LISTA DE EXERCÍCIOS 5 EDO II - MAP 0316

PROF: PEDRO T. P. LOPES WWW.IME.USP.BR/~PPLOPES/EDO2

Os exercícios a seguir foram selecionados dos livros dos autores Claus Doering-Artur Lopes e Jorge Sotomayor. (S.X.Y) indica exercício Y do capítulo X do livro do Sotomayor. (D.L.X.Y) indica exercício Y do capítulo X do livro dos autores Claus Doering e Artur Lopes.

Para a resolução de alguns dos exercícios podem ser usados tanto as funções de Liapunov como os critérios de estabilidade usando os autovalores de Df(x).

Exercício 1 (S.5.10)

Considere uma partícula movendo-se sob a influência de uma função potencial $P: E \to \mathbb{R}$ de classe C^2 , em que $E \subset \mathbb{R}^3$ é um aberto. Temos então a seguinte EDO:

$$\begin{cases} x' = v \\ v' = -\nabla P(x) \end{cases}.$$

Usando funções de Liapunov, prove o Teorema de Lagrange, segundo o qual uma singularidade $(x_0,0)$ da EDO acima é estável se x_0 for um mínimo local estrito de P.

Exercício 2 (D.L.5.26)

Encontre uma função de Liapunov estrita para o ponto de equilíbrio (0,0) do sistema

$$\begin{cases} x_1' = -2x_1 - x_2^2 \\ x_2' = -x_2 - x_1^2 \end{cases}.$$

Exercício 3 (D.L.5.27)

Considere o sistema não-linear

$$\begin{cases} x_1' = x_2 - x_1 g(x_1, x_2) \\ x_2' = -x_1 - x_2 g(x_1, x_2) \end{cases}$$

em \mathbb{R}^2 , onde $(x_1, x_2) \mapsto g(x_1, x_2)$ é analítica na origem e satisfaz g(0,0) = 0 e $g(x_1, x_2) \geq 0$ numa vizinhança de (0,0). Mostre que a origem é um ponto de equilíbrio estável mostrando que $V(x_1, x_2) = x_1^2 + x_2^2$ é uma função de Liapunov.

Exercício 4 (D.L.5.28)

Dado o sistema não-linear

$$\begin{cases} x_1' = 2x_1z + x_2 \\ x_2' = -x_1 + 2z^2 \\ z' = -x_1^2 - zx_2 \end{cases}$$

em \mathbb{R}^3 , mostre que todas as suas soluções estão definidas em toda reta real e verifique se a solução pela origem é de equilíbrio estável ou assintoticamente estável.

Exercício 5 (S.5.1)

Prove que a origem é um ponto singular assintoticamente estável do sistema

$$\begin{cases} x' = -x - \frac{x^3}{3} - 2sen(y) \\ y' = -y - \frac{y^3}{3} \end{cases}.$$

Faça de duas maneiras: Achando os autovalores de Df(0) e achando uma função de Liapunov apropriada.

Exercício 6 (D.L.5.30)

Sejam A e B matrizes tais que A é simétrica com todos os autovalores negativos e B é antissimétrica, isto é, $B^* = -B$. Mostre que a origem é um ponto de equilíbrio estável para o sistema linear x' = (A+B)x em \mathbb{R}^n usando para isto a função de Liapunov $V(x) = \langle x, x \rangle = x_1^2 + \ldots + x_n^2$.

(Dica: Use o seguinte fato: Se A é simétrica, existe $P \in M_n(\mathbb{R})$ tal que $P^{-1}AP = D$, D diagonal e $P^* = P^{-1}$)

Exercício 7 (D.L.5.31)

Consideremos a equação x'=f(x), em que $f:E\to\mathbb{R}^n$ é uma função de classe C^1 no aberto $E\subset\mathbb{R}^n$ e $0\in E$. Suponha que a equação em coordenadas polares é conjugada à equação $(r',\theta')=(g(r),1)$, em que $g:]0,\infty[\to\mathbb{R}$ é uma função de classe C^1 tal que $g(r_n)=0$ para todo r_n , em que $\{r_n\}_{n\in\mathbb{N}}$ é uma sequência em $]0,\infty[$ tal que $\lim_{n\to\infty} r_n = 0$. Mostre que a origem é um ponto de equilíbrio estável para a equação diferencial x' = f(x).

Exercício 8 (D.L.5.32)

Mostre que se para um campo de vetores $f: \mathbb{R}^n \to \mathbb{R}^n$ de classe C^1 existe uma função de Liapunov estrita $V:\mathbb{R}^n\to\mathbb{R}$ definida em todo o espaço de fase, então f não possui órbitas periódicas.

Exercício 9 (D.L.5.33)

Usando uma função de Liapunov, mostre que a origem é um ponto de equilíbrio assintoticamente estável para o sistema não-linear

$$\begin{cases} x_1' = -x_1 - \frac{1}{3}x_1^3 - x_1^2 sen(x_2) \\ x_2' = -x_2 - \frac{1}{3}x_2^3 \end{cases}.$$

Exercício 10 (D.L.5.29)

Mostre que o sistema não-linear

$$\begin{cases} x_1' = -2x_1 - x_2 + x_1 e^{x_1^2 + x_2^2} \\ x_2' = x_1 - 2x_2 + x_2 e^{x_1^2 + x_2^2} \end{cases}$$

em \mathbb{R}^2 , tem um único ponto de equilíbrio e uma única órbita periódica. Estude a estabilidade do ponto de equilíbrio.

Exercício 11 (D.L.5.35)

Ache as singularidades e classifique-as em estáveis, assintoticamente estáveis e instáveis. Desenhe o retrato de fase do campo $x' = -\nabla V(x)$, onde $V: \mathbb{R}^n \to \mathbb{R}$ é dada por

- (a) $V(x_1, x_2) = x_1^2 + 2x_2^2$,
- (b) $V(x_1, x_2) = x_2 sen(x_1)$

- (c) $V(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2$, (d) $V(x_1, x_2, x_3) = x_1^2 x_2^2 2x_1 + 4x_2 + 5$, (e) $V(x_1, x_2, x_3) = x_1^2 (x_1 1) + x_2^2 (x_2 2) + x_3^2$

Exercício 12 (D.L.5.38)

Seja $f: \mathbb{R} \to \mathbb{R}$ um campo de classe C^1 tal que f(0) = 0 com f'(0) = 0. Mostre que

- (a) 0 é um ponto de equilíbrio assintoticamente estável de f se f é estritamente decrescente $(t>s \implies f(t) < t$ f(s)) em \mathbb{R} .
 - (b) 0 é um ponto de equilíbrio instável de f se f é estritamente crescente $(t > s \implies f(t) > f(s))$ em \mathbb{R} .
- (c) 0 é um ponto de equilíbrio instável de f se f é estritamente decrescente em $]-\infty,0[$ e estritamente crescente em $]0,\infty[$. Analise o retrato de fase em \mathbb{R} nos três casos acima.

Exercício 13 (S.5.2)

Seja $f:\mathbb{R}^n\to\mathbb{R}^n$ de classe C^1 tal que f(0)=0 e $\langle x,f(x)\rangle<0,\ \forall x\in\mathbb{R}^n$. Prove que $V:\mathbb{R}^n\to\mathbb{R}$ dado por $V(x) = ||x||^2$ é uma função de Liapunov estrita para o sistema x' = f(x) em x = 0.

Exercício 14 (S.5.14)

Seja $f: \mathbb{R} \to \mathbb{R}$ uma função de classe C^1 tal que f(0) = 0. Considere o sistema

$$x'' + ax' + f(x) = 0.$$

Se a>0 e f(x)x>0, $\forall x\neq 0$, então $0\in\mathbb{R}^2$ é um ponto de equilíbrio estável para o sistema de primeira ordem, construído a partir da equação acima.

Sugestão: Tome $V(x,y) = y^2 + 2 \int_0^x f(s) ds$.

Exercício 15 (S.5.9)

Sejam $V: E \to \mathbb{R}$ uma função de classe C^2 e $f: E \to \mathbb{R}^n$ dado por $f(x) = -\nabla V(x)$. Seja $\tilde{x} \in L_{\omega}(x)$ para algum $x \in E$. Mostre que f(x) = 0. (Analogamente, se $\tilde{x} \in L_{\alpha}(x)$ para algum $x \in E$, então f(x) = 0). Sugestão: Mostre que V é constante em $L_{\omega}(x)$.

Exercício 16 (S.5.5)

Seja x_0 um ponto singular de x' = f(x), em que $f: E \to \mathbb{R}^n$ é de classe C^1 , $E \subset \mathbb{R}^n$ é um aberto. Seja V uma função C^1 definida numa vizinhança de x_0 tal que $\langle \nabla V(x), f(x) \rangle > 0$ para todo $x \neq x_0$ e $V(x_0) = 0$. Se em toda vizinhança de x_0 existe x tal que V(x) > 0, então x_0 é instável. Sugestão: Veja a demonstração do Teorema 5.17, capítulo 5, do livro do Sotomayor.

Exercício 17 (S.5.6)

Seja x_0 um ponto singular de x' = f(x), em que $f: E \to \mathbb{R}^n$ é de classe C^1 , $E \subset \mathbb{R}^n$ aberto. Seja $V: W \to \mathbb{R}$ uma função de Liapunov estrita de x_0 . Então, para cada c > 0 tal que $V^{-1}([0,c])$ é compacto, tem-se $V^{-1}([0,c]) \subset B_f(x_0)$ (bacia de atração de x_0)

Exercício 18 (S.5.12)

Seja $f: \mathbb{R}^n \to \mathbb{R}^n$ de classe C^1 tal que f(0) = 0. O ponto 0 é chamado de globalmente estável se for estável e $\lim_{t\to\infty} \varphi(t) = 0$ para toda solução φ de x' = f(x).

Seja $V: \mathbb{R}^n \to \mathbb{R}$ uma função de Liapunov estrita para a equação acima em 0. Suponha que para cada c>0 dado exista R>0 tal que ||x||>R implica $V(x)>c, \forall x\in\mathbb{R}^n$. Então, 0 é um ponto globalmente estável.

Exercício 19 (S.5.13)

Mostre que toda forma quadrática $V: \mathbb{R}^n \to \mathbb{R}$ definida positiva satisfaz à condição: dado c > 0, existe R > 0 tal que |x| > R implica V(x) > c. Prove novamente que a origem é um ponto é globalmente estável para x' = Ax, onde A é um operador linear em \mathbb{R}^n cujos autovalores têm parte real < 0.

Observação: Uma forma quadrática em \mathbb{R}^n é uma função $q: \mathbb{R}^n \to \mathbb{R}$ da forma q(x) = B(x,x), em que $B: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ é uma forma bilinear $(B(\alpha x + y, z) = \alpha B(x, z) + B(y, z))$ e $B(z, \alpha x + y) = \alpha B(z, x) + B(z, y)$, para todo $x, y, z \in \mathbb{R}^n$ e $\alpha \in \mathbb{R}$) e simétrica (B(y, z) = B(z, y)), para todo $y, z \in \mathbb{R}^n$)