Electric and magnetic dipole moments of a moving current loop which is neutral in its rest frame
 (Dated:)

Let us consider a neutral conducting ring with radius R_{0} at rest in an inertial frame S^{\prime} (with usual Lorentzian coordinates $\left\{\left(c t^{\prime}, \vec{x}^{\prime}\right)\right\}$), carrying a stationary electric current I_{0}. This system can be characterized by the current density:

$$
\begin{equation*}
\vec{j}^{\prime}\left(\vec{x}^{\prime}\right)=I_{0} \delta\left(r^{\prime}-R_{0}\right) \delta\left(z^{\prime}\right) \hat{\mathrm{e}}_{\theta}^{\prime} \tag{1}
\end{equation*}
$$

where $\vec{x}^{\prime}=\left(x^{\prime}, y^{\prime}, z^{\prime}\right), r^{\prime}=\sqrt{x^{\prime 2}+y^{\prime 2}}$, and $\hat{\mathrm{e}}_{\theta}^{\prime}=\left(-y^{\prime} / r^{\prime}, x^{\prime} / r^{\prime}, 0\right)$. Therefore, the components of the 4-current density in S^{\prime} are given by:

$$
\begin{equation*}
j^{\prime \mu}=\frac{I_{0}}{R_{0}}\left(0,-y^{\prime}, x^{\prime}, 0\right) \delta\left(r^{\prime}-R_{0}\right) \delta\left(z^{\prime}\right) \tag{2}
\end{equation*}
$$

Performing a Lorentz transformation to another inertial frame S (with Lorentzian coordinates $\{(c t, \vec{x})\}$) moving with velocity $-\vec{V}=(-V, 0,0)$ with respect to S^{\prime}, we find the components of the same 4 -current density in S to be:

$$
\begin{equation*}
j^{\mu}=\frac{\gamma I_{0}}{R_{0}}(-V y / c,-y, x-V t, 0) \delta\left(\sqrt{\gamma^{2}(x-V t)^{2}+y^{2}}-R_{0}\right) \delta(z), \tag{3}
\end{equation*}
$$

where $\gamma:=1 / \sqrt{1-V^{2} / c^{2}}$ is the usual Lorentz factor.
We can simplify the argument of the Dirac-delta "function" by defining variables r and θ through

$$
\begin{align*}
x-V t & =r \cos \theta \tag{4}\\
y & =r \sin \theta \tag{5}
\end{align*}
$$

so that the center of the now moving ring is always at $r=0$. Using some properties of the Dirac-delta "function", we have:

$$
\begin{align*}
\delta\left(\sqrt{\gamma^{2}(x-V t)^{2}+y^{2}}-R_{0}\right) & =2 R_{0} \delta\left(\gamma^{2}(x-V t)^{2}+y^{2}-R_{0}^{2}\right) \\
& =\frac{2 R_{0}}{\gamma^{2}} \delta\left((x-V t)^{2}+y^{2} / \gamma^{2}-R_{0}^{2} / \gamma^{2}\right) \\
& =\frac{2 R_{0}}{\gamma^{2}} \delta\left(r^{2}-r^{2} \sin \theta^{2} V^{2} / c^{2}-R_{0}^{2} / \gamma^{2}\right) \\
& =\frac{2 R_{0}}{\gamma^{2}\left(1-V^{2} \sin \theta^{2} / c^{2}\right)} \delta\left(r^{2}-R_{0}^{2} /\left(\gamma^{2}\left(1-V^{2} \sin \theta^{2} / c^{2}\right)\right)\right) \\
& =\frac{1}{\gamma \sqrt{1-V^{2} \sin \theta^{2} / c^{2}}} \delta(r-R(\theta)) \tag{6}
\end{align*}
$$

where

$$
\begin{equation*}
R(\theta):=\frac{R_{0}}{\gamma \sqrt{1-V^{2} \sin \theta^{2} / c^{2}}} \tag{7}
\end{equation*}
$$

is the angle-dependent radius of the (elliptical) ring. Note that the ring is Lorentz-contracted in the direction of its motion. Substituting Eqs. (4-7) into Eq. (3), we have:

$$
\begin{equation*}
j^{\mu}=\frac{I_{0}}{\gamma\left(1-V^{2} \sin \theta^{2} / c^{2}\right)}(-V \sin \theta / c,-\sin \theta, \cos \theta, 0) \delta(r-R(\theta)) \delta(z) \tag{8}
\end{equation*}
$$

This 4-current density represents a charged elliptical ring with electric charge density ρ and conducting a stationary current I (the part of the total current which is not due to motion of the charge density ρ) given respectively by

$$
\begin{align*}
\rho & =\frac{-I_{0} V \sin \theta / c^{2}}{\gamma\left(1-V^{2} \sin \theta^{2} / c^{2}\right)} \delta(r-R(\theta)) \delta(z) \tag{9}\\
I & =\frac{I_{0}}{\gamma} . \tag{10}
\end{align*}
$$

From Eq. (9) we can obtain the electric dipole moment through

$$
\begin{align*}
\vec{d} & =\int_{\Sigma} d^{3} x \rho \vec{x} \\
& =-\int_{\mathbb{R}} d z \int_{\mathbb{R}_{+}} d r \int_{[0,2 \pi)} d \theta \frac{r I_{0} V \sin \theta / c^{2}}{\gamma\left(1-V^{2} \sin \theta^{2} / c^{2}\right)}(r \cos \theta+V t, r \sin \theta, z) \delta(r-R(\theta)) \delta(z) \\
& =-\frac{I_{0} V}{c^{2} \gamma} \int_{[0,2 \pi)} d \theta \frac{R(\theta) \sin \theta}{\left(1-V^{2} \sin \theta^{2} / c^{2}\right)}(R(\theta) \cos \theta+V t, R(\theta) \sin \theta, 0) \\
& =-\frac{I_{0} V R_{0}^{2} \hat{\mathrm{e}}_{y}}{c^{2} \gamma^{3}} \int_{[0,2 \pi)} d \theta \frac{\sin \theta^{2}}{\left(1-V^{2} \sin \theta^{2} / c^{2}\right)^{2}} \\
& =-\frac{I_{0} V \pi R_{0}^{2} \hat{\mathrm{e}}_{y}}{c^{2}}=\frac{\vec{V} \times \vec{m}_{0}}{c^{2}} \tag{11}
\end{align*}
$$

where $\vec{m}_{0}=I_{0} \pi R_{0}^{2} \hat{\mathrm{e}}_{z}^{\prime}$ is the proper magnetic moment of the ring (i.e., its magnetic moment in the rest frame S^{\prime}).
Now, let us calculate the magnetic moment of the ring in the frame S :

$$
\begin{align*}
\vec{m} & =\frac{1}{2} \int_{\Sigma} d^{3} x(\vec{x} \times \vec{j}) \\
& =\int_{\mathbb{R}} d z \int_{\mathbb{R}_{+}} d r \int_{[0,2 \pi)} d \theta \frac{r I_{0}}{2 \gamma\left(1-V^{2} \sin \theta^{2} / c^{2}\right)}(-z \cos \theta,-z \sin \theta, r+V t \cos \theta) \delta(r-R(\theta)) \delta(z) \\
& =\frac{I_{0} \hat{\mathrm{e}}_{z}}{2 \gamma} \int_{[0,2 \pi)} d \theta \frac{R(\theta)^{2}}{\left(1-V^{2} \sin \theta^{2} / c^{2}\right)} \\
& =\frac{I_{0} R_{0}^{2} \hat{\mathrm{e}}_{z}}{2 \gamma^{3}} \int_{[0,2 \pi)} d \theta \frac{1}{\left(1-V^{2} \sin \theta^{2} / c^{2}\right)^{2}} \\
& =I_{0} \pi R_{0}^{2}\left(1-\frac{V^{2}}{2 c^{2}}\right) \hat{\mathrm{e}}_{z} \\
& =\frac{\vec{m}_{0}}{\gamma^{2}}+\frac{\vec{d} \times \vec{V}}{2} . \tag{12}
\end{align*}
$$

This result is quite easy to understand. The first term in the right-hand-side of Eq. (12) comes from the fact that in the frame S the ring has its area Lorentz-contracted, (Area) $=\left(\right.$ Area $\left._{0}\right) / \gamma$, and is conducting a stationary current $I=I_{0} / \gamma\left[\right.$ see Eq. (10)]: I (Area) $=I_{0}\left(\right.$ Area $\left._{0}\right) / \gamma^{2}=m_{0} / \gamma^{2}$. The second term is simply due to the fact that the moving ring is polarized in S; that is the usual magnetic moment of a moving electric dipole.

