
Wrapup, UC Berkeley: 1

Fechamento do Curso
PSI 3442 Projeto de Sistemas Embarcados 2020

It’s not just information technology anymore:
• Cyber + Physical
• Computation + Dynamics
• Security + Safety

Contradictions:
• Adaptability vs. Repeatability
• High connectivity vs. Security and Privacy
• High performance vs. Low Energy
• Asynchrony vs. Coordination/Cooperation
• Scalability vs. Reliability and Predictability
• Laws and Regulations vs. Technical Possibilities
• Economies of scale (cloud) vs. Locality (fog)
• Open vs. Proprietary
• Algorithms vs. Dynamics

Innovation:
Cyber-physical systems require new engineering
methods and models to address these contradictions.

Automotive

Cyber-Physical Systems (CPS)
Contradictory Requirements

Biomedical

Military

Energy

Manufacturing

Avionics

Buildings

2Lee, Berkeley

Wrapup, UC Berkeley: 3

Play Detective

In the real world, it’s more likely you will be working with
existing (legacy) embedded systems rather than building
your own from scratch.

Let’s go through a few stories of large scale design
issues or failures with industrial embedded systems and
try to guess what topics from the course can help.

Wrapup, UC Berkeley: 4

The Boeing 777 Problem

The Boeing 777 was Boeing’s first fly-by-wire aircraft,
controlled by software. It is deployed, appears to be
reliable, and is succeeding in the marketplace. Therefore,
it must be a success. However…

Boeing was forced to purchase and store an advance
supply of the microprocessors that will run the software,
sufficient to last for the estimated 50 year production run
of the aircraft and another many years of maintenance.

Why?

Wrapup, UC Berkeley: 5

Abstraction Layers
All of which are models except the bottom

The purpose of an
abstraction is to hide
details of the
implementation below
and provide a platform
for design from above.

Wrapup, UC Berkeley: 6

Abstraction Layers
All of which are models except the bottom

Every abstraction layer
has failed for the
aircraft designer.

The design is the
implementation.

Wrapup, UC Berkeley: 7

Air France 447 – June 2009
“The Airbus A330, operated by Air France from Brazil
to Paris, entered an aerodynamic stall from which it
did not recover and crashed into the Atlantic Ocean at
02:14 UTC, killing all 228 passengers and crew.”

“The aircraft crashed after temporary inconsistencies
between the airspeed measurements – likely due to
the aircraft's pitot tubes being obstructed by ice
crystals – caused the autopilot to disconnect, after
which the crew reacted incorrectly and ultimately led
the aircraft to an aerodynamic stall from which they did
not recover.” [Source: Wikipedia]

What are potential causes?

Pitot tube for
Airbus A380,

together with an
angle-of-attack

vane (left).
Air-flow is right to

left.

https://en.wikipedia.org/wiki/Coordinated_Universal_Time
https://en.wikipedia.org/wiki/Airspeed
https://en.wikipedia.org/wiki/Pitot_tube
https://en.wikipedia.org/wiki/Autopilot
https://en.wikipedia.org/wiki/Airbus_A380
https://en.wikipedia.org/wiki/Angle-of-attack

Wrapup, UC Berkeley: 8

787 Power System Issue
[Identified by FAA, May 2015]

 “A Model 787 airplane that has been powered continuously for
248 days can lose all alternating current (AC) electrical power
due to the generator control units (GCUs) simultaneously going
into failsafe mode."

 This condition is caused by the state of a software counter
internal to the GCUs reached after 248 days of continuous power
and could lead to loss of all AC electrical power, which could
result in loss of control of the airplane.

What might the software bug be? How to catch it?

248 days == 2^31 100ths of a second.

Wrapup, UC Berkeley: 9

GM Cadillac bug (2004)

“General Motors Corp will recall 12,329 Cadillac SRXs
equipped with all-wheel drive, following two reports of a
software anomaly that causes a one-second delay in the
anti-lock brakes activating to stop the vehicle -- reportedly only
in the first few seconds of driving when the SUV is moving
slowly. One owner crashed his SRX into his garage wall
following the brake delay, but was uninjured.”

[Source: Reuters, 2 Apr 2004; obtained from RISKS digest]

What might the software bug be? How to catch it?

Wrapup, UC Berkeley: 10

2003 Northeast Blackout
(Power Grid failure)
“Worst outage in North American history.”

“One [reason] was buried in a massive piece of
software compiled from four million lines of C
code and running on an energy management
computer in Ohio… A silent failure of the alarm
function in FirstEnergy's computerized Energy
Management System (EMS) is listed in the
final report as one of the direct causes of a
blackout that eventually cut off electricity to 50
million people in eight states and Canada.”
[The Register, UK, 8 Apr 2004.]

What could have gone wrong?
[Hint: multi-threaded software]

An overloaded
transmission line sagged

into unpruned foliage.
A race condition disabled

the alarm system in a
control room in Ohio.
Cascading failures

followed.

Wrapup, UC Berkeley: 11

Even small systems can be a problem…

Wrapup, UC Berkeley: 12

Usability?

thanks to Bjoern Hartmann

Wrapup, UC Berkeley: 13

Segal Lock.
Lifespan: ~100 years

August Bluetooth Lock.
Lifespan:?

Lifespan?
Thanks to Bjoern Hartmann

Wrapup, UC Berkeley: 14

Dependability?

Wrapup, UC Berkeley: 15

Dependability?
https://twitter.com/dakotathekat/status/744504193847791616

Thanks to Bjoern Hartmann

EECS 149, UC Berkeley: 16

Some Characteristics of Cyber-Physical Systems

Reactive
● operates at the speed of the environment

Real-time
● timing of events matters!

Concurrent
● system + environment, at a minimum

Heterogeneous
● hardware/software/networks, physical processes

(increasingly) Networked
● distributed, exposed to attacks

EECS 149, UC Berkeley: 17

Modeling, Design, Analysis

Modeling is the process of
gaining a deeper understanding
of a system through imitation.
Models specify what a system does.

Design is the structured creation of
artifacts. It specifies how a system does
what it does. This includes optimization.

Analysis is the process of gaining a deeper
understanding of a system through dissection.
It specifies why a system does what it does
(or fails to do what a model says it should do).

EECS 149, UC Berkeley: 18

Determinacy

Some of the most valuable models are
deterministic.

A model is deterministic if, given the initial state and the
inputs, the model defines exactly one behavior.

Deterministic models have proven extremely valuable in
the past. It simplifies design and enables analysis.

EECS 149, UC Berkeley: 19

Laplace’s Demon

“We may regard the present state of the
universe as the effect of its past and the
cause of its future. An intellect which at a
certain moment would know all forces that
set nature in motion, and all positions of
all items of which nature is composed, if
this intellect were also vast enough to
submit these data to analysis, it would
embrace in a single formula the
movements of the greatest bodies of the
universe and those of the tiniest atom; for
such an intellect nothing would be
uncertain and the future just like the past
would be present before its eyes.”
— Pierre Simon Laplace

Pierre-Simon Laplace (1749–1827).
Portrait by Joan-Baptiste Paulin Guérin, 1838

EECS 149, UC Berkeley: 20

Did quantum mechanics
dash this hope?

“At first, it seemed that these hopes for a
complete determinism would be dashed
by the discovery early in the 20th
century that events like the decay of
radioactive atoms seemed to take place
at random. It was as if God was playing
dice, in Einstein’s phrase. But science
snatched victory from the jaws of defeat
by moving the goal posts and redefining
what is meant by a complete knowledge
of the universe.”

(Stephen Hawking, 2002)

EECS 149, UC Berkeley: 21

Nevertheless, Laplace’s Demon cannot
exist.
In 2008, David Wolpert, then at NASA,
now at the Santa Fe Research Institute,
used Cantor’s diagonalization technique
to prove that Laplace’s demon cannot
exist. His proof relies on the observation
that such a demon, were it to exist,
would have to exist in the very physical
world that it predicts.

David Wolpert

EECS 149, UC Berkeley: 22

The Koptez Principle

Many properties that we assert about systems
(determinism, timeliness, reliability) are in fact
not properties of the system, but rather
properties of a model of the system.

If we accept this, then it makes no sense to
talk about whether the physical world is
deterministic. It only makes sense to talk
about whether models of the physical world
are deterministic.

Hermann Kopetz
Professor (Emeritus)

TU Vienna

EECS 149, UC Berkeley: 23

The question switches from whether a
model is True to whether it is Useful

“Essentially, all models are wrong,
but some are useful.”

Box, G. E. P. and N. R. Draper, 1987: Empirical Model-Building and
Response Surfaces. Wiley Series in Probability and Statistics, Wiley.

EECS 149, UC Berkeley: 24

Physicists continue to debate whether the world is
deterministic

Determinism is a
property of
models, not a
property of the
systems they
model.

Deterministic
model

Deterministic
system?

EECS 149, UC Berkeley: 25

Schematic of a simple
Cyber-Physical System

What kinds of models should we use?

Let’s look at the most successful kinds of models from
the cyber and the physical worlds.

EECS 149, UC Berkeley: 26

Software is a Model

Physical System Model

Single-threaded imperative programs
are deterministic models

EECS 149, UC Berkeley: 27

Software relies on another deterministic
model that abstracts the hardware

Physical System Model

Instruction Set Architectures (ISAs)
are deterministic models.

Image: Wikimedia Commons
Waterman, et al., The RISC-V Instruction Set Manual,

UCB/EECS-2011-62, 2011

EECS 149, UC Berkeley: 28

… which relies on yet another
deterministic model

Physical System Model

Synchronous digital logic
is a deterministic model.

EECS 149, UC Berkeley: 29

Deterministic Models for the
Physical Side of CPS

Physical System Model

Sig
nal

Sig
nal

Differential Equations
are deterministic models.

Image: Wikimedia Commons

EECS 149, UC Berkeley: 30

Signal Signal

Image: Wikimedia Commons

A major problem for CPS: combinations of
deterministic models are nondeterministic

Not Dependable!

EECS 149, UC Berkeley: 31

Correct execution of a program in all widely used
programming languages, and correct delivery of a network
message in all general-purpose networks has nothing to do
with how long it takes to do anything.

Programmers have to step outside the
programming abstractions to specify
timing behavior.

CPS designers have no map!

Timing is not part of
software and network semantics

EECS 149, UC Berkeley: 32

In science, the value of a model lies in how well its
behavior matches that of the physical system.
In engineering, the value of the physical system lies
in how well its behavior matches that of the model.

In engineering, model fidelity is a two-way street!

For a model to be useful, it is necessary
(but not sufficient) to be able to be able to

construct a faithful physical realization.

The Value of Models

EECS 149, UC Berkeley: 33

A Model

EECS 149, UC Berkeley: 34

A Physical Realization

EECS 149, UC Berkeley: 35

Model Fidelity

To a scientist, the model is flawed.

To an engineer, the realization is flawed.

I’m an engineer…

EECS 149, UC Berkeley: 36

For CPS, we need to
change the question

The question is not whether deterministic models can
describe the behavior of cyber-physical systems (with
high fidelity).

The question is whether we can build cyber-physical
systems whose behavior matches that of a deterministic
model (with high probability).

EECS 149, UC Berkeley: 37

Existence proofs that useful
deterministic models for CPS exist
Deterministic models for CPS with
faithful implementations exist:

PTIDES: distributed real-time software
● http://chess.eecs.berkeley.edu/ptides

PRET: time-deterministic architectures
● http://chess.eecs.berkeley.edu/pret

These two projects ended in 2015.

Together, these
technologies give a
programming model
for distributed and
concurrent real-time
systems that is
deterministic in the
sense of
single-threaded
imperative programs,
and also
deterministic w.r.t. to
timing of external
interactions.

http://chess.eecs.berkeley.edu/ptides
http://chess.eecs.berkeley.edu/pret

EECS 149, UC Berkeley: 38

Determinism?
What about resilience? Adaptability?

Deterministic models do not eliminate the need for
robust, fault-tolerant designs.

In fact, they enable such designs, because they make
it much clearer what it means to have a fault!

EECS 149, UC Berkeley: 39

Conclusion

Think
critically!

Plato and the Nerd
On Technology and

Creativity

Edward Ashford Lee
MIT Press, 2017

Forthcoming book
My first for a general

audience

EECS 149, UC Berkeley: 40

Model-Based Design

1. Create a mathematical model of all the parts of the
cyber-physical system
� Physical processes
� Controllers: software, hardware, etc.
� Software environment
� Hardware platform
� Network
� Sensors and actuators

2. Construct the implementation from the model

EECS 149, UC Berkeley: 41

Modeling Techniques covered in the course (1)

� Differential Equations 🡪 Physical processes
� Actor Models
� Time-domain modeling
� Feedback control

EECS 149, UC Berkeley: 42

Modeling Techniques covered in the course (2)

� Finite-State Machines 🡪 for Modal Behavior, as in a
controller, software

� Determinism, Receptiveness
� Trace – modeling the input/output behavior of an FSM
� Composition and Hierarchy

● Synchronous/Asynchronous composition, StateCharts

EECS 149, UC Berkeley: 43

Modeling Techniques covered in the course (3)

� Timed/Hybrid Automata 🡪 for Modal Behavior +
continuous dynamics

� Jumps and flows

EECS 149, UC Berkeley: 44

Modeling & Design: Sensors and Actuators

❑ How Sensors and Actuators Work: Basics
❑ Interfacing to Sensors
❑ Modeling Sensors and Actuators

EECS 149, UC Berkeley: 45

Design: Memory Architectures

❑ Types of Memory
❑ Memory Maps and Organization
❑ Memory Model for C programs
❑ Memory Hierarchy and Protection

Source: ATmega168 Reference Manual

EECS 149, UC Berkeley: 46

Design: Concurrent Programming with Interrupts

❑ I/O Mechanisms in Software: Polling vs. Interrupts
❑ Setting up Interrupts
❑ Reasoning about Interrupt-Driven Programs

volatile uint timer_count = 0;

void ISR(void) {

 if(timer_count != 0) {

 timer_count--;

 }

}

int main(void) {

 // initialization code

 SysTickIntRegister(&ISR);

 ... // other init

 timer_count = 2000;

 while(timer_count != 0) {

 ... code to run for 2 seconds

 }

}

EECS 149, UC Berkeley: 47

Concurrency: Modeling and Design

� Threads

� Processes

� Multi-Tasking and Priorities

� Synchronous/Reactive Languages

� Dataflow

EECS 149, UC Berkeley: 48

Real-Time: Design and Analysis

� Scheduling
● Pre-emptive and non-preemptive
● RMS vs EDF
● Priority inversion, protocols: PIP, PCP
● Anomalies in multiprocessor scheduling

� Execution Time Analysis
� Blending measurements, platform modeling, and static

analysis of code

EECS 149, UC Berkeley: 49

Modeling & Analysis: Specification & Temporal
Logic

❑ The Need for Formal Specification
❑ Linear Temporal Logic

EECS 149, UC Berkeley: 50

Analysis and Verification

� Reachability Analysis
● Compute the set of all states of the system reachable

from any initial state

� Model Checking
● Does the (closed-loop) system satisfy a temporal logic

property?

� Equivalence and Refinement
● When are two state machines equivalent?
● When does one model refine another?

EECS 149, UC Berkeley: 51

Fault Tolerance and Security

� Tolerating faults in sensors, computation, actuators
● Self-checking, N-modular redundancy, interval readings

for sensors, etc.

� Security & Privacy
● Integrity, Confidentiality, Availability under attacks
● Besides traditional issues, need to worry about physical

properties and constraints (e.g. power)
● Privacy properties and enforcement

EECS 149, UC Berkeley: 52

Distributed Systems and Networking

� Proprietary protocols: CAN and FlexRay

� Clock synchronization (IEEE 1588)

� Wireless protocols: BLE, ZigBee, OpenWSN, …

� Time-Triggered Ethernet, …

EECS 149, UC Berkeley: 53

The Lab

❑ CPS Programming in C (low-level language)
❑ CPS Programming in LabVIEW (modeling language)
❑ Modeling Physical Processes and Interfacing to

Sensors and Actuators
❑ Specification & Temporal Logic

+
0.4

F[0,40] z ≥ 0.4

EECS 149, UC Berkeley: 54

Other Relevant Topics we didn’t cover in-depth

� Architecture for embedded systems
● E.g. low power, predictable timing, etc.

� Programming languages and compilers
� Testing and debugging
� Controller synthesis
� Simulation strategies
� Hybrid systems (more than timed automata)
� …

EECS 149, UC Berkeley: 55

Future of CPS Design

Rising trend: combine model-based design with
data-driven methods (learning from data)

This course discussed how design is done today, but you
can be sure that the technology will change!

Our goal has been to give you what you need to think
critically about the technology.

EECS 149, UC Berkeley: 56

Agradecemos ao Professor Edward Lee da Universidade de
Berkeley por oferecer os slides que usamos como base neste
curso

