
When Should You Adjust

Standard Errors for Clustering?

Alberto Abadie, Susan Athey,

Guido Imbens, & Jeffrey Wooldridge

Session in Honor of Gary Chamberlain

MAWM Econometric Society, January 3rd, 2021





Motivating Example: You have a random sample of indi-
viduals from the US of size N = 10,000. You flip a fair coin
to assign each of them to a job training program or not.
Regressing the outcome on the treatment, and using robust
standard errors, you find

τ̂ = 0.058 (s.e. 0.011)

Your RA realizes you know which of the 50 states these in-
dividuals live in, and suggests clustering by state.

Question: What do you tell the RA, and why?

1. Yes, definitely cluster.

2. No, definitely do not cluster.

3. Does not matter.
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Second Question: Would your answer change if the RA

suggested clustering by gender?

How would you explain the answers (and possibly the dif-

ference between the answer for clustering on state and the

clustering on gender)?

What is the principle that governs the choice to cluster or

not?
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Some Views from the Econometric Literature

Key is random component that is common to units

within group:

• “The clustering problem is caused by the presence of a

common unobserved random shock at the group level that

will lead to correlation between all observations within each

group” (Hansen, 2007, p. 671)

When in doubt, cluster:

• “The consensus is to be conservative and avoid bias and

to use bigger and more aggregate clusters when possible, up

to and including the point at which there is concern about

having too few clusters.” (Cameron and Miller, 2015, p.

333)
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The RA goes ahead anyway, and, using the Liang-Zeger

(STATA) clustered standard errors, comes back with:

τ̂ = 0.058 (s.e. 0.067)

(where the standard error was 0.011 before).

• Are you confident that the program has a non-zero effect?

• Which standard errors would you report?
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• Adjusting standard errors for clustering is common in em-
pirical work.

– Formal motivation not always clear.

– Choice of level of clustering is not always clear.

• We present a framework for thinking about clustering that
clarifies when/how to adjust for clustering.

– Mostly exact calculations in simple cases.

– Clarifies role of large number of clusters asymptotics.

NOT about small sample issues, either small number of clus-
ters or small number of units (Donald and Lang, 2007),
NOT about serial correlation issues (Bertrand et al, 2003).
(both important, but not key to issues discussed here)
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Context

Part of set of papers focusing on design/randomization-based
inference for causal effects.

• Uncertainty comes at least partly, and sometimes entirely,
from assignment process, rather than from sampling process.

• The econometrics literature traditionally (mistakenly) fo-
cuses exclusively on sampling based uncertainty, which leads
to confusion and incorrect standard errors

• See Abadie-Athey-Imbens-Wooldridge (2020) paper on stan-
dard errors for regression estimators when you observe the
entire population.

• Other cases: staggered adoption (Athey-Imbens, 2015),
difference-in-differences (Bottmer, Imbens, Spiess, Warnick,
2021)
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Sampling-based Uncertainty (X is observed, ? is missing)

Actual Alternative Alternative . . .
Unit Sample Sample I Sample II . . .

Yi Zi Ri Yi Zi Ri Yi Zi Ri . . .

1 X X 1 ? ? 0 ? ? 0 . . .
2 ? ? 0 ? ? 0 ? ? 0 . . .
3 ? ? 0 X X 1 X X 1 . . .
4 ? ? 0 X X 1 ? ? 0 . . .
... ... ... ... ... ... ... ... ... ... . . .
M X X 1 ? ? 0 ? ? 0 . . .
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Design-based Uncertainty (X is observed, ? is missing)

Actual Alternative Alternative . . .
Unit Sample Sample I Sample II . . .

Yi(1) Yi(0) Xi Ri Yi(1) Yi(0) Xi Ri Yi(1) Yi(0) Xi Ri . . .

1 X ? 1 1 X ? 1 1 ? X 0 1 . . .
2 ? X 0 1 ? X 0 1 ? X 0 1 . . .
3 ? X 0 1 X ? 1 1 X ? 1 1 . . .
4 ? X 0 1 ? X 0 1 X ? 1 1 . . .
... ... ... ... ... ... ... ... ... ... ... ... ... . . .
M X ? 1 1 ? X 0 1 ? X 0 1 . . .
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Clustering Setup

Data on (Yi, Di, Gi), i = 1, . . . , N

Yi is outcome

Di is regressor, mainly focus on special case where Di ∈
{−1,1} (to allow for exact results).

Gi ∈ {1, . . . , G} is group/cluster indicator.

Estimate regression function

Yi = α+τ ·Di+εi = X ′iβ+ε, X ′i = (1, Di), β′ = (α, τ)
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Least squares estimator (not generalized least squares)

(α̂, τ̂) = arg min
N∑
i=1

(Yi − α− τ ·Di)2 β̂ = (α̂, τ̂)′

Residuals

ε̂i = Yi − α̂− τ̂ ·Di
Focus of the paper is on properties of τ̂ :

• What is variance of τ̂?

• How do we estimate the variance of τ̂?
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Standard Textbook Approach:

View D and G as fixed, assume

ε ∼ N(0,Ω) Ω =


Ω1 0 . . . 0
0 Ω2 . . . 0
... . . .
0 . . . ΩG

 .
Variance estimators differ by assumptions on Ωg:

• diagonal (robust, Eicker-Huber-White),

• constant off-diagonal within clusters (Moulton/Kloek)

• unrestricted (cluster, Liang-Zeger/Stata)
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Common Variance estimators (normalized by sample size)

Eicker-Huber-White, standard robust var (zero error covar):

V̂robust = N

 N∑
i=1

XiX
′
i

−1 N∑
i=1

XiX
′
iε̂

2
i

 N∑
i=1

XiX
′
i

−1

Liang-Zeger, STATA, standard clustering adjustment, (unre-

stricted within-cluster covariance matrix):

V̂cluster = N

 N∑
i=1

XiX
′
i

−1 G∑
g=1

 ∑
i:Gi=g

Xiε̂i

 ∑
i:Gi=g

Xiε̂i

′ N∑
i=1

XiX
′
i

−1

Moulton/Kloek (constant covariance within-clusters)

V̂moulton = V̂ols ·
(

1 + ρε · ρD ·
N

G

)
where ρε, ρD are the within-cluster correlations of ε̂ and D.
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Related Literature

• Clustering: Moulton (1986, 1987, 1990), Kloek (1981)

Hansen (2007), Cameron & Miller (2015), Angrist & Pischke

(2008), Liang and Zeger (1986), Wooldridge (2010), Donald

and Lang (2007), Bertrand, Duflo, and Mullainathan (2004)

• Sample Design: Kish (1965)

• Causal Literature: Neyman (1935, 1990), Rubin (1976,

2006), Rosenbaum (2000), Imbens and Rubin (2015)

• Exper. Design: Murray (1998), Donner and Klar (2000)

• Finite Population Issues: Abadie, Athey, Imbens, and Wooldridge

(2014)
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Define the Population and Estimand

Population of size M .

Population is partitioned into G groups/clusters.

The population size in cluster g is Mg, sometimes Mg = M/G

for all clusters (for convenience, not essential).

Gi ∈ {1, . . . , G} is group/cluster indicator.

M may be large, G may be large, Mg may be large, but all

finite.

Ri ∈ {0,1} is sampling indicator,
∑M
i=1Ri = N is sample size.
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1. Descriptive Question:

Outcome Yi

Estimand is population average

θ∗ =
1

M

M∑
i=1

Yi

Estimator is sample average

θ̂ =
1

N

M∑
i=1

Ri · Yi
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definitions:

σ2
g =

1

Mg − 1

∑
i:Gi=g

(
Yi − YM,g

)2
Y g =

G

M

∑
i:Gi=g

Yi

σ2
cluster =

1

G− 1

G∑
g=1

(
Y g − Y

)2

σ2
cond =

1

G

G∑
g=1

σ2
g

ρ =
G

M(M −G)

∑
i 6=j,Gi=Gj

(Yi − Y )(Yj − Y )

σ2
≈

σ2
cluster

σ2
cluster + σ2

cond

σ2 =
1

M − 1

M∑
i=1

(Yi − Y )2 ≈ σ2
cluster + σ2

cond
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Estimator is

θ̂ =
1

N

M∑
i=1

Ri · Yi

• (random sampling) Suppose sampling is completely ran-

dom,

pr(R = r) =

(
M
N

)−1

, ∀r s.t.
M∑
i=1

ri = N.

Exact variance, normalized by sample size:

N · V(θ̂|RS) = σ2 ·
(

1−
N

M

)
≈ σ2

(if N << M)
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What do the variance estimators give us here?

E
[
V̂robust

∣∣∣RS
]
≈ σ2 correct

E
[
V̂cluster

∣∣∣RS
]
≈ σ2 ·

{
1 + ρ ·

(
N

G
− 1

)}
wrong

• Adjusting the standard errors for clustering can make

a difference here

• Adjusting standard errors for clustering is wrong
here
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Why is the cluster variance wrong here?

Implicitly the cluster variance takes as the estimand

the average outcome in a super-population with a large

number of clusters. (In that case we dont have a random

sample from the population of interest.)

Two takeaways:

1. Be explicit about the estimand / population of interest.

Do we have a random sample or a clustered random sam-

ple where we only see some of the clusters?

2. You can not tell from the data which variance is correct,

because it depends on the question.
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Consider a model-based approach:

Yi = X ′iβ + εi + ηGi εi ∼ N(0, σ2
ε ), ηg ∼ N(0, σ2

η)

The standard ols variance expression

V(β̂) = (X ′X)−1(X ′ΩX)(X ′X)−1

is based on resampling units, or resampling both ε and η.

• Cluster variance resamples ηg

• Design-based approach keeps the ηg fixed.
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• (clustered sampling) Suppose we randomly select H clusters

out of G, and then select N/H units randomly from each of

the sampled clusters:

pr(R = r) =

(
G
H

)−1

·
(
M/G
N/H

)−H
,

for all r s.t. ∀g
∑

i:Gi=g

ri = N/G ∨
∑

i:Gi=g

ri = 0.

Now the exact variance is

N · V(θ̂|CS) = σ2
cluster ·

N

H
·
(

1−
H

G

)
+ σ2

cond ·
(

1−
N

M

)

Adjusting standard errors for clustering here can make

a difference and is correct here. Failure to do so leads

to invalid confidence intervals.
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2. Causal Question:

potential outcomes Yi(−1), Yi(1), treatment Di ∈ {−1,1}, re-
alized outcome Yi = Yi(Di),

Estimand is 0.5 times average treatment effect (to make
estimand equal to limit of regression coefficient, simplifies
calculations later, but not of essence)

θ∗ =
1

M

M∑
i=1

(Yi(1)− Yi(−1))/2

Estimator is

θ̂ =

∑M
i=1Ri · Yi · (Di −D)∑M
i=1Ri · (Di −D)2

where D =

∑M
i=1Ri ·Di∑M
i=1Ri

εi(d) = Yi(1)−
1

N
Yi(d) εg(d) =

1

Mg

∑
i:Gi=g

ε(d)
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Two special cases where we know what to do:

1. Random Sampling, Random Assignment

• Should not cluster. Clustering variance can be unnecessarily

conservative (see example at second slide)

2. Random Sampling, Clustered Assignment (fixed within

clusters)

• Should cluster.
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Question: what to do if assignment is correlated within clus-

ters (but not perfectly correlated)?

neither cluster nor standard robust variance is correct

• Standard robust variance is correct if no correlation (but

not if correlation positive)

• Clustering variance is correct if correlation is perfect (but

over-estimates variance if correlation is less than perfect)

no variance estimator available for the general case.
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In between case: Random Sampling of Units, Imper-

fectly Correlated Assignment

Assignment probabilities for clusters are sampled from distri-

bution with mean 1/2 and standard deviation σ.

• random assignment if σ = 0

• cluster assignment if σ = 1/2
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normalized var (τ̂) = robust var + cluster adj

robust var ≈
1

M

M∑
i=1

{
2
(
εi(1)2 + εi(−1)2

)}

correct cluster adj =
4σ2N

C

1

C

C∑
c=1

p2
c (εc(1) + εc(−1))2



Liang-Zeger clustering adjustment fixes σ2 at maximum value

of 1/4:

N

C

1

C

C∑
c=1

p2
c (εc(1) + εc(−1))2

 ≥ correct cluster adj
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Conclusion

• Econometric textbook discussions of need and methods for

clustering are misguided (more than empirical practice) by

focusing on sampling based justification for clustering.

• In empirical work clustering comes from assignment mech-

anism, not from sampling mechanism.

• Standard Liang-Zeger / STATA clustering adjustment is

unneccesarily conservative if assignment is not perfectly cor-

related.
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