Electric and magnetic dipole moments of a moving current loop which

1s neutral in its rest frame
(Dated:)

Let us consider a neutral conducting ring with radius Ry at rest in an inertial frame S’ (with usual Lorentzian
coordinates {(ct’',#’)}), carrying a stationary electric current Iy. This system can be characterized by the current
density:

7(@) = 1o 6(r' — Ro)d(2') &, (1)
where @ = (2/,y/, %), ' = /2" + y'2, and &, = (—y'/r’, 2’ /r’,0). Therefore, the components of the 4-current density
in S” are given by:
I
jH = Ri (0, —y/,2’,0) 8(r' — Ro)d("). (2)
0

Performing a Lorentz transformation to another inertial frame S (with Lorentzian coordinates {(ct,Z)}) moving

with velocity —V = (=V,0,0) with respect to S’, we find the components of the same 4-current density in S to be:

GH = % (=Vy/e,—y,x — Vt,0) 5(/72(x — V)2 + 42 — Rp)d(2), 3)

where v :=1/4/1 — V2 /c? is the usual Lorentz factor.
We can simplify the argument of the Dirac-delta “function” by defining variables r» and 6 through

x—Vt = rcosb, (4)
y = rsiné, (5)

so that the center of the now moving ring is always at » = 0. Using some properties of the Dirac-delta “function”, we
have:

(V72— V)2 +y2 — Ry) = 2Ry 6(v*(x — Vt)? +y* — RY)
2R,

= 7 8- V)’ +4°/7° - R§/7%)
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- - Jl_vl%—ne%z 5(r — R(9)), (©)
where
) Ry ()

vy/1 —V?2sin62/c?

is the angle-dependent radius of the (elliptical) ring. Note that the ring is Lorentz-contracted in the direction of its
motion. Substituting Eqs. (4-7) into Eq. (3), we have:

Iy
v(1 —V2sinb?/c?)

gt o= (=Vsinf/c,—siné, cosh,0) 6(r — R(0))d(z). (8)
This 4-current density represents a charged elliptical ring with electric charge density p and conducting a stationary
current I (the part of the total current which is not due to motion of the charge density p) given respectively by

_ —LVsinf/c? . .

p= ~(1— V2sin62/c2) (r — R(0))d(2), (9)
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From Eq. (9) we can obtain the electric dipole moment through
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where o = Iom R3¢, is the proper magnetic moment of the ring (i.e., its magnetic moment in the rest frame S’).
Now, let us calculate the magnetic moment of the ring in the frame S:
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This result is quite easy to understand. The first term in the right-hand-side of Eq. (12) comes from the fact that
in the frame S the ring has its area Lorentz-contracted, (Area) = (Areag)/7, and is conducting a stationary current
I = Io/v [see Eq. (10)]: I(Area) = I(Areag)/y? = mgo/v?. The second term is simply due to the fact that the moving
ring is polarized in S; that is the usual magnetic moment of a moving electric dipole.



