
Electric and magnetic dipole moments of a moving current loop which
is neutral in its rest frame

(Dated:)

Let us consider a neutral conducting ring with radius R0 at rest in an inertial frame S′ (with usual Lorentzian
coordinates {(ct′, ~x′)}), carrying a stationary electric current I0. This system can be characterized by the current
density:

~j′(~x′) = I0 δ(r
′ −R0)δ(z′) ê′θ, (1)

where ~x′ = (x′, y′, z′), r′ =
√
x′2 + y′2, and ê′θ = (−y′/r′, x′/r′, 0). Therefore, the components of the 4-current density

in S′ are given by:

j′µ =
I0
R0

(0,−y′, x′, 0) δ(r′ −R0)δ(z′). (2)

Performing a Lorentz transformation to another inertial frame S (with Lorentzian coordinates {(ct, ~x)}) moving

with velocity −~V = (−V, 0, 0) with respect to S′, we find the components of the same 4-current density in S to be:

jµ =
γI0
R0

(−V y/c,−y, x− V t, 0) δ(
√
γ2(x− V t)2 + y2 −R0)δ(z), (3)

where γ := 1/
√

1− V 2/c2 is the usual Lorentz factor.
We can simplify the argument of the Dirac-delta “function” by defining variables r and θ through

x− V t = r cos θ, (4)

y = r sin θ, (5)

so that the center of the now moving ring is always at r = 0. Using some properties of the Dirac-delta “function”, we
have:

δ(
√
γ2(x− V t)2 + y2 −R0) = 2R0 δ(γ

2(x− V t)2 + y2 −R2
0)

=
2R0

γ2
δ((x− V t)2 + y2/γ2 −R2

0/γ
2)

=
2R0

γ2
δ(r2 − r2 sin θ2V 2/c2 −R2

0/γ
2)

=
2R0

γ2(1− V 2 sin θ2/c2)
δ(r2 −R2

0/(γ
2(1− V 2 sin θ2/c2)))

=
1

γ
√

1− V 2 sin θ2/c2
δ(r −R(θ)), (6)

where

R(θ) :=
R0

γ
√

1− V 2 sin θ2/c2
(7)

is the angle-dependent radius of the (elliptical) ring. Note that the ring is Lorentz-contracted in the direction of its
motion. Substituting Eqs. (4-7) into Eq. (3), we have:

jµ =
I0

γ(1− V 2 sin θ2/c2)
(−V sin θ/c,− sin θ, cos θ, 0) δ(r −R(θ))δ(z). (8)

This 4-current density represents a charged elliptical ring with electric charge density ρ and conducting a stationary
current I (the part of the total current which is not due to motion of the charge density ρ) given respectively by

ρ =
−I0V sin θ/c2

γ(1− V 2 sin θ2/c2)
δ(r −R(θ))δ(z), (9)

I =
I0
γ
. (10)



From Eq. (9) we can obtain the electric dipole moment through

~d =

∫
Σ

d3x ρ ~x

= −
∫
R
dz

∫
R+

dr

∫
[0,2π)

dθ
rI0V sin θ/c2

γ(1− V 2 sin θ2/c2)
(r cos θ + V t, r sin θ, z) δ(r −R(θ))δ(z)

= −I0V
c2γ

∫
[0,2π)

dθ
R(θ) sin θ

(1− V 2 sin θ2/c2)
(R(θ) cos θ + V t,R(θ) sin θ, 0)

= −I0V R
2
0 êy

c2γ3

∫
[0,2π)

dθ
sin θ2

(1− V 2 sin θ2/c2)2

= −I0V πR
2
0 êy

c2
=
~V × ~m0

c2
, (11)

where ~m0 = I0πR
2
0ê′z is the proper magnetic moment of the ring (i.e., its magnetic moment in the rest frame S′).

Now, let us calculate the magnetic moment of the ring in the frame S:

~m =
1

2

∫
Σ

d3x (~x×~j)

=

∫
R
dz

∫
R+

dr

∫
[0,2π)

dθ
rI0

2γ(1− V 2 sin θ2/c2)
(−z cos θ,−z sin θ, r + V t cos θ) δ(r −R(θ))δ(z)

=
I0 êz
2γ

∫
[0,2π)

dθ
R(θ)2

(1− V 2 sin θ2/c2)

=
I0R

2
0 êz

2γ3

∫
[0,2π)

dθ
1

(1− V 2 sin θ2/c2)2

= I0πR
2
0

(
1− V 2

2c2

)
êz

=
~m0

γ2
+
~d× ~V

2
. (12)

This result is quite easy to understand. The first term in the right-hand-side of Eq. (12) comes from the fact that
in the frame S the ring has its area Lorentz-contracted, (Area) = (Area0)/γ, and is conducting a stationary current
I = I0/γ [see Eq. (10)]: I(Area) = I0(Area0)/γ2 = m0/γ

2. The second term is simply due to the fact that the moving
ring is polarized in S; that is the usual magnetic moment of a moving electric dipole.
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