skills are required to drive out the design. While architects or
developers may have these, this is not always the case, and experienced designers
may have to be brought onto the project team to complete the design activities. The
designers may be highly specialized, so they may not be able to fit at other places
in the project.

Lack of Design Standards

A project generally fits into a wider corporate infrastructure or may be part of a
project program that has many other initiatives. A clearly defined set of design
standards need to be communicated to the designers on the different initiatives.

AU5334.indb 288 11/19/07 7:51:13 AM

Common Impediments to Good Design  n  289

Compliance may need to be enforced so that a good design in a project perspective
remains good when it is viewed and deployed to the rest of the organization.

Personal Design Preferences
Personal design preferences, or biases, are yet another source of potential problems
in defining a good design. Strong existing preferences can reduce the overall selec-
tion domain to such a degree that a good answer may not be on the radar any lon-
ger. Existing preferences can also lead to prolonged discussions that are impossible
to conclude because of the inherent biases of the participants. This will ultimately
lead to some of the other impediments on this list, such as timeline problems.

Insufficient Information
A proper set of design activities require several sources of input information (as
shown in Figure 12.3). The degree of completeness in these input deliverables will
drive the rating on the design being defined. Gaps or lack of details in these areas
lead to assumptions that result in ambiguity.

Constantly Changing Technology
Rapid technological evolution is a problem from several perspectives, but espe-
cially around skills shortages, timeline, and available best practices. There was
a time when the pace of technology change in the IT industry was at the order
of ten years or so when massive changes in available technology solutions would
drive changes in the application design. The rate of technological change moved
more rapidly beginning in the early 1990s. Now, at the start of the 21st century,

Design
Standards

External
Factors

Architecture
(approved)

Design
Goals

Functional
Requirements

Design Activities and
Qualified Design Team

Non–Functional
Requirements

Figure 12.3 Design inputs.

AU5334.indb 289 11/19/07 7:51:14 AM

290  n  Patterns for Performance and Operability

the rate of technological change is very rapid—within five years. This means that
design may only be valid for at most five years before new technologies bring new
solution options.

Technology is evolving so rapidly that a two-year timeline can see dramatic
changes in available tools. Keeping pace with this rapid change is difficult. Knowl-
edgeable resources are difficult to find. References that show how the solutions
should fit together, and their limitations, are not prevalent as an industrywide set of
best practices. Bottlenecks may not be known until the testing activities begin.

Fad Designs
While rapidly changing technology poses problems in building good design from
a time and skills perspective, fad designs are even worse. The IT industry has had
many cycles in which a new technology or technique led to some rapid design
decisions that did not pan out. Incorporating fad designs is a problem from sev-
eral perspectives. The design may look reasonable under certain situations, but its
implications may not be known until later in the lifecycle. When the fad passes, the
design may need to be revised, at great expense.

Trying to Do Too Much
Overly optimistic designs that try to be all things to all people in an organiza-
tion are also problematic. These can be attempted in the pretext of anticipating
future needs and designing for them. However, assumptions have to be made as
you move forward, and these become more of a guess the farther out you proceed.
This can take up a lot of time and resources that may be invalidated along with the
assumptions.

The 80/20 Rule
When building the design, the team needs to be careful to invest their resources
in satisfying the most prevalent requirements. Many designs fail because the
resources are spent on portions of the design that only affect a small portion of
the outcome. This means that 80% of the business value could result from 20%
of the design.

Minimalistic Viewpoint
Building a design for tactical reasons, which leads to an adequate or sound design,
could in fact be considered bad design when a wider perspective is considered.
Building only for the present opens up this risk.

AU5334.indb 290 11/19/07 7:51:15 AM

Common Impediments to Good Design  n  291

Lack of Consensus
This can be caused by an inconsistent set of standards. Lack of consensus can exist
around requirements, needs, and potential solutions. Team members may have
individual ideas that are too strong to compromise. This makes design decisions
difficult, and infighting or divergent opinions may make it impossible to determine
and prove the correct designs.

Constantly Changing Requirements
Having to constantly modify a design to match changing requirements is a source
of potential problems. Change control needs to be implemented as early as is rea-
sonable to provide the stability to build a stable design. However, when aiming at
an excellent design target, the resulting design might be able to absorb change more
rapidly.

Bad Decisions/Incorrect Decisions
At a basic level, the design team can make bad decisions from time to time based
on the information available to them. These will need to be fixed. However, given
that the decisions were made, presumably without the design team knowing, their
existence may remain hidden until the testing or a later phase.

Lack of Facts
Design is a combination of science and art. Decisions need to be based on facts.
However, when these are not known, guesses or near guesses may be used to drive
design decisions to meet a project schedule.

External Impacts
External impacts can either affect the design or the requirements. This can nega-
tively impact a good design at the last minute. These are difficult to ignore, espe-
cially when they are of the legislative variety.

Insufficient Testing
Design deliverables on paper may look good; however, they still need to be validated
as early in the project lifecycle as possible. Several types of testing can be considered,
mostly in the non-functional variety. This includes stress and regression testing.

AU5334.indb 291 11/19/07 7:51:15 AM

292  n  Patterns for Performance and Operability

Lack of Design Tools

As systems become more complex, a lack of design tools can result in gaps that can-
not be effectively filled in without prototyping or piloting.

Design Patterns Matter

Building designs from scratch can result in re-experiencing problems. These can
vary by application, date, and technical design. Reusing designs from previous
projects can mitigate risk. Design patterns are another source of reusability that
can be considered.

Lack of Financial Resources

Insufficient resources have been named as a recurring design impediment. A lack of
financial resources is one of these. Trying to spend too much on the design activi-
ties introduces a large risk to the project, while trying to accomplish too much with
little investment will result in the same problems.

Design Principles
Is there a bad design inside every good one, trying to get out? Not exactly, although
it might seem that way most of the time. There are certain things that a design team
and project management should consider to improve the odds of building a good
design, in the context of functional and non-functional requirements:

Reuse: Try to leverage an existing successful design from the organization or
from a set of best practices.
Test: Always test and prove as you go.
Methodology: Use design methodologies that describe and provide examples
of design deliverables.
Metrics: Building design to a set of measurable objectives will help to remove
many of the obstacles, especially around incorrect preferences and incorrect
assumptions.
Resources: Ensure that there are experienced designers dedicated to the project
during the design phase. Ensure that their skills are relevant for the project.
Realistic: Manage to expectations that can be achieved with the resources
and constraints that are available.
Budget: Set aside a portion of the budget for the design activities and
resources.
Time: Build the design iteratively on top of the architecture.

n

n
n

n

n

n

n

n

AU5334.indb 292 11/19/07 7:51:16 AM

Common Impediments to Good Design  n  293

Contradictions: Look for and remove design contradictions as early as
possible.
Communication: Communicate design considerations, issues, and decisions
to the project team and other stakeholders.

Summary
Design refers to the portion of the project lifecycle in which business or functional
requirements, non-functional requirements, and architecture are brought together
to map out how an application is going to be built and whether the end result is
going to be successful.

Each of the initial phases of the standard development lifecycle are crucial to
the outcome by definition. However, the design phase really acts as the glue that
binds the creative, often abstract nature of functional and non-functional require-
ments with the development phase.

The first requirement of a good design is that it meet the known requirements.
This includes satisfying the business or functional requirements of an application as
they are currently defined. This must also extend to the support of non-functional
requirements. The second requirement of a good design is to anticipate future needs
and provide a roadmap for supporting these within a timeframe and cost model
that is acceptable to the business.

n

n

AU5334.indb 293 11/19/07 7:51:16 AM

AU5334.indb 294 11/19/07 7:51:16 AM

295

References

Articles
Bacon, David F. 2007. Realtime Garbage Collection. Queue 5, (1) 40–49.
Heisenberg, Werner. 1927.Ueber die Grandprincipien der “Quantenmechanik”. Forschun-

gen und Fortschritte 3:83 1927.
Koenig, Andrew. “Patterns and Antipatterns.” Journal of Object-Oriented Programming, 8

(April): 46–48.
MacMcLellan, J. 2003. Wrong Worry in Twins Versus Singles. Flying Magazine.

(February)

Books
Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements

of Reusable Object-Oriented Software. Boston: Addison-Wesley Professional, 1994.
Gladwell, Malcolm. Blink: The Power of Thinking without Thinking, New York: Little,

Brown, 2005.
Knuth, Donald E. The Art of Computer Programming. 3 vols., 2d ed. Boston: Addison-Wes-

ley Professional, 1998.
Singer, Jeremy. JVM versus CLR: A Comparative Study. ACM International Conference

Proceeding Series 42. New York: Computer Science Press, 2003.

Web Sites
The Apache Logging Services Project log4j: http://logging.apache.org/log4j/docs
Ask Tom: http://asktom.oracle.com/
AspectJ: http://www.eclipse.org/aspectj/
Aspect-Oriented Programming at Wikipedia: http://en.wikipedia.org/wiki/Aspect_programming
Empirix e-Load: http://empirix.com/products/testing/e-Load.asp

AU5334.indb 295 11/19/07 7:51:17 AM

296  n  References

Enterprise JavaBeans Technology: http://java.sun.com/products/ejb/
The “Ilities” at Wikipedia: http://en.wikipedia.org/wiki/Ilities
The ISO 9126 Standard: http://www.issco.unige.ch/projects/ewg96/node13.html
Mercury LoadRunner: http://www.mercury.com/us/products/performance-center/loadrunner/
Moore’s Law at Wikipedia: http://en.wikipedia.org/wiki/Moore%27s_law
Oracle Real Application Clusters (RAC): http://www.oracle.com/database/rac_home.html
Simple Network Management Protocol (SNMP): http://www.cisco.com/univercd/cc/td/

doc/cisintwk/ito_doc/snmp.htm
The Spring Framework: http://www.springframework.org/
Understanding WebLogic Server Clustering: http://edocs.bea.com/wls/docs90/cluster/overview.html

AU5334.indb 296 11/19/07 7:51:17 AM

297

Index

A
ABEND, see Abnormal ending or termination

codes
Abnormal ending or termination (ABEND)

codes, 263
Aborting after errors, 86–87
Acceptance
	 non-functional requirement documentation,

42
	 non-functional requirements, 139
	 performance, 173, 174, 175–176
Access methods, 22
Accountability, 21
Accuracy
	 capacity plan, 247
	 extent of testing, 19–20
	 non-functional vs. functional test

environments, 21
	 simulations, 5
Activities, test preparation and execution,

159–160
Adequate design rating, 285–286
Administration changes, 261
Aggregating results, 105–107
AIX, 184, 186
AJAX solutions, 136
Alerts
	 detailed, 228
	 operability testing, 24
Algorithms, 119–120
Alternative flows, 64
Antipatterns, performance design
	 overdesign, 114
	 overserialization, 114–117
	 oversynchronization, 117–119
	 user session memory consumption, 118–119

AOP, see Aspect-oriented programming
Apache Software Foundation, 148
API, see Application programming interfaces
Apparatus, test planning, 149–150
Application architect, 218
Application availability, see Availability
Application code, 31
Application exception handling, see Exceptions
Application logging, 80–83, see also Logging
Application programming interfaces (APIs),

236
Applications
	 availability and health, 14
	 behavior testing, scope determination, 25
	 monitoring, 229, 238–239
	 operability patterns, 11–14
	 pitfalls, 8
	 profiling, 81
	 resilient, 6
	 shutdown, failover testing, 34
Application servers, 129, 130–131
Application stack, 36
Architects
	 recoverability, 100
	 roles and responsibilities, 218
	 securability, 98
Architectural hotspots, 24
Architecture
	 common design impediments, 288
	 operability scope, 144–145
	 performance design, 101–102
	 project framework extension, 219
	 securability, 98
	 simplicity, 101
Archives
	 documentation, 43
	 non-functional requirements, 65, 66

AU5334.indb 297 11/19/07 7:51:17 AM

298  n  Index

	 software valves, 76–77
	 specifications, 22
Arrays.sort method, 120
Articles, 295
Artifacts, maintainability, 100
Artificial transactions, 240
Aspect-oriented programming (AOP), 90
Assessment, testing level, 271–272
Asynchronous execution and processing
	 deferred processing, 108–109
	 messaging middleware, 129
	 patterns, performance design, 107–109,

110–111
	 software valves, 76
	 usability, 97
Attention, level of
	 fundamentals, 212
	 hardware resources, 213
	 human resources, 212–213
	 issue resolution, 213
	 software resources, 213
Auditable deployment, 196
Audits, non-functional requirements, 57
Automated deployment
	 code deployment engineers, 38
	 fundamentals, 196
Automated recovery
	 operability design, 87
	 operability testing, 24
	 production systems, 14
Automation
	 execution engineers, 38
	 sharing, investment justification, 20
Availability
	 code, delivery timeline estimation, 29
	 documenting requirements, 43
	 functionality devalued, 1
	 monitoring, 233
	 non-functional requirements document, 22
	 pitfalls, 8
	 service level agreement, 23
	 subsystems, 79
	 test tools, 28
Availability requirements, 64–65, 66
AWK language, 123

B
Back-office financial services example, 105–107
Back-out strategies
	 complete back-out, 204

	 complexity, 271
	 fundamentals, 204
	 logical back-out, 204–205
	 partial back-out, 204
Backup procedures
	 code deployment engineers, 38
	 test data manager, 39
Bad decisions, 291
Bad design rating, 286
Banking examples, see also Case studies
	 inputs, 48–53, 55–56
	 performance requirements, 59
Baseline
	 measurement, capacity testing, 23
	 regression, performance testing, 177, 179,

179–180
Base system resource utilization, 34
Batch operations, 28
Batch performance, 18–19
Batch processing
	 business utilization model, 22
	 non-functional requirements document, 22
	 performance testing, 23
BCP, see Business continuity plan
BEA Application Server, 91, 234–236
Behavior patterns, pitfalls, 8
Best practice, 248
Bias, discouraging, 268
Big bang rollout strategy, 199
Binary format, 83
Blade technology, 135
BMC, 233
Books, 295
Boundaries
	 code and data review, 25
	 scope, 140–142, 141
Boundary condition testing, 182–183, 183
Breaking point, 181
Budget
	 defining success, 213
	 design principles, 292
	 steering committee and executives, 40
Bug, see Debugging
Build-up, production, 35
Bulk operations, 22–23
BUM, see Business utilization model
Business analyst
	 recoverability, 100
	 roles and responsibilities, 44, 218
	 securability, 98
Business continuity plan (BCP), 23

AU5334.indb 298 11/19/07 7:51:18 AM

Index  n  299

Business usage
	 changes, 261
	 error reporting, 245
Business usage model establishment
	 fundamentals, 43, 46–48, 54
	 historical data, 155
	 human inputs, 48, 54–56, 55
	 load scenarios, expression, 54–56
	 machine inputs, 49–53, 49–54
	 project team, 39
	 quantifying inputs, 46–53
Business utilization model (BUM)
	 document scope, 22
	 sustainability testing, 35
Bytecode, 122

C
C#, 120
C++, 120
Cache and caching
	 patterns, performance design, 109, 112,

112–114
	 sustainability testing, 192
Capability, failover testing, 184
Capacity
	 diminished, 242
	 parallelism, delivery timeline estimation, 31,

33
	 performance acceptance, 175
	 poor performance case study, 2
	 test environments, 153
	 user acceptance tests, 9
Capacity, planning
	 best practice, 248
	 case study, 248–254, 249–252, 254
	 completion of, 255–256
	 documenting requirements, 42
	 fundamentals, 245, 256
	 inputs planning, 245–248
	 model maintenance, 255
	 online dating case study, 248–254,

249–252, 254
Capacity, testing
	 minimal testing requirements, 18
	 mixed loads, 165
	 scope determination, 23
	 test types and requirements, 34
Case scripters, 38
Case studies
	 expansion, 248–254, 249–252, 254

	 phased rollouts, 200–203
	 poor performance, 2–5
Centralized processing, 124
Central processing unit (CPU), see also

Hardware
	 capacity planning, 245
	 capacity test, 18
	 ETL, 132
	 infrastructure monitoring, 228, 230
	 parallelism, 104
	 scalability, 96
	 sustainability testing, 192
	 virtual-machine languages, 121
Certification
	 investment justification, 20
	 isolation, 151
	 mixed loads, 165
	 non-functional vs. functional test

environments, 21
	 parallelism, delivery timeline estimation, 33
	 scope determination, 24, 29
	 test types and requirements, 35–36
Challenges
	 limitations, 193–194
	 non-functional tests, 9
	 repeatable results, 193
Changes
	 common design impediments, 289–291
	 management, 154
	 troubleshooting strategies, 260
Checklist, operability design, 91–92
Citrix, 148
Clarification, 56–58
Cobol, 120
Code
	 availability, 29
	 deployment engineers, 38
	 drop, 24
	 efficiency, 25
	 fixes, 29
Code review
	 delivery timeline estimation, 31
	 project team, 40
	 scope determination, 25–26
Collecting results, 38
Collins, Dick, 80
Common design impediments
	 architecture vs. design, 288
	 bad decisions, 291
	 changes, 289–291
	 consensus, 291

AU5334.indb 299 11/19/07 7:51:19 AM

	 design patterns, 292
	 design standards, 288–289
	 design tools, 292
	 external impacts, 291
	 facts, 291
	 fad designs, 290
	 financial resources, 292
	 fundamentals, 287
	 incorrect decisions, 291
	 information, 289
	 minimalistic viewpoint, 290
	 personal design preferences, 289
	 project team skill set, 288
	 requirements changes, 291
	 80/20 rule, 290
	 skills, 288
	 standards, lacking, 288–289
	 technology changes, 289–290
	 testing, 291
	 tight timeframes, 288
	 time, 288
	 too much design, 290
	 wrong decisions, 291
Communication
	 bias, 268
	 design principles, 293
	 executive expectations, 40
	 expectations, 39–40
	 project team expectations, 39–40
	 steering committee expectations, 40
Compatibility, 84
Compiled languages, 120
Complete back-out, 204
Completeness
	 bad design rating, 286
	 excellent design rating, 283
	 good design defined, 280
	 good design rating, 284
	 sound design rating, 285
Completion, capacity planning, 255–256
Complexity
	 performance scope, 145
	 pitfalls, 8
	 robust systems, 80
Components
	 autonomy, 62–63
	 failover testing, 23
	 redesign, 24
	 sharing, investment justification, 20
	 system boundaries, 141–142
Concurrency

	 business utilization model, 22
	 capacity testing, 23
	 product feature, 147
Concurrent versions system (CVS), 198
Conditions, operability testing, 24
Configuration
	 delivery timeline estimation, 29
	 packaging, 197–198
	 user acceptance tests, 9
Connection pools, 237
Connectivity, 79
Consensus, lack of, 291
Consistency, performance testing, 35
Consolidation, 228
Container
	 monitoring, 228, 233–238, 234–237
	 poor performance case study, 3
Content Switching Service (CSS), 184
Contingency, 247
Contradictions, 293
Contributors, bad design, 282, 287
Controls, project success, 222
Corba, 123
Core project team, 216
Correlation, monitors, 227
Costs
	 elements, 26, 27
	 infrastructure estimation, 26, 28, 28–29
	 product feature, 146
CPU, see Central processing unit
Crisis management and troubleshooting
	 discouraging bias, 268
	 environment changes, 259–261
	 failure-based approach, 263–264
	 fixing applications, 270–272
	 fundamentals, 257, 259, 272, 275
	 inputs, 261–263
	 mitigation vs. tolerance, 270
	 monitoring, 272, 275
	 parallel path pursuit, 268
	 post-mortem review, 272–275
	 predicting related failures, 265–267, 267
	 reproducing the issue, 257–258
	 root causes, 258–259, 272, 273–274
	 system age, 269
	 testing level assessment, 271–272
	 troubleshooting strategies, 259–270
	 workarounds, 269–270
Criticality
	 availability requirements, 64–65
	 failover testing, 23

AU5334.indb 300 11/19/07 7:51:19 AM

Index  n  301

	 growth of system, 246
	 measurability, 99
	 non-functional requirements document, 22
	 operability, 24, 99
	 poor performance case study, 2
	 system health checks, 79
CRM, see Customer relationship management

solution
Cross-reference business inputs, 262
CSS, see Content Switching Service
Currency updates, 28
Customer relationship management (CRM)

solution, 141
Customer service representatives, 85
CVS, see Concurrent versions system
Cycle zero, 164

D
Data
	 backup and restoration, 38
	 bank, 35
	 externalizing, product feature, 146–147
	 ill-formed, 33
	 initialization, 38
	 integrity, 11
	 retention requirements, 22
	 review, scope determination, 25–26
	 seed, simulator developers, 38
	 setup requirements, 24
	 transactional, 154
Data architect, 218
Database administrator (DBA), 266–267
Databases
	 monitors, 239
	 operability scope, 143–144
	 server infrastructure failure case study, 5–7
Databases, performance design
	 index structures, 127–128
	 partitions, 128–129
	 performance improvements, 129
	 storage structures, 127
Data manager, 39
DBA, see Database administrator
DBVisualizer, 148
DCOM, 123
Debugging
	 applications logging, 81
	 exception conditions, 11, 14
Decisions
	 common design impediments, 291

	 negative reasoning, 21
Dedicated test environment, 152
Defects
	 project team, 40
	 root cause, 258
	 steering committee and executives, 40
Deferred processing, 108–109
Defining project success, 213–214
Degradation
	 pitfalls, 8
	 poor performance case study, 2–5
	 virtual-machine languages, 121
Delay between intervals, 170, see also Think

time
Delimited format, 83
Delivery schedule
	 extent of testing, 19
	 service level agreement, 23
Delivery timeline estimation, 29–33, 30, 32
Dependency
	 design impediments, 277–278, 278
	 monitoring, 233
Deployment
	 auditable, 196
	 automated, 196
	 back-out strategies, 204–205
	 banking front office, 202–203, 203
	 big bang rollout strategy, 199
	 case studies, 200–203
	 complete back-out, 204
	 complexity, 271
	 configuration, 197–198
	 fundamentals, 195, 205
	 infrastructure costs, 28
	 leapfrog strategy, 200
	 logical back-out, 204–205
	 minimal, 196
	 online banking case study, 200–201,

201–202
	 packaging, 197–198
	 partial back-out, 204
	 phased rollout strategy, 199
	 pilot strategy, 198–199
	 poor performance case study, 2–5
	 procedure characteristics, 196
	 rehearsal, 198
	 reversible, 196
	 rollout strategies, 198–200
	 tested, 196
Deployment engineers, 38
Design

AU5334.indb 301 11/19/07 7:51:20 AM

302  n  Index

	 adequate design, 282, 285–286
	 architecture vs. design, 288
	 bad decisions, 291
	 bad design, 283, 286
	 changes, 289–291
	 common impediments, 287–292
	 consensus, 291
	 contributors to bad design, 282, 287
	 dependencies, 277–278, 278
	 design patterns, 292
	 design principles, 292–293
	 design standards, 288–289
	 design tools, 292
	 excellent design, 282, 283–284
	 external impacts, 291
	 facts, 291
	 fad designs, 290
	 financial resources, 292
	 fundamentals, 277, 279, 280–281, 287, 293
	 good design, 279–286
	 hotspots, 24
	 incomplete design, 282–283, 286
	 incorrect decisions, 291
	 information, 289
	 minimalistic viewpoint, 290
	 objectives of design activities, 279–281
	 personal design preferences, 289
	 principles, 292–293
	 project framework extension, 219
	 project team skill set, 288
	 rating, 281–286, 282
	 requirements changes, 291
	 reviews, operability design, 91–92
	 80/20 rule, 290
	 skills, 288
	 sound design, 282, 285
	 standards, 288–289
	 standards, lacking, 288–289
	 technology changes, 289–290
	 test case scripters, 38
	 testing, 291
	 testing designs, 286–287
	 tight timeframes, 288
	 time, 288
	 tools, 292
	 too much design, 290
	 wrong decisions, 291
Design patterns
	 common design impediments, 292
	 operability design, 71–75
Desynchronization, 112

Developers, 219
Diagnostics
	 ability pitfalls, 8
	 unforeseen event planning, 10
Disaster recovery (DR), see also Recovery and

recoverability
	 cross-purposing, 152
	 service level agreement, 23
Discouraging bias, 268
Disk, query performance, 105
Distributed databases, scalability, 96
Distributed processing, 123–125
Distributed transactions, 124–125
Divide and conquer
	 database partitions, 128
	 patterns, performance design, 102
DNS, 149
Documentation
	 boundary conditions, 183
	 non-functional requirements, 42–43, 57
	 usage contract, 42
Documented changes, 260
Document type definition (DTD), 126
DOM-based techniques, 126
DR, see Disaster recovery
DTD, see Document type definition
Duplicate requests, 72

E
EAR, see Enterprise Application Resource
Effective attributes, 227–228
Effort estimation, 26–28, 27
Einstein, Albert, 56
EJB, see Enterprise Java Bean
E-Load, 148
Email, 226
Empirix, 148
End-users
	 documenting requirements, 42
	 monitoring, 229, 239–240
Engineering requirements, 45
Engineers
	 code and data review, 25
	 role in test team, 38
Enterprise Application Resource (EAR), 136,

236
Enterprise Java Bean (EJB), 98, 115–117, 235,

237
Environments
	 certification testing, 36

AU5334.indb 302 11/19/07 7:51:20 AM

Index  n  303

	 changes, troubleshooting strategies,
259–261

	 dedicated test environments, 152
	 delivery timeline estimation, 29, 31
	 failover testing, 34
	 infrastructure cost, 28
	 multifunctional use, investment

justification, 20
	 non-functional vs. functional, 21
	 operability patterns, 11
	 requirements determination, 140
	 test types and requirements, 36, 36–37
	 validity, test preparation and execution, 160,

164
Errors
	 aborting after, 86–87
	 business usage, 245
	 categorization, 70, 70–71
	 code and data review, 25
	 distribution, 261
	 fatal events, 227, 238, 243
	 fundamentals, 243–244
	 illegal, root cause, 259
	 investment justification, 20
	 operability design, 70, 70–71
	 performance acceptance, 175
	 reconciliation, 244–245
	 resuming after, 86–87
Escalation procedures, 221–222
Estimation, effort and resource, 26–28, 27
ETL process, 132–134, 133
Evaluation, necessity, 43–44
Events
	 fatal, 227, 238, 243
	 triggering, 34
Example size, repeatability, 193
Excellent design rating, 283–284
Exceptions
	 capturing and reporting, 11, 14
	 code and data review, 25
	 handling, 87–90
	 logging, 64
	 outputs, 262
	 user-account lockouts, 75
Execution engineers, 38
Executive expectations, 40
Expectations
	 communication planning, 39–40
	 failover testing, 184
	 project success, 222
Expected growth, 22

Expertise, 268
Extensibility
	 bad design rating, 286
	 excellent design rating, 283
	 good design defined, 280
	 good design rating, 284
	 performance design requirements, 97–98
	 sound design rating, 285
Extensible markup language (XML)
	 configuration, 197
	 fundamentals, 125–126, 136
	 transparency, 83–84
Extension of project framework, 211, 216, 217, 219
Extent of testing, 19–20
External impacts
	 changes, 260
	 common design impediments, 291
	 operability, 33, 143
Externalizing data, 146–147
External system aggregation results, 105–107
Extract process, see ETL process

F
Facts, common design impediments, 291
Fad designs, 290
Failover
	 certification testing, 36
	 database server infrastructure failure, 5–7
	 minimal testing requirements, 18–19
	 operability requirements, 64
	 operability testing, 183–184, 185–186, 186
	 parallelism, delivery timeline estimation, 31,

33
	 pitfalls, 8
	 scope determination, 23, 29
	 test types and requirements, 34
	 user acceptance tests, 9
Failure-based approach, 263–264
Failures, prediction of related, 265–267, 267
Fast-track definition, 217
Fatal events, 227, 238, 243
Fault tolerance
	 design, 71–74, 72, 74
	 requirements, 64
	 testing, 186–188, 187
Federation, 135
Files
	 non-functional requirements, 57
	 sustainability testing, 192
	 system condition-based monitors, 239

AU5334.indb 303 11/19/07 7:51:21 AM

304  n  Index

File transfer protocol (FTP), 148, 149
Financial resources, 292
Fixing issues
	 exception conditions, 11, 14
	 mitigation vs. tolerance, 270
	 testing level assessment, 271–272
Flexibility
	 bad design rating, 286
	 excellent design rating, 283
	 good design defined, 280
	 good design rating, 284
	 non-functional vs. functional test

environments, 21
	 sound design rating, 285
Fortran, 120
Framework, project success, 215–216, 216–217
FTP, see File transfer protocol
Fulfillment services, 73–74, 85–86
Functionality usage, sequence, 22
Functional requirements document, 22
Functional requirements stream
	 attention, 212–213
	 controls, 222
	 core project team, 216
	 defining, 213–214
	 escalation procedures, 221–222
	 expectations, 222
	 extension of project framework, 211, 216,

217, 219
	 framework, 215–216, 216–217
	 fundamentals, 207–208, 212, 223
	 hardware resources, 213
	 human resources, 212–213
	 impacts of not acting, 223
	 issue resolution, 213
	 non-functional requirements comparison,

208–209
	 performance metrics, 221–222
	 pressures from, 209–212, 210–211
	 process, 214, 214–223
	 raw resources requirements, 216–220
	 resources requirements, 216–220
	 roles and responsibilities, 216, 218–219
	 software resources, 213
	 sponsorship of project, 220

G
Gamma, Erich, 69
Garbage collections
	 case study, 3

	 virtual-machine languages, 121
Gladwell, Malcolm, 47
Good design ratings
	 adequate, 282, 285–286
	 bad, 283, 286
	 excellent, 282, 283–284
	 fundamentals, 281, 282
	 good, 282, 284–285
	 incomplete, 282–283, 286
	 sound, 282, 285
Grid computing, scalability, 97
Grinder, 148
Growth, expected, 22

H
Hardware, see also Central processing unit

(CPU)
	 capacity pitfalls, 8
	 failover testing, 34
	 failure, case study, 5–7
	 infrastructure performance design, 134–136
	 repurposing, 152
	 resources attention, level of, 213
	 time-shifting, 152
	 virtual hardware, 135
Health checks, system
	 application availability, 14
	 operability design, 78–79
Heapsort, 120
Heisenberg, Werner, 193
Helm, Richard, 69
High-level non-functional scope, 139
Historical data, test planning, 154–155,

155–156
Historical reporting, 241
Hotspots
	 architecture, performance design, 101–102
	 compiler, just in time comparison, 122
	 project team, 40
HTTP, see Hypertext transfer protocol
HTTPS, 141, 148
Human inputs
	 load scenarios, expression, 54–56, 55
	 quantifying inputs, 48
Human resources, 212–213
Hypertext transfer protocol (HTTP)
	 distributed processing, 124
	 failover testing, 184
	 software valves, 76
	 vendor products, 148

AU5334.indb 304 11/19/07 7:51:21 AM

Index  n  305

I
I/O, see Input/Output; Inputs; Outputs
IBM, 132, 184
IIOP, 148
“ilities,” 95–100
IMAP, 149
Impacts of not acting, 223
Implied service levels, 22
Incomplete design rating, 286
Incorrect decisions, 291, see also Decisions
Incremental loads, 263–264
In-flight processing, 184
Information, lack of, 289
Infrastructure
	 case studies, 2–3, 5–6
	 certification testing, 36
	 component autonomy, 62
	 costs estimation, 26, 28, 28–29
	 investment justification, 20
	 monitoring, 228, 230–233, 231–232
	 operability design, 91
	 pitfalls, 8
	 services, operability design, 91
Initialization, data, 38
Injectors
	 investment, 25
	 test planning, 149–150
Input/Output (I/O), see Inputs; Outputs
 batch processing, 134–135
 caching, 109
 capacity testing, 34
 ETLs, 132, 134
 guaranteed delivery, 132
 index structure, 128
 metrics, 231
 normal infrastructure example, 2
 online transaction system, 134
 operability and measurements, 99
 overdesign, 114
 parallelism, 104
 query performance, 105
 resource sharing, 135
Inputs
	 capacity planning, 245–248
	 illegal, root cause, 258
	 operability and measureability, 99
	 parallelism, 104
	 query performance, 105
	 troubleshooting strategies, 261–263
Instrumentation, adding/removing, 100

Integrated testing cycles, 31
Integrity, data and transactions, 11
Interface, product feature, 146
Internal caches and pools, 192
Internet, securability, 98
Interpreted languages, 122–123
Interruptions, testing, 21
Investment justification, 20–21
Isolation
	 capacity testing, 34
	 operability design, 80–81
	 repeatability, 193
	 robust system characteristics, 80–81
	 test environments, 151–153
Issues
	 reproduction of, 257–258
	 resolution, 213

J
Jakarta, 148
Java
	 exception handling, 89
	 as programming language, 120
	 as vendor product, 148
JavaScript, 123
Java virtual machine (JVM), 3, 12, 121
JBoss, 148, 234
JCL, see Job control language
JDBC, 148, 149
J2EE
	 container monitoring, 234, 236
	 overserialization, 115
	 packaging, 197
	 poor performance case study, 2–3
	 as vendor product, 148
JIT compiler, see just-in-time compiler
JMeter
	 unit testing, 25
	 as vendor product, 148
JMS, 148, 237
JMX, 235–236, 262
Job control language (JCL), 263
Johnson, Ralph, 69
Johnson, Rod, 90
JProbe, 25
JRMP, 148
Justification for testing, 20–21
Just-in-time (JIT) compiler, 122
JVM, see Java virtual machine
Jython, 148

AU5334.indb 305 11/19/07 7:51:22 AM

306  n  Index

K
K.I.S.S. approach, 101
Knowledge gathering, 31
Knuth, Donald E., 119

L
LDAP, 148, 149
Leaks, resources, 191
Leapfrog strategy, 200
Licenses
	 infrastructure costs, 28
	 test tools, 28
Lifecycle
	 critical non-functional issue identification,

24
	 operability and measureability, 99–100
	 software development, 8
Limitations, challenges, 193–194
Load process, see ETL process
LoadRunner, 147
Loads
	 balancing, 102–103, 103
	 extent of testing, 20
	 failover testing, 34, 184
	 failure approaches, 263–264
	 performance requirements, 60
	 scenarios, 54–56, 55
	 tuning, 39–40, 167–171, 168–172
	 user acceptance tests, 9
Load testing software
	 fundamentals, 145
	 product features, 146–147
	 vendor products, 147–149
Lockout, user-accounts, 74–75
Log file growth monitors, 239
Logging, see also Traceability
	 application, 261
	 debug, 82
	 exceptions, 64
	 failure approaches, 263–264
	 gratuitous, 82
	 insufficient, 82
	 obtuse error, 82
	 operability design, 80–83
	 performance, 82
	 trace logging, 63, 82
Logical back-out, 204–205
Log level configuration, 81

M
Machine inputs, quantifying, 49–53, 49–54
Maintainability, 100
Maintenance of model, 255
Maintenance windows
	 operability requirements, 63
	 service level agreement, 23
Management information base (MIB), 232
Manicom, Richard, 80
Manual activities, 36
Manual recovery, 24
MBeans, 235
MDBs, see Message-driven beans
Measureability
	 failover testing, 34
	 performance design requirements, 99–100
Measurements, accuracy, 21
Measurement tools, 34
Memory management
	 code and data review, 25
	 ETL, 132
	 sustainability testing, 192
Mercury, 147
Mergesort, 120
Message consumption, 77
Message-driven beans (MDBs), 237
Message queue (MQ), 141–142, 266
Messaging middleware, 129, 132
Metadata, 127
Methodology, design principles, 292
Methods of access, 22
Metrics
	 capacity testing, 34
	 design principles, 292
	 service level agreement, 23
	 sustainability testing, 24
MIB, see Management information base
Microsoft, 115, 176
Milestones, 214
Minimal deployment, 196
Minimalistic viewpoint, 290
Minq, 148
Mitigation
	 application logging, 82
	 extent of testing, 19
	 tolerance comparison, 270
Mixed loads
	 capacity testing, 34
	 establishment, 160, 164–166, 165–167
	 preparation activities, 160

AU5334.indb 306 11/19/07 7:51:23 AM

Index  n  307

Models
	 code and data review, 25
	 maintenance, capacity planning, 255
Mode of failure
	 failover testing, 184
	 sustainability testing, 190
Modern characteristics
	 bad design rating, 286
	 excellent design rating, 283
	 good design defined, 280
	 good design rating, 284
	 sound design rating, 285
Monitoring
	 applications, 238–239
	 availability, 233
	 capacity testing, 34
	 container monitoring, 233–238, 234–237
	 effective attributes, 227–228
	 end-users, 239–240
	 fundamentals, 225–227
	 infrastructure, 230–233, 231–232
	 performance testing, 35
	 post-mortem review, 272, 275
	 product feature, 147
	 scope, 228–230, 230
	 vendor software, 233–238, 234–237
MQ, see Message queue (MQ)
Multiple environments
	 delivery timeline estimation, 31
	 steering committee and executives, 40
Multiple retry attempts, 72–73
Multiple virtual storage (MVS), 263
MVS, see Multiple virtual storage

N
Necessity evaluation, 43–44
Negative reasoning, 21
.NET framework
	 overserialization, 115
	 packaging, 197
	 vendor products, 148
	 virtual-based machines, 120
NetIQ, 233
Network management system (NMS), 231–232
Networks, securability, 98
NMS, see Network management system
NNTP, 149
Non-functional production systems, 8–10,

12–13
Non-functional requirements

	 archive requirements, 65, 66
	 availability requirements, 64–65, 66
	 business usage model establishment, 46–56
	 challenging the requirements, 45–46
	 clarification, 56–58
	 component autonomy, 62–63
	 defined, 43
	 exception logging, 64
	 failover, 64
	 fault tolerance, 64
	 functional requirements stream comparison,

208–209
	 fundamentals, 41–42, 46–48, 54, 67
	 human inputs, 48, 54–56, 55
	 load scenarios, expression, 54–56
	 machine inputs, 49–53, 49–54
	 maintenance windows, 63
	 necessity evaluation, 43–44
	 operability requirements, 62–64
	 outage communication, 63
	 performance requirements, 58–61, 60–62
	 quantifying inputs, 46–53
	 roles and responsibilities, 44–45
	 trace logging, 63
Non-functional requirements document, 22
Non-functional requirements narrative, 43
Non-functional testing, scope determination,

10
Non-functional test inventory, 12–13
Non-functional test lead, role, 37–38, 44

O
Objectives of design activities, 279–281
OLTP, see Online transaction processing

systems
Online banking case study, see Banking

examples; Case studies
Online dating case study, 248–254, 249–252,

254
Online performance, 18
Online transaction processing (OLTP) systems,

118–119
OpenView, 13, 232–233, 238
Operability
	 bad design rating, 286
	 capacity, 153
	 code and data review, 25
	 database server infrastructure failure, 5–7
	 documenting requirements, 43
	 excellent design rating, 284

AU5334.indb 307 11/19/07 7:51:23 AM

308  n  Index

	 good design defined, 280
	 good design rating, 285
	 parallelism, delivery timeline estimation, 31,

33
	 patterns, production systems, 11–14
	 performance design requirements, 99–100
	 pitfalls, 8
	 review, 92–93, 92–94
	 scope, test planning, 142–145
	 sound design rating, 285
Operability, designing for
	 aborting after errors, 86–87
	 application logging, 80–83
	 checklist, 91–92
	 design patterns, 71–75
	 design reviews, 91–92
	 error categorization, 70, 70–71
	 exception handling, 87–90
	 fundamentals, 69, 94
	 infrastructure services, 91
	 isolation, 80–81
	 operability review, 92–93, 92–94
	 reconciliation, 84–86
	 resuming after errors, 86–87
	 retry for fault tolerance, 71–74, 72, 74
	 robust system characteristics, 80–90
	 simplicity, 80–81
	 software fuses, 74–75
	 software valves, 75–79, 77–78
	 system health checks, 78–79
	 traceability, 84–86
	 transparency, 83–84
	 visibility, 83–84
Operability, requirements
	 component autonomy, 62–63
	 exception logging, 64
	 failover, 64
	 fault tolerance, 64
	 maintenance windows, 63
	 outage communication, 63
	 trace logging, 63
Operability, testing
	 boundary condition testing, 182–183, 183
	 failover testing, 183–184, 185–186, 186
	 fault tolerance testing, 186–188, 187
	 fundamentals, 181
	 mixed loads, 165
	 scope determination, 24
	 test types and requirements, 33
Operating system (OS), 34
Operations trending

	 fundamentals, 241–243
	 historical reporting, 241
	 performance trending, 241–243, 242
Operations window
	 availability requirements, 64
	 inputs example, 48–49, 49
	 multiple retry attempts, 72–73
Oracle, 142, 143, 148
OS, see Operating system
Outages
	 communication, operability requirements,

63
	 database case study, 6
	 investment justification, 20
	 operability, 33
Outputs, 104, see also Inputs
Overdesign
	 antipatterns, performance design, 114
	 common design impediments, 290
Overflows, 269
Overhead, 147
Overserialization, 114–117
Oversynchronization, 117–119

P
Packaging, 197–198
Parallelism
	 delivery timeline estimation, 31, 33
	 patterns, performance design, 103–107, 104
Parallel path pursuit, 268
Pareto principle, 290
Partial back-out, 204
Patterns
	 application design operability, 11–14
	 operability design, 71–75
Patterns, performance design
	 aggregating results, 105–107
	 asynchronous execution, 107–109, 110–111
	 caching, 109, 112, 112–114
	 deferred processing, 108–109
	 divide and conquer pattern, 102
	 external system aggregation results,

105–107
	 load balancing, 102–103, 103
	 parallelism, 103–107, 104
	 poor query performance scenario, 105
	 query performance scenario, 105
	 synchronous execution, 107–109, 110–111
Peak loads, 35, see also Loads
Peak transaction rate, 61

AU5334.indb 308 11/19/07 7:51:24 AM

Index  n  309

Peak usage
	 business utilization model, 22
	 capacity testing, 34
	 performance testing, 23
Penalties, 23
People resources, 26, 27
PeopleSoft, 148
Performance
	 acceptance, 173, 174, 175–176
	 bad design rating, 286
	 capacity, 153
	 code and data review, 25
	 documenting requirements, 43
	 excellent design rating, 283
	 good design defined, 280
	 good design rating, 284
	 logging, 82
	 metrics, 221–222
	 non-functional requirements, 58–61, 60–62
	 poor, 2–5
	 scope, test planning, 145
	 sound design rating, 285
	 sustainability testing, 192
	 trending, 241–243, 242
Performance, designing for
	 aggregating results, 105–107
	 algorithms, 119–120
	 antipatterns, 112, 114–119
	 application servers, 129, 130–131
	 architecture, 101–102
	 asynchronous execution, 107–109, 110–111
	 caching, 109, 112, 112–114
	 compiled languages, 120
	 databases, 127–129
	 deferred processing, 108–109
	 distributed processing, 123–125
	 distributed transactions, 124–125
	 divide and conquer pattern, 102
	 ETLs, 132–134, 133
	 extensibility, 97–98
	 external system aggregation results,

105–107
	 fundamentals, 95, 136–137
	 hardware infrastructure, 134–136
	 hotspots, 101–102
	 “ilities,” 95–100
	 index structures, 127–128
	 interpreted languages, 122–123
	 load balancing, 102–103, 103
	 maintainability, 100
	 measureability, 99–100

	 messaging middleware, 129, 132
	 operability, 99–100
	 overdesign, 114
	 overserialization, 114–117
	 oversynchronization, 117–119
	 parallelism, 103–107, 104
	 partitions, 128–129
	 patterns, 102–112
	 performance improvements, 129
	 poor query performance scenario, 105
	 programming languages, 120–123
	 query performance scenario, 105
	 recoverability, 100
	 requirements, 95–100
	 resources, 130–131, 134–136
	 scalability, 96–97
	 securability, 98–99
	 software, 126–134
	 storage structures, 127
	 synchronous execution, 107–109, 110–111
	 technology, 120–126
	 usability, 97
	 user session memory consumption, 118–119
	 virtual-machine-based languages, 120–122
	 XML, 125–126
Performance, testing
	 baselining regression, 177, 179, 179–180
	 fundamentals, 171–172
	 performance acceptance, 173, 174, 175–176
	 poor performance case study, 2
	 priming effects, 172–173
	 reporting results, 176, 177–178
	 scope determination, 23, 28
	 stress testing, 181, 181–182
	 test types and requirements, 35
Performance trending, 241–243, 242
Perl, 123, 148
Personal design preferences, 289
Phased rollout strategy, 199
Pilot strategy, 198–199
Pipe-and-filter process, 133
Planning
	 inputs, capacity planning, 245–248
	 non-functional test coverage, 24
	 unexpected events, 10
Planning and project initiation
	 application behavior testing, 25
	 architectural hotspots, 24
	 batch performance test, 18
	 business utilization model document, 22
	 capacity testing, 18, 23, 34

AU5334.indb 309 11/19/07 7:51:25 AM

310  n  Index

	 certification testing, 24, 29, 35–36
	 code deployment engineers, 38
	 code review, 25–26
	 communication planning, 39–40
	 data review, 25–26
	 delivery timeline, 29–33, 30, 32
	 design hotspots, 24
	 effort and resources, 26–28, 27
	 environments, 36, 36–37
	 executive expectations, 40
	 expectations, 39–40
	 extent of testing, 19–20
	 failover testing, 18–19, 23, 29, 34
	 functional requirements document, 22
	 fundamentals, 40
	 infrastructure costs, 26, 28, 28–29
	 injectors investment, 25
	 investment justification, 20–21
	 negative reasoning, 21
	 non-functional requirements document, 22
	 non-functional testing, 17–21
	 non-functional test lead, 37–38
	 online performance test, 18
	 operability testing, 24, 33
	 people resources, 26, 27
	 performance testing, 23, 28, 35
	 project team expectations, 39–40
	 scope determination, 22–33
	 service level agreement document, 22–23
	 simulator developers, 38
	 simulators investment, 25
	 steering committee expectations, 40
	 sustainability testing, 24, 35
	 team, 37–39
	 test automation execution engineers, 38
	 test case scripters, 38
	 test data manager, 39
	 test tools, 26, 28
	 troubleshooters, 39
	 unit testing, 25
Politics, 268
Pools
	 connection, 237
	 sustainability testing, 192
Poor performance, case study, 2–5
Poor query performance scenario, 105
POP3, 148
Post-mortem review
	 fundamentals, 272
	 monitoring, 272, 275
	 root causes, 272, 273–274

Prediction, related failures, 265–267, 267
Pre-production, 151
Prerequisites, 42
Pressure, functional requirements stream
	 attention, 212–213
	 controls, 222
	 core project team, 216
	 defining, 213–214
	 escalation procedures, 221–222
	 expectations, 222
	 extension of project framework, 211, 216,

217, 219
	 framework, 215–216, 216–217
	 fundamentals, 207–208, 212, 223
	 hardware resources, 213
	 human resources, 212–213
	 impacts of not acting, 223
	 issue resolution, 213
	 non-functional requirements comparison,

208–209
	 performance metrics, 221–222
	 pressures from, 209–212, 210–211
	 process, 214, 214–223
	 raw resources requirements, 216–220
	 resources requirements, 216–220
	 roles and responsibilities, 216, 218–219
	 software resources, 213
	 sponsorship of project, 220
Pride, 268
Priming effects, 172–173
Prioritization, 140
Procedure characteristics, 196
Process, project success, 214, 214–223
Product features, 146–147
Production behavior patterns, 8
Production build-up, 35
Production configuration
	 sustainability testing, 35
	 user acceptance tests, 9
Production systems
	 applications, availability and health, 14
	 automated recovery, 14
	 database disappearance, 5–7
	 data integrity, 11
	 exception conditions, 11, 14
	 fundamentals, 14–15
	 importance of, 7–8
	 nonfunctional systems, 8–10, 12–13
	 nonfunctional test inventory, 12–13
	 operability patterns, 11–14
	 poor performance, 2–5

AU5334.indb 310 11/19/07 7:51:25 AM

Index  n  311

	 real world, 1–7
	 testing, nonfunctional systems, 9–10, 12–13
	 transaction integrity, 11
	 unforeseen events, 10
Profiling applications, 81
Programmable logic, 146
Programming languages
	 compiled languages, 120
	 interpreted languages, 122–123
	 virtual-machine-based languages, 120–122
Project initiation, see Planning and project

initiation
Project lead, 218
Project managers, 218
Project sponsor, 218
Project success
	 controls, 222
	 core project team, 216
	 defining, 213–214
	 escalation procedures, 221–222
	 expectations, 222
	 extension of project framework, 211, 216,

217, 219
	 framework, 215–216, 216–217
	 impacts of not acting, 223
	 performance metrics, 221–222
	 process, 214, 214–223
	 raw resources requirements, 216–220
	 resources requirements, 216–220
	 roles and responsibilities, 216, 218–219
	 sponsorship of project, 220
Project team expectations, 39–40
Project team skill set, 288
PureLoad, 148
Python, 123

Q
Quantifying inputs, 46–53
Query performance scenario, 105
Quicksort, 119–120

R
RAC, see Real application clustering
Ramp-down, 171
Ramp-up, 168
Randomness, 146
Rating design, 281–286, 282
Rating of design
	 adequate, 282, 285–286

	 bad, 283, 286
	 excellent, 282, 283–284
	 fundamentals, 281
	 good, 282, 284–285
	 incomplete, 86, 282–283
	 sound, 282, 285
Raw resources requirements, 216–220
Read, infrastructure monitoring, 232
Real application clustering (RAC), 143–144
Realistic design principles, 292
Real world production systems, 1–7
Reconciliation
	 error reporting, 244–245
	 operability design, 84–86
	 robust system characteristics, 84–86
Recovery and recoverability
	 certification testing, 36
	 code and data review, 25
	 database server infrastructure failure, 6–7
	 operability, 24, 33
	 performance design requirements, 100
	 production systems, 14
Recovery time, 22
Redeployment, 63
Redesign, delivery timeline estimation, 31
Redundant monitoring, 227
Reflectors, 149–150
Regression
	 baselining, performance testing, 177, 179,

179–180
	 investment justification, 20
	 mixed loads, 165
Rehearsal, deployment strategies, 198
RendezVous, 129
Repeatability
	 challenges, 193
	 issues, 257–258, 264
	 performance acceptance, 175
	 script development, 161
Reporting
	 capabilities, product feature, 147
	 non-functional test lead, 38
	 operability testing, 24
	 test automation execution engineers, 38
Reporting results, 176, 177–178
Reproduction of issues, 257–258, 264, see also

Repeatability
Repurposing hardware, 152
Request timeouts, 187
Requirements
	 changes, 291

AU5334.indb 311 11/19/07 7:51:26 AM

312  n  Index

	 engineering, 45
	 gathering, 217
	 swapping, 45
Requirements, performance design
	 extensibility, 97–98
	 “ilities,” 95–100
	 maintainability, 100
	 measureability, 99–100
	 operability, 99–100
	 recoverability, 100
	 scalability, 96–97
	 securability, 98–99
	 usability, 97
Requirements document, 22
Resilience
	 database server infrastructure failure, 6
	 script development, 160
Resource leak, 191
Resources
	 capacity testing, 23
	 common design impediments, 292
	 design principles, 292
	 determination, 140
	 exceeded limits, 269
	 extent of testing, 19
	 hardware infrastructure performance

design, 130–131, 134–136
	 oversynchronization, 118
	 project success, 216–220
	 requirements, 140, 216–220
	 roles and responsibilities, 219
	 scope determination, 26–28, 27
	 sharing, 135
	 sizing, sustainability testing, 191
	 utilization, capacity testing, 34
Response time
	 non-functional requirements document, 22
	 performance requirements, 58, 60–61
	 performance testing, 23
	 service level agreement, 23
Responsibilities, see Roles and responsibilities
Restarting, component autonomy, 63
Restore procedures
	 code deployment engineers, 38
	 test data manager, 39
Results
	 expected, failover testing, 23
	 operability testing, 24
	 performance testing, 176, 177–178
Resuming after errors, 86–87
Retry attempts

	 operability design, 71–74, 72, 74
	 software valves, 77–78
Reuse, design principles, 292
Reversible deployment, 196
Reviews
	 non-functional test lead, 37
	 operability design, 91–92
Right-sized design
	 bad design rating, 286
	 excellent design rating, 284
	 good design defined, 280
	 good design rating, 285
	 sound design rating, 285
Risks
	 extent of testing, 19
	 negative reasoning, 21
	 performance scope, 145
	 steering committee and executives, 40
RMI, 123, 148
Robustness, 42
Robust system characteristics
	 aborting after errors, 86–87
	 application logging, 80–83
	 exception handling, 87–90
	 isolation, 80–81
	 operability design, 80–90
	 reconciliation, 84–86
	 resuming after errors, 86–87
	 simplicity, 80–81
	 traceability, 84–86
	 transparency, 83–84
	 visibility, 83–84
Roles and responsibilities
	 business analyst, 218
	 code deployment engineers, 38
	 functional requirements stream, 216,

218–219
	 non-functional engineering team, 25
	 non-functional requirements, 44–45
	 non-functional test lead, 37–38
	 project success, 216, 218–219
	 simulator developers, 38
	 test automation execution engineers, 38
	 test case scripters, 38
	 test data manager, 39
	 troubleshooters, 39
Rollback
	 data and transaction integrity, 11
	 repeatability, 193
Rollout strategies
	 big bang rollout strategy, 199

AU5334.indb 312 11/19/07 7:51:26 AM

Index  n  313

	 fundamentals, 198
	 leapfrog strategy, 200
	 phased rollout strategy, 199
	 pilot strategy, 198–199
Rollup, statistical, 79
Root causes
	 determination, 258–259
	 level of testing, 271
	 post-mortem review, 272, 273–274
RPC, 123
Ruby, 123
80/20 rule, 290
Runtime debugging, 81

S
SAP, 148
SAX-based solutions, 126
Scalability
	 bad design rating, 286
	 excellent design rating, 283
	 good design defined, 280
	 good design rating, 285
	 performance design requirements, 96–97
	 pitfalls, 8
	 sound design rating, 285
Schedules
	 delivery, 19
	 jobs, 260
	 steering committee and executives, 40
	 text execution, 140
Scope
	 certification testing, 24
	 high-level non-functional identification, 139
	 monitoring, 228–230, 230
	 non-functional requirements document, 22
	 non-functional testing, 10
	 steering committee and executives, 40
	 test planning, 140–145
Scoping, 24
Scripters, test case, 38
Scripting
	 code deployment engineers, 38
	 interpreted languages, 122–123
	 performance acceptance, 175
	 performance testing, 35
	 product feature, 146
	 test automation execution engineers, 38
	 test case scripters, 38
Scripts

	 development, test preparation and
execution, 160–162, 162–163,
164–171

	 investment justification, 20
Securability, 98–99
Security
	 documenting requirements, 43
	 test-case data, 150–151
Seed data, 38
Seeding the test bed, 160, 167
Self-sustainment, 160
Sequence diagram, 92
Serialization, 114–117
Server infrastructure failure, 5–7
Service level agreement (SLA)
	 availability requirements, 65
	 document scope, 22–23
	 end users, 240
Service levels, implied, 22
Session memory consumption, 118–119
Severity, 70, 70–71, 226
SGML, see Standard generalized markup

language (SGML)
Siebel, 148
Signoff
	 non-functional requirements, 57–58
	 non-functional test lead, 37
Simple mail transfer protocol (SMTP)
	 container monitoring, 228, 233
	 monitoring, 227
	 vendor products, 148, 149
Simple network management protocol (SNMP),

99, 231–232
Simplicity
	 architecture, 101
	 load scenarios, 56
	 operability design, 80–81
Simulation and simulators
	 accuracy difficulty, 5
	 extent of testing, 19–20
	 investment, 20, 25
	 non-functional vs. functional test

environments, 21
	 test planning, 149–150
Simulator developers, 38
Sizing
	 repeatability, 193
	 sustainability testing, 191
Skill sets, design impediments, 288
SLA, see Service level agreement
SME, see Subject matter experts

AU5334.indb 313 11/19/07 7:51:27 AM

314  n  Index

SMTP, see Simple mail transfer protocol
SNMP, see Simple network management

protocol
Soak testing, 188
SOAP, 141, 148
Software
	 defect root cause, 258
	 failover testing, 184
	 fuses, 74–75
	 infrastructure costs, 28
	 investment justification, 20
	 overspecification, 57
	 pitfalls, 8
	 resources, level of attention, 213
	 supplementary, 138
	 users behavior predictions, 47
	 valves, operability design, 75–79, 77–78
Software, performance design
	 application servers, 129, 130–131
	 databases, 127–129
	 ETLs, 132–134, 133
	 fundamentals, 126–127
	 index structures, 127–128
	 messaging middleware, 129, 132
	 partitions, 128–129
	 performance improvements, 129
	 storage structures, 127
Sound design rating, 285
Sponsorship of project, 220
Spring, 90, 197
SQL, see Structured query language
Staging, 151
Stakeholders, roles and responsibilities, 218
Standard generalized markup language

(SGML), 125
Standards
	 architecture, 101
	 coding, 57
	 common design impediments, 288–289
	 design reviews, 92, 92–93
	 lacking, 288–289
	 severity, 70, 70–71
Statistical roll-up, 79
Steering committee expectations, 40
Stress testing, 181, 181–182
Structured query language (SQL)
	 code and data review, 25
	 configuration, 197
	 predicting related failures, 265
Stubs, 149–150
Subject matter experts (SMEs), 207–208, 218

Subsystems availability, 79
Success of projects
	 controls, 222
	 core project team, 216
	 defining, 213–214
	 escalation procedures, 221–222
	 expectations, 222
	 extension of project framework, 211, 216,

217, 219
	 framework, 215–216, 216–217
	 impacts of not acting, 223
	 performance metrics, 221–222
	 process, 214, 214–223
	 raw resources requirements, 216–220
	 resources requirements, 216–220
	 roles and responsibilities, 216, 218–219
	 sponsorship of project, 220
Support, infrastructure costs, 28
Supported interfaces, 146
Sustainability, parallelism, 31
Sustainability testing
	 mixed loads, 165
	 model of failure, 190
	 scope determination, 24
	 test preparation and execution, 188–192,

189–190
	 test types and requirements, 35
Swapping requirements, 45
Synchronization
	 asynchronous execution comparison,

107–109, 110–111
	 cache, 109
	 execution, 107–109, 110–111
	 oversynchronization, 117–119
System age, 269
System boundaries, 140–142, 141
System capacity, 9
System exception handling, 75, see also

Exceptions
System health
	 applications, 14
	 checks, operability design, 78–79
System resources, capacity testing, 23

T
TCP, see Transmission control protocol
Teams, steering committee and executives, 40
Technical architect, 218
Technical equivalence, 145
Technical non-functional test lead, 44

AU5334.indb 314 11/19/07 7:51:28 AM

Index  n  315

Technical resources, 219
Technology
	 changes, common design impediments,

289–290
	 distributed processing, 123–125
	 distributed transactions, 124–125
	 platform, 246
	 programming languages, 120–123
Technology team, 21
Telnet, 149
Test automation execution engineers, 38
Test beds
	 planning, 150–151
	 seeding, 160, 167
Test-case data, 150–151
Test case scripters, 38
Test data manager, 39
Test duration, 168
Tested deployment, 196
Test environments
	 capacity, 153
	 change management, 154
	 fundamentals, 151
	 isolation, 151–153
	 test planning, 151–154
Testers, 219
Testing
	 capacity, 153
	 capacity testing, 23
	 certification testing, 24
	 common design impediments, 291
	 cycles, delivery timeline estimation, 31
	 design impediments, 286–287
	 design principles, 292
	 duration, 23–24
	 extent of testing, 19–20
	 level assessment, fixing applications,

271–272
	 optional, 10
	 poor performance case study, 4–5
	 production systems, 9–10, 12–13
	 project framework extension, 219
	 sustainability testing, 24
Test planning
	 apparatus, 149–150
	 capacity, 153
	 change management, 154
	 fundamentals, 139–140, 157
	 historical data, 154–155, 155–156
	 injectors, 149–150
	 isolation, 151–153

	 load testing software, 145–149
	 operability scope, 142–145
	 performance scope, 145
	 product features, 146–147
	 reflectors, 149–150
	 scope definition, 140–145
	 simulators, 149–150
	 stubs, 149–150
	 system boundaries, 140–142, 141
	 test beds, 150–151
	 test-case data, 150–151
	 test environments, 151–154
	 vendor products, 147–149
Test preparation and execution
	 activities, 159–160
	 baselining regression, 177, 179, 179–180
	 boundary condition testing, 182–183, 183
	 challenges, 192–194
	 environment validation, 160, 164
	 failover testing, 183–184, 185–186, 186
	 fault tolerance testing, 186–188, 187
	 fundamentals, 159, 171–172, 181, 194
	 limitations, 193–194
	 load tuning, 167–171, 168–172
	 mixed load establishment, 160, 164–166,

165–167
	 operability testing, 181–188
	 performance acceptance, 173, 174, 175–176
	 performance testing, 171–181
	 priming effects, 172–173
	 repeatable results, 193
	 reporting results, 176, 177–178
	 script development, 160–162, 162–163,

164–171
	 stress testing, 181, 181–182
	 sustainability testing, 188–192, 189–190
	 test bed seeding, 160, 167
Test team
	 code deployment engineers, 38
	 non-functional test lead, 37–38
	 simulator developers, 38
	 test automation execution engineers, 38
	 test case scripters, 38
	 test data manager, 39
	 troubleshooters, 39
Test tools
	 common design impediments, 292
	 estimation, 26, 28
	 sharing, investment justification, 20
	 test planning, 139
Test types and requirements

AU5334.indb 315 11/19/07 7:51:28 AM

316  n  Index

	 capacity testing, 34
	 certification testing, 35–36
	 environments, 36, 36–37
	 failover testing, 34
	 operability testing, 33
	 performance testing, 35
	 sustainability testing, 35
Think time, 168–169
Throughput
	 bad design rating, 286
	 excellent design rating, 284
	 good design defined, 280
	 good design rating, 285
	 hotspots, 102
	 sound design rating, 285
Tibco RendezVous, 129
Tight timeframes, 288
Time
	 changes, 261
	 common design impediments, 288
	 defining success, 213
	 design principles, 292
	 retry attempt intervals, 73
Timeouts, 187
Tolerance vs. mitigation, 270
Tools, test
	 common design impediments, 292
	 estimation, 26, 28
	 sharing, investment justification, 20
	 test planning, 139
Too much design, 290
TPS, see Transactions per second
	 failover testing, 186
	 performance acceptance, 173
	 script development, 161–162
Traceability, see also Logging
	 failure approaches, 263
	 logging, 82
	 operability design, 84–86
	 retry attempts, 73
	 robust system characteristics, 84–86
Trace logging, 63, see also Logging
Transactions
	 capacity testing, 23
	 code and data review, 25
	 integrity, 11
	 operability testing, 24
	 peak transaction rate, 61
	 performance requirements, 58, 59–61,

60–61
	 performance testing, 23

	 per second (TPS), 62
	 script development, 161–162, 162–163
	 sustainability testing, 24
	 system health checks, 79
Transform process, see ETL process
Transmission control protocol (TCP), 188
Transparency, 83–84, 87
Trap, infrastructure monitoring, 232
Traversal, infrastructure monitoring, 232
Trending, operations
	 fundamentals, 241–243
	 historical reporting, 241
	 performance trending, 241–243, 242
Triggering events, 34
Troubleshooters, role, 39
Troubleshooting, see also Crisis management

and troubleshooting
	 code deployment engineers, 38
	 delivery timeline estimation, 29
	 discouraging bias, 268
	 environment changes, 259–261
	 failure-based approach, 263–264
	 fundamentals, 259
	 inputs, 261–263
	 parallel path pursuit, 268
	 predicting related failures, 265–267, 267
	 project team, 39
	 retry attempts, 73
	 system age, 269
	 test automation execution engineers, 38
	 trace logging, 63
	 workarounds, 269–270
Trust, 203
Tuning
	 application servers, 129
	 preparation activities, 160
	 project team, 39–40
	 test preparation and execution, 167–171,

168–172

U
UAT, see User Acceptance Test
Undocumented changes, 260
Unforeseen events, 10
Uniform resource locator (URL), 187
Unit testing
	 delivery timeline estimation, 31
	 scope determination, 25
UNIX, 196
Updates, infrastructure costs, 28

AU5334.indb 316 11/19/07 7:51:29 AM

Index  n  317

URL, see Uniform resource locator
Usability, 97
Usage
	 banking example, 48–53, 49–54
	 business utilization model, 22
	 capacity testing, 34
	 changes, 242, 260–261
	 contract, 42
	 performance testing, 23
User acceptance test (UAT)
	 application logging, 82
	 fundamentals, 8–9
	 parallelism, delivery timeline estimation, 31,

33
User-account lockout, 74–75
Users
	 business utilization model, 22
	 inaccurate self-behavior predictions, 47
	 session memory consumption, 118–119
	 tuning, 168–169
	 virtual, 168–169
User volume
	 banking example, 53, 54
	 capacity testing, 23
	 changes, 53, 54
	 performance requirements, 61
	 performance testing, 23
	 sustainability testing, 24
Utilization, capacity testing, 34

V
Validation
	 fault tolerance testing, 187
	 test preparation and execution, 160, 164
Variable loads, repeatability, 193
VBA, see Visual basic script
Vendors
	 load testing software, 147–149

	 monitoring messages, 233
	 recommendations, 246
	 software monitoring, 233–238, 234–237
Verification, test case scripters, 38
Veritas, 184
VIP, see Virtual Internet provider
Virtual hardware, 135, see also Hardware
Virtual Internet provider (VIP), 184
Virtual-machine-based languages, 120–122
Virtual users, 168–169
Visibility, 83–84
Visual basic script (VBA), 176
Vlissides, John M., 69
Volumes
	 banking example, 53, 54
	 capacity testing, 23
	 changes, 53, 54
	 performance requirements, 61
	 performance testing, 23
	 sustainability testing, 24

W
Weblogic Application Server, 91, 234–236
Web sites, 103, 295–296
WebSphere
	 container monitoring, 234
	 failover testing, 184, 186
	 messaging middleware, 132
Web 2.0 technologies, 124
Windows software, 196
Workarounds, 269–270
Write, infrastructure monitoring, 232
Wrong decisions, 291, see also Decisions

X
XML, see Extensible markup language
XML-RPC, 148

AU5334.indb 317 11/19/07 7:51:29 AM

