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A sensor is
«a device that 
receives and 
responds to a 

signal 
stimulus»



• Natural sensors ⇒ electrochemical  signal
• Man made sensors      ⇒ electrical signal



A sensor is
«a device that receives a stimulus and responds with an electrical signal»

The stimulus 
is the quantity, the property or the condition that is received and converted into electrical signal

The measurand 

Sensor

Non 
electrical 

value

Electrical 
value

TRANSLATOR



Energy
or

Property

Sensor

Transducer
Energy

or
Property

Electrical 
value

Any sensor is an energy converter: 
the energy transfers between the object of measurement to the sensor



Transducer Sensor Electrical signal

Hybrid or complex sensor

Stimulus
S1 S2 e

A sensor does not function by itself; it is always part of a larger system that may incorporate many other detectors,
signal conditioners, processors, memory devices, data recorders, and actuators. 



1) no-contact  internal passive (with signal conditioner) sensor;
2) contact external passive sensor;
3) contact external passive (with signal conditioner) sensor;
4) contact external active sensor;
5) internal passive sensor.

Data acquisition and control device : the  position of sensors



A passive sensor does not need any additional energy source. It generates an electric
signal in response to an external stimulus. That is, the input stimulus energy is converted
by the sensor into the output signal: thermocouple, a photodiode, and a piezoelectric
sensor.

The active (parametric) sensors require external power for their operation, which is
called an excitation signal. That signal is modified (modulated) by the sensor to produce
the output signal. It can be stated that a sensor’s parameter modulates the excitation
signal and that modulation carries information of the measured value. For example, a
thermistor is a temperature-sensitive resistor. It does not generate any electric signal,
but by passing electric current (excitation signal) through it its resistance can be
measured by detecting variations in current and/or voltage across the thermistor. These
variations (presented in ohms) directly relate to temperature through a known transfer
function.

All sensors may be of two kinds: passive and active.



Sensor specification

Sensitivity

Accuracy

Speed of response

Overload characteristics

Hysteresis

Operating life

Cost, size, weight

Stimulus range (span)

Resolution

Selectivity

Environment conditions

Linearity

Dead band

Output Format

Conversion phenomena

Physical

Thermoelectric

Photoelectric

Photomagnetic

Magnetoelectric

Electromagnetic

Thermoelastic

Thermo-optic

Photoelastic

Chemical

Chemical transformation

Physical transformation

Electrochemical process

Spectroscopy

Biological

Biochemical transformation

Physical transformation

Effect on test organism

Spectroscopy



Stimulus

Acoustic

Wave amplitude

Spectrum polarization

Wave velocity

Biological Biomass

Chemical

Identities

Concentration

State

Electric

Charge, Current

Potential, Voltage

Electric field (amplitude, phase, 
polarization, spectrum)

Conductivity

Permittivity

Magnetic

Magnetic field (amplitude, 
phase, polarization, spectrum)

Magnetic flux

Permeability

Stimulus

Optical

Wave amplitude, phase, polarization, 
spectrum

Wave velocity

Refractive index

Emissivity, refractivity, absorption

Mechanical

Position

Acceleration

Force

Stress, pressure

Strain

Mass, density

Moment, torque

Speed of flow, rate of mass transport

Shape, roughness, orientation

Stiffness, compliance

Viscosity

Crystallinity, structural integrity

Stimulus

Radiation

Type

Energy

Intensity

Thermal

Temperature

Flux

Specific heat

Thermal conductivity



Unit of measurements
Le Systéme International d’Unités (SI)Quantity Name Symbol Defined by

Length mater m … the length of the path travelled by light in vacuum in
1/2999792458 of a second (1983)

Mass kilogram kg …after a platinum-iridium prototype (1889)

Time second s …the duration of 9192631770 periods of the rotation
corresponding to the transition between the 2 hyperfine levels
of the ground state of the cesium 133 atom (1967)

Electric current ampere A Force equal to 2x10-7 N/m of length exerted on two parallel
conductors in vacuum when they carry the current (1946)

Thermodynamic 
temperature

kelvin K The fraction 1/273.16 of the thermodynamic temperature of
the triple point of water (1967)

Amount of substance mole mol . . .the amount of substance which contains as many
elementary entities as there are atoms in 0.012 kg of carbon
12 (1971)

Luminous intensity candela cd . . .the amount of substance which contains as many
elementary entities as there are atoms in 0.012 kg of carbon
12 (1971)

Plane angle radian rad (supplemental unit)

Solid angle steradian sr (supplemental unit)



Since most of stimuli are not electrical, from its input to the output a 
sensor may perform several signal conversion steps before it produces 

and outputs an electrical signal. 

Black box
Stimulus Electrical signal

Sensor

Static transfer function

s f(s) E
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Thermo-anemometer: transfer function 
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V/n=f(s) ∝ √ s=f-1(n/V) ∝ n2

512
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n/V=f(s) ➜ transfer function [sensor + electronic circuit (e.g. ADC converter)]

Functional approximation
curve fitting of the experimentally observed values into the approximating function



𝐸 = 𝐴𝑒!"#

Exponential transfer function

Logarithmic transfer function

𝐸 = 𝐴 + 𝐵 ' ln(𝑠)

𝑠 =
1
𝑘
ln(𝐸)

s=𝑒
!"#
$

Linear transfer function

𝐸 = 𝐸$ + 𝐵 𝑠 − 𝑠$ 𝑠 = 𝑠$ +
𝐸 − 𝐸$
𝐵

𝐸 = 𝐴 + 𝐵𝑠! 𝑠 =
% 𝐸 − 𝐴

𝐵

Power transfer function



Linear transfer function
⇳

Linear regression – least squares 
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Non-linear transfer function
⇳

Power series 

𝐸 = 𝐴𝑒'( ≈ 1 + 𝑘𝑠 +
𝑘#

2!
𝑠# +

𝑘)

3!
𝑠) + 𝑂 𝑠*

𝐸 ≈ 𝑎#𝑠# + 𝑎+𝑠 + 𝑎,

𝐸 ≈ 𝑏)𝑠) + 𝑏#𝑠# + 𝑏+𝑠 + 𝑏,

s≈ 𝐴#𝐸# + 𝐴+𝐸 + 𝐴,

s≈ 𝐵)𝐸) + 𝐵#𝐸# + 𝐵+𝐸 + 𝐵,

Second order polynomial often may  yield a fit of sufficient accuracy when applied to relatively narrow range
of input stimuli and the transfer function is monotonic (no ups and downs)



Sensitivity

The coefficient B in

is called sensitivity. For a nonlinear transfer function, sensitivity is not a fixed number, as would be the
case in a linear transfer function. A nonlinear transfer function exhibits different sensitivities at different
points in intervals of stimuli. In the case of nonlinear transfer functions, sensitivity is defined as a first
derivative of the transfer function at the particular stimulus si:

𝑏% 𝑠% =
𝑑𝐸% 𝑠%
𝑑𝑠%

=
Δ𝐸%
Δ𝑠%

where, Δsi is a small increment of the input stimulus and ΔEi is the corresponding change in the sensor
output E.

𝐸 = 𝐴 + 𝐵𝑠

𝐸 = 𝐸$ + 𝐵 𝑠 − 𝑠$
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The larger the number of knots the smaller the error. They should be closer to each other where linearity is 
high, and farther apart where nonlinearity is small.

The knots do not need
to be equally spaced



Spline interpolation

Approximations by higher order polynomials (third order and higher) have some
disadvantages; the selected points at one side of the curve make strong influence on the
remote parts of the curve. This deficiency is resolved by the spline method of
approximation. In a similar way to a linear piecewise interpolation, the spline method is
using different third-order polynomial interpolations between the selected experimental
points called knots. It is a curve between two neighbouring knots and then all curves are
“glued” together to obtain a smooth combined curve fitting. Not necessarily it should be a
third-order curve, it can be as simple as the first-order (linear) interpolation. A linear spline
interpolation (first order) is the simplest form and is equivalent to a linear piecewise
approximation as described in the previous slide.
The spline interpolation can utilize polynomials of different degrees, yet the most popular
being cubic (third order) polynomials. Curvature of a line at each point is defined by the
second derivative. This derivative should be computed at each knot. If the second
derivatives are zero, the cubic spline is called “relaxed” and it is the choice for many
practical approximations. Spline interpolation is the efficient technique when it comes to an
interpolation that preserves smoothness of the transfer function. However, simplicity of the
implementation and the computational costs of a spline interpolation should be taken into
account particularly in a tightly controlled microprocessor environment.
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Multidimensional  transfer function 

A sensor transfer function
may depend on more than
one input variable. That is,
the sensor’s output may be
a function of several
stimuli. One example is a
humidity sensor whose
output depends on two
input variables, relative
humidity and temperature.
Another example is the
transfer function of a
thermal radiation (infrared)
sensor. This function has
two arguments:
• the absolute

temperature of an object
of measurements [Tb];

• The absolute
temperature of the
sensing element [Ts].

𝑉 = 𝐺(𝑇:; − 𝑇3;)

𝐺 = 10-+#



Calibration

If tolerances of a sensor and interface circuit (signal
conditioning) are broader than the required overall
accuracy, a calibration of the sensor or, preferably, a
combination of a sensor and its interface circuit is
required for minimizing errors. In other words, a
calibration is required whenever a higher accuracy is
required from a less accurate sensor. For example, if
one needs to measure temperature with accuracy, say
0.1oC, while the available sensor is rated as having
accuracy of 1oC, it does not mean that the sensor
cannot be used. Rather this particular sensor needs
calibration. That is, its unique transfer function should
be determined. This process is called calibration.



Calibration
A calibration requires application of several
precisely known stimuli and reading the
corresponding sensor responses. These are
called the calibration points whose input–
output values are the point coordinates. In
some lucky instances only one pair is required,
while typically 2–5 calibration points are
needed to characterize a transfer function with
a higher accuracy. After the unique transfer
function is established, any point in between
the calibration points can be determined.



Calibration
To produce the calibration points,
a standard reference source of
the input stimuli is required. The
reference source should be well
maintained and periodically
checked against other
established references,
preferably traceable to a national
standard, for example a reference
maintained by NIST in the U.S.A.
It should be clearly understood
that the calibration accuracy is
directly linked to accuracy of a
reference sensor that is part of
the calibration equipment. A value
of uncertainty of the reference
sensor should be included in the
statement of the overall
uncertainty.

Before calibration, either a mathematical model of the transfer
function has to be known or a good approximation of the
sensor’s response over the entire span shall be found. In a
great majority of cases, such functions are smooth and
monotonic. Very rarely they contain singularities and if they
do, such singularities are the useful phenomena that are
employed for sensing.



Calibration
Before calibration, either a mathematical model of
the transfer function has to be known or a good
approximation of the sensor’s response over the
entire span shall be found. In a great majority of
cases, such functions are smooth and monotonic.
Very rarely they contain singularities and if they do,
such singularities are the useful phenomena that are
employed for sensing (an ionizing particle detector is
an example).
Calibration of a sensor can be done in several
possible ways, some of which are the following:
• Modifying the transfer function or its approximation to fit the

experimental data. This involves computation of the
coefficients (parameters) for the selected transfer function
equation. After the parameters are found, the transfer function
becomes unique for that particular sensor. The function can be
used for computing the input stimuli from any sensor response
within the range. Every calibrated sensor will have its own set
of the unique parameters. The sensor is not modified.



Calibration
• Adjustment of the data acquisition system to trim

(modify) its output by making the outputs signal to fit into
a normalized or “ideal” transfer function. An example is a
scaling and shifting the acquired data (modifying the
system gain and offset). The sensor is not modified.

• Modification (trimming) the sensor’s properties to fit the
predetermined transfer function, thus the sensor itself is
modified.

• Creating the sensor-specific reference device with the
matching properties at particular calibrating points. This
unique reference is used by the data acquisition system
to compensate for the sensor’s inaccuracy. The sensor is
not modified.



Thermometer and Ohm-meter

Thermistor

grinder

Temperature fluid bath

Reference tem
p. sensor

Calibration example: option 3
The figure shows a thermistor that is immersed into a stirred liquid
bath with a precisely controlled and monitored temperature. The
liquid temperature is continuously measured by a precision
reference thermometer. To prevent shorting the thermistor
terminals, the liquid should be electrically nonconductive, such as
mineral oil or FluorinertTM. The resistance of the thermistor is
measured by a precision Ohmmeter. A miniature grinder
mechanically removes some material from the thermistor body to
modify its dimensions (a). Reduction in dimensions leads to
increase in the thermistor electrical resistance at the selected bath
temperature. When the thermistor’s resistance matches a
predetermined value of the “ideal” resistance, the grinding stops
and the calibration is finished. Now the thermistor response is
close to the “ideal” transfer function, at least at that temperature.
Naturally, a single-point calibration assumes that the transfer
function can be fully characterized by that point.



Thermometer and Ohm-meter

Thermistor

Temperature fluid bath

Reference tem
p. sensor

Calibration example: option 2
The measurement provides a number that
is used for selecting a conventional
(temperature stable) matching resistor as
a unique reference. That resistor is for use
in the interface scaling circuit. The precise
value of such a reference resistor is
achieved either by a laser trimming or
selection from a stock. That individually
matched pair thermistor–resistor is used in
the measurement circuit, for example, in
Wheatstone bridge. Since it is a matching
pair, the response of the bridge will scale
to correspond to an ideal transfer function
of a thermistor.

Laser trimmer



Thermometer

Temperature fluid bath

Reference tem
p. sensor

In the above examples, methods (3) and
(2) are useful for calibration at one
temperature point only, assuming that
other parameters of the transfer function
do not need calibration. If such is not the
case, several calibrating points at different
temperatures and resistances should be
generated. Here, the liquid bath is
sequentially set at two, three, or four
different temperatures and the thermistor
under calibration produces the
corresponding responses, that are used by
the calibrating device to generate the
appropriate parameters for the inverse
transfer function that will be stored in the
application device (e.g., a thermometer).

Calibration example: option 1

calibrator

Application device

probe



If a transfer function is linear, then
calibration should determine constants A
and B. If it is exponential, the constants A
and k should be determined, and so on.
To calculate parameters (constants) of a
linear transfer function one needs two
data points defined by two calibrating
input–output pairs. Consider a simple
linear transfer function, since two points
are required to define a straight line, a two-
point calibration shall be performed. For
example, if one uses a forward- biased
semiconductor p–n junction as a
temperature sensor, its transfer function is
linear (see figure) with temperature t being
the input stimulus and the ADC count n
from the interface circuit is the output:

Computation of parameters

temperature

n
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t1 and n1 are the coordinates of the first
reference calibrating point. To fully define
the line, the sensor shall be subjected to
two calibrating temperatures (t1 and t2) for
which two corresponding output counts (n1
and n2) will be registered. At the first
calibrating temperature t1, the output count
is n1.
After subjecting the sensor to the second
calibrating temperature t2, we receive the
digital counts for the second calibrating
point. The count is

𝑛= = 𝑛< +𝐵 𝑡= − 𝑡<

Computation of parameters

temperature
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𝐵 =
𝑛= − 𝑛<
𝑡= − 𝑡<



The sensitivity (slope) B is in
count/degree. In the figure the slope B is
negative since a p–n junction has a
negative temperature coefficient (NTC).
Note that the parameters found from
calibration are unique for the particular
sensor and must be stored in the
measurement system to which that
particular sensor is connected. For another
similar sensor, these parameters will be
different (perhaps except t1, if all sensors
are calibrated at exactly the same
temperature). After calibration is done, any
temperature within the operating range
can be computed from the ADC output
count n by use of the inverse transfer
function

Computation of parameters
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𝐵



In some fortunate cases, parameter B may
be already known with a sufficient
accuracy so that no computation of B is
needed. In a p–n junction, the slope B is
usually very consistent for a given lot and
type of the semiconductor wafer and thus
can be considered as a known parameter
for all diodes in the production lot.
However, all diodes may have different
offsets, so a single-point calibration is still
needed to find out n1 for each individual
sensor at the calibrating temperature t1.

temperature
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For nonlinear transfer functions,
calibration at one data point may be
sufficient only in some rare cases when
other parameters are already known,
but often two and more input–output
calibrating pairs would be required.
When a second or a third degree
polynomial transfer functions are
employed, respectively three and four
calibrating pairs are required.

𝐸 = 𝑏>𝑠> + 𝑏=𝑠=+ 𝑏<s + 𝑏?

𝐸 = 𝑏>𝑠<> + 𝑏=𝑠<=+ 𝑏<𝑠< + 𝑏?

𝐸 = 𝑏>𝑠=> + 𝑏=𝑠==+ 𝑏<𝑠= + 𝑏?

𝐸 = 𝑏>𝑠>> + 𝑏=𝑠>=+ 𝑏<𝑠> + 𝑏?

𝐸 = 𝑏>𝑠;> + 𝑏=𝑠;=+ 𝑏<𝑠; + 𝑏?

Computation of parameters
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𝑏> =
∆@
∆

𝑏= =
∆:
∆

𝑏< =
1

𝑠< − 𝑠;
𝐸< −𝐸; − 𝑏> 𝑠<> − 𝑠;> − 𝑏= 𝑠<= − 𝑠;=

𝑏? = 𝐸< − 𝑏>𝑠<> − 𝑏=𝑠<= − 𝑏<𝑠<

If the determinant Δ is small, some considerable inaccuracy will result. Thus, the calibrating points should be
spaced within the operating range as far as possible from one another.

Computation of parameters



A general goal of sensing is to determine the value of
the input stimulus s from the measured output signal E.
This can be done by two methods.

1. From an inverted transfer function s = F(E), that may
be either an analytical or approximation function,

2. From a direct transfer function E = f(s) by use of an
iterative computation.

Computation of parameters



This is a straight approach when an analytical equation for the transfer equation is known.
Simply measure the output signal E, plug it into the formula, and compute the sought
input stimulus s. For example, to compute a displacement from resistance of a
potentiometric sensor, use

For other functional models, use respective equations:

Use of analytical equation

𝑠 = 𝑠? +
𝐸 − 𝐸?
𝐵

𝑠 =
1
𝑘 ln(𝐸) s=𝑒

'()
*

𝑠 =
+ 𝐸 − 𝐴

𝐵



Use of linear piecewise approximation

For computing stimulus s, the very first step is to find out where it is located, in other words,
between which knots lays the output signal E ? The next step is to use the method of linear
interpolation for computing the input stimulus s.

ni+1

ni

si si+1

knot

knot

f(s)

n

s

nx

sx

First, determine where the output is
located, that is, in between which
knots? For example, we found that
the output is somewhere in between
the knots q and r as illustrated in
figure.

q

r

𝑛A − 𝑛B
𝑛BC< − 𝑛B

=
𝑠A − 𝑠B
𝑠BC< − 𝑠B

𝑠A = 𝑠B +
𝑛A − 𝑛B
𝑛BC< − 𝑛B

𝑠BC< − 𝑠B

This equation is easy to program and compute by an inexpensive microprocessor, which keeps in its memory
a look-up table containing the knot coordinates
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Use of linear piecewise approximation

in

ADC – 12 bit 
Analog ➝ Digital
N=4095 counts ⟹ V=Vr

The thermistor is used to measure
temperature in the total input span from 0 to
+60 ∘C.
The output count of the thermistor
measurements circuit can be modelled by a
nonlinear function of temperature:

𝑛A = 𝑁?
𝑅E𝑒F G,($4G-($

𝑅< +𝑅E𝑒F G,($4G-($
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Use of linear piecewise approximation

in

where Tx is the unknown measured
temperature, Tr is the reference temperature,
Rr is resistance of the thermistor at reference
temperature Tr, and β is the characteristic
temperature. All temperatures and β are in
degrees kelvin.

𝑛A = 𝑁?
𝑅E𝑒F G,($4G-($

𝑅< +𝑅E𝑒F G,($4G-($

𝑇A =
1
𝑇E
+
1
𝛽 𝑙𝑛

𝑛A
𝑁? − 𝑛A

𝑅<
𝑅E

4<



The above equation contain two unknown parameters: Rr and β. Thus, before we proceed further, the
entire circuit, including the ADC, shall be calibrated at temperature Tr and also at some other
temperature TC. In the circuit, we use a pull-up resistor R1 =10.0 kΩ. For calibration, we select two
calibrating temperatures in the operating range as Tr = 293.15 K and Tc = 313.15 K, which
correspond to 20 °C and 40 °C, respectively. In the circuit, we use a pull-up resistor R1 =10.0 kΩ. For
calibration, we select two calibrating temperatures in the operating range as Tr = 293.15 K and Tc =
313.15 K, which correspond to 20 °C and 40 °C, respectively.
During calibration, the thermistor sequentially is immersed into a fluid bath at these two temperatures
and the ADC output counts are registered respectively as:

𝑛. = 1863 at Tr = 293.15 K Rr=8.35 Ω

𝑛/ = 1078 at Tr = 293.15 K β = 3895 K

This complete the calibration.
Now, since all parameters are fully characterized, we can use the formula:

for computing temperature from any ADC count in the operating range. We assume this is the most
accurate way of computing true temperature.

𝑇A =
1
𝑇E
+
1
𝛽 𝑙𝑛

𝑛A
𝑁? − 𝑛A

𝑅<
𝑅E

4<



We assume this is the most accurate way of computing true temperature. We use now the linear piecewise
approximation. We break up the transfer function just

into three sections with two end knots at 0 and 60∘C (the span limits) and two equally spaced central knots at 20
and 40∘ C.
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Iterative computation of stimulus (Newton method)
If the inverse transfer function is not known, the iterative method allows using a direct transfer function
to compute the input stimulus. A very powerful method of iterations is the Newton or secant method. It is
based on first guessing the initial reasonable value of stimulus s = s0 and then applying the Newton
algorithm to compute a series of new values of s converging to the sought stimulus value. Thus, the
algorithm involves several steps of computation, where each new step brings us closer and closer
to the sought stimulus value. When a difference between two consecutively computed values of s
becomes sufficiently small (less than an acceptable error), the algorithm stops and the last computed
value of s is considered a solution of the original equation and thus the value of the unknown stimulus is
found. Newton’s method converges remarkably quickly, especially if the initial guess is reasonably close
to the actual value of s.
The output signal is represented through the sensor’s transfer function is f(s) as E = f(s). It can be
rewritten as E - f(s) = 0. The Newton method prescribes computing the following sequence of the stimuli
values for the measured output value E:

𝑠!0+ = 𝑠! −
𝑓 𝑠! − 𝐸
𝑓’(𝑠!)

This sequence after just several steps converges to the sought input s. Here, si+1 is the computed
stimulus value at the iteration i + 1, wherein si is the computed value at a prior iteration i and 𝑓’(𝑠%) is
the first derivative of the transfer function at input si. The iteration number is i = 0, 1, 2, 3, ... . Note
that the same measured value E is used in all iterations.



Iterative computation of stimulus (Newton method)

Start by guessing stimulus s0, then

Allows to calculate the next approximation to the true stimulus s. Then, do it again by using the result
from the prior approximation of s. In other words, computation of the subsequent si is performed several
times (iterations) until the incremental change in si becomes sufficiently small, preferably in the range of
the sensor resolution. To illustrate use of the Newton method let us assume that our direct transfer
function is a third degree polynomial:

f(s)=as3+bs2+cs+d

having coefficients a = 1.5, b = 45, c= 25, d= 1.
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Iterative computation of stimulus (Newton method)

𝑠BC< = 𝑠B −
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E=22.0 and s0=2

𝑠! =
"#!.%#""&%#"#'!&""
(#!.%#"#&"#%#"&"% = 1.032

𝑠" =
"#!.%#!.)(""&%#!.)("#'!&""
(#!.%#!.)("#&"#%#!.)("&"% = 0.738

𝑠( =
"#!.%#).*(+"&%#).*(+#'!&""
(#!.%#).*(+#&"#%#).*(+&"%

= 0.716

𝑠, =
"#!.%#).*!-"&%#).*!-#'!&""
(#!.%#).*!-#&"#%#).*!-&"%

= 0.716

𝑓 0.716 = 22.014

It should be noted that the Newton
method results in large errors when
the sensor’s sensitivity becomes
low. In other words, the method
will fail where the transfer
function flattens (1st derivative
approaches zero). In such cases,
the so-called Modified Newton
Method may be employed.
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