PROVA SUB - EDP - MAP 5712 (MAP 0413)

A prova é individual. Utilize somente resultados dados em sala de aula. Os resultados dados em sala de aula podem (e devem) ser usados sem demonstração, a não ser, claro, quando estamos pedindo para que sejam demonstrados.

Boa Prova!

Exercício 1. (1,25 ponto) a) Seja $u: \mathbb{R}^2 \to \mathbb{R}$ uma função harmônica tal que u(x,y) = x, se $(x,y) \in \partial B(0,1)$. Qual é o valor de u(0,0)?

(1,25 ponto) b) Seja $u: \overline{B(0,1)} \subset \mathbb{R}^2 \to \mathbb{R}$ uma função contínua, positiva e harmônica em B(0,1). Mostre que se $(x,y) \in B(0,1)$, então

$$\frac{1 - \sqrt{x^2 + y^2}}{1 + \sqrt{x^2 + y^2}} u(0, 0) \le u(x, y) \le \frac{1 + \sqrt{x^2 + y^2}}{1 - \sqrt{x^2 + y^2}} u(0, 0).$$

Dica: Observe que se $w \in \partial B(0,1)$ e $v \in B(0,1)$, então $1 - |v| = |w| - |v| \le |w - v| \le |w| + |v| = 1 + |v|$.

Exercício 2. Seja $g: \mathbb{R} \to \mathbb{R}$ uma função contínua e limitada e $u: \mathbb{R} \times [0, \infty[\to \mathbb{R}$ a única solução limitada do problema abaixo:

$$\begin{array}{ll} \frac{\partial u}{\partial t}(x,t) &= \frac{\partial^2 u}{\partial x^2}(x,t), & (x,t) \in \mathbb{R} \times]0, \infty[\\ u(x,0) &= g(x), & x \in \mathbb{R} \end{array}.$$

(1,5 ponto) a) Mostre que se g tem suporte compacto, isto é, se existe R>0 tal que g(x)=0 se |x|>R, então u(x,t) converge uniformemente para zero quando $t\to\infty$.

(1,0 ponto) b) Se g é uma função contínua e limitada, mas sem ter suporte compacto, então a solução necessariamente vai para zero, quando $t \to \infty$? Prove ou dê um contraexemplo simples.

Exercício 3. Sejam $\rho \in C([0,1]), k \in C^1([0,1])$ funções estritamente positivas. Considere a equação

$$(0.1) \qquad \begin{aligned} \rho(x) \frac{\partial^2 u}{\partial t^2}(x,t) &= \frac{\partial}{\partial x} \left(k(x) \frac{\partial u}{\partial x}(x,t) \right), & (x,t) \in [0,1] \times \mathbb{R} \\ u(0,t) &= u(1,t) = 0, & t \in \mathbb{R} \\ u(x,0) &= g(x), & x \in [0,1] \\ \frac{\partial u}{\partial t}(x,0) &= h(x), & x \in [0,1] \end{aligned}$$

em que g é de classe C^2 e h de classe C^1 .

Considere a função $E: \mathbb{R} \to \mathbb{R}$ definida como

$$E(t) = \frac{1}{2} \int_0^1 \left[\rho(x) \left(\frac{\partial u}{\partial t}(x, t) \right)^2 + k(x) \left(\frac{\partial u}{\partial x}(x, t) \right)^2 \right] dx.$$

(1,5 ponto) a) Mostre que E(t) é uma função constante.

(1,0 ponto) b) Mostre que se o Problema (0.1) tiver uma solução $u \in C^2([0,1] \times \mathbb{R})$, então esta solução é única.

Exercício 4. (1,5 ponto) a) Resolva $x \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = u^2$, u(x,0) = sen(x) para |x| pequeno.

(1,0 ponto) b) Seja $u: \mathbb{R}^2 \to \mathbb{R}$ uma solução da equação abaixo:

$$y \frac{\partial u}{\partial x}(x,y) + 2 \frac{\partial u}{\partial y}(x,y) = 0.$$

Determine as curvas em \mathbb{R}^2 nas quais u é constante. Essas curvas são elipses, parábolas ou hipérboles?

FORMULÁRIO. (NEM TUDO É NECESSÁRIO)

Algumas soluções de EDO: Se $z'(s) = z(s)^2 \implies z(s) = \frac{z(0)}{1 - sz(0)}$.

$$B(x,r) = \{ y \in \mathbb{R}^n; \ |y-x| < r \}, \ \overline{B(x,r)} = \{ y \in \mathbb{R}^n; \ |y-x| \le r \}, \ \partial B(x,r) = \{ y \in \mathbb{R}^n; \ |y-x| = r \} \ \mathrm{e} \ \mathbb{S}^{n-1} := \partial B(0,1).$$

$$|B(x,r)| := \int_{B(x,r)} dy$$
é o volume da bola $B(x,r)$

$$|\partial B(x,r)| := \int_{\partial B(x,r)} dS(y)$$
 é a área da bola $\partial B(x,r)$

$$\left|\mathbb{S}^{n-1}\right|:=\int_{\mathbb{S}^{n-1}}dS(y)$$
é a área da bola unitária

Por exemplo, se n=2, então $|B(x,r)|=\pi r^2$ e $|\partial B(x,r)|=2\pi r$. As médias são definidas como

$$\oint_{B(x,r)} f(y) dy = \frac{1}{|B(x,r)|} \int_{B(x,r)} f(y) dy \in \oint_{\partial B(x,r)} f(y) dS(y) = \frac{1}{|\partial B(x,r)|} \int_{\partial B(x,r)} f(y) dS(y).$$

Teorema 5. Seja $U \subset \mathbb{R}^n$ um aberto e $u: U \to \mathbb{R}$ uma função. As seguintes propriedades abaixo são equivalentes:

- 1) A função u é harmônica, ou seja, $u \in C^2(U)$ e $\Delta u(x) = 0$ para todo $x \in U$.
- 2) A função u é contínua e $u(x) = \int_{B(x,r)} u dy$, para todo $B(x,r) \subset U$.
- 3) A função u é contínua e $u(x)=\int_{\partial B(x,r)}udS,$ para todo $\overline{B(x,r)}\subset U.$ 4) A função $u\in C^\infty(U)$ e $\Delta u(x)=0$ para todo $x\in U.$

Teorema 6. (Núcleo de Poisson) Seja $f \in C(\partial B(0,1))$. Logo existe uma única função $u \in C^2(B(0,1)) \cap C(\overline{B(0,1)})$ tal $que\ \Delta u\left(x
ight)=0\ para\ x\in B\left(0,1
ight)\ e\ u\left(x
ight)=f\left(x
ight)\ para\ todo\ x\in\partial B\left(0,1
ight).\ Para\ x\in B\left(0,1
ight),\ temos$

$$u(x) = \int_{\partial B(0,1)} \frac{1 - |x|^2}{|\partial B(0,1)|} \frac{1}{|x - y|^n} f(y) dS(y).$$

A função $K: B(0,1) \times \partial B(0,1) \to \mathbb{R}$ dada por $K(x,y) = \frac{1-|x|^2}{|\partial B(0,1)|} \frac{1}{|x-y|^n}$ é chamada de núcleo de Poisson.

Teorema 7. Seja $g: \mathbb{R}^n \to \mathbb{R}$ uma função contínua e limitada. Logo

$$u(x,t) = \frac{1}{(4\pi t)^{\frac{n}{2}}} \int_{\mathbb{R}^n} e^{-\frac{|x-y|^2}{4t}} g(y) dy.$$

é a única solução limitada do problema

$$\begin{array}{ll} \frac{\partial u}{\partial t}(x,t) &= \Delta u(x,t), & (x,t) \in \mathbb{R}^n \times]0, \infty[\\ u(x,0) &= g(x), & x \in \mathbb{R}^n \end{array}$$

Proposição 8. Seja $U \subset \mathbb{R}^n$ um aberto limitado de classe C^1 e f e g duas funções em $C^1(\overline{U})$. Logo

(0.2)
$$\int_{U} \frac{\partial f}{\partial x_{i}}(x)g(x)dx = -\int_{U} f(x)\frac{\partial g}{\partial x_{i}}(x)dx + \int_{\partial U} f(x)g(x)\nu_{i}(x)dS(x),$$

em que $i \in \{1,...,n\}$ e $\nu(x) = (\nu_1(x),...,\nu_n(x))$ é a normal a ∂U no ponto x e que aponta para fora de U.

Definição 9. (Teorema da Divergência) Seja $U \subset \mathbb{R}^n$ um aberto limitado de classe C^1 e $F : \overline{U} \to \mathbb{R}^n$ uma função de classe C^1 . Logo

$$\int_{\partial U} F(x) \cdot \nu(x) dS(x) = \int_{U} \nabla \cdot F(x) dx,$$

em que $\nu: \partial U \to \mathbb{R}^n$ é o vetor normal unitário que aponta para fora de U.

Definição 10. Uma curva integral do campo $V:U\subset\mathbb{R}^n\to\mathbb{R}^n$ dado por $V=(a_1(x),...,a_n(x))$ é um caminho $x:[a,b]\to$ \mathbb{R}^n que satisfaz a equação diferencial x'(t) = V(x(t)). Assim, se $x(t) = (x_1(t), ..., x_n(t))$, então

$$x'_1(t) = a_1(x_1(t), ..., x_n(t))$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots$$

$$x'_n(t) = a_n(x_1(t), ..., x_n(t))$$

Proposição 11. Seja $x:[a,b] \to \mathbb{R}^n$ uma curva integral com imagem no aberto $W \subset U$ e $u:W \to \mathbb{R}$ uma solução de $\sum_{j=1}^{n} a_j(x) \frac{\partial u}{\partial x_j}(x) = f(x, u(x)), \ x \in W. \ Logo \ v = u \circ x : [a, b] \to \mathbb{R} \ \acute{e} \ uma \ solução \ da \ equação \ v'(t) = f(x(t), v(t)). \ Em$ particular, se f = 0, então $u \circ x$ é constante.