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Fechamento do Curso
PSI 3442 Projeto de Sistemas Embarcados 2020



It’s not just information technology anymore: 
• Cyber + Physical
• Computation + Dynamics
• Security + Safety

Contradictions:
• Adaptability vs. Repeatability
• High connectivity vs. Security and Privacy
• High performance vs. Low Energy
• Asynchrony vs. Coordination/Cooperation
• Scalability vs. Reliability and Predictability
• Laws and Regulations vs. Technical Possibilities
• Economies of scale (cloud) vs. Locality (fog)
• Open vs. Proprietary
• Algorithms vs. Dynamics

Innovation:
Cyber-physical systems require new engineering 
methods and models to address these contradictions.

Automotive

Cyber-Physical Systems (CPS) 
Contradictory Requirements

Biomedical

Military

Energy

Manufacturing

Avionics

Buildings

2Lee, Berkeley
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Play Detective

In the real world, it’s more likely you will be working with 
existing (legacy) embedded systems rather than building 
your own from scratch.

Let’s go through a few stories of large scale design 
issues or failures with industrial embedded systems and 
try to guess what topics from the course can help.
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The Boeing 777 Problem

The Boeing 777 was Boeing’s first fly-by-wire aircraft, 
controlled by software. It is deployed, appears to be 
reliable, and is succeeding in the marketplace. Therefore, 
it must be a success. However…

Boeing was forced to purchase and store an advance 
supply of the microprocessors that will run the software, 
sufficient to last for the estimated 50 year production run 
of the aircraft and another many years of maintenance.

Why?
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Abstraction Layers
All of which are models except the bottom

The purpose of an 
abstraction is to hide 
details of the 
implementation below 
and provide a platform 
for design from above.
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Abstraction Layers
All of which are models except the bottom

Every abstraction layer 
has failed for the 
aircraft designer.

The design is the 
implementation.
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Air France 447 – June 2009
“The Airbus A330, operated by Air France from Brazil 
to Paris, entered an aerodynamic stall from which it 
did not recover and crashed into the Atlantic Ocean at 
02:14 UTC, killing all 228 passengers and crew.”

“The aircraft crashed after temporary inconsistencies 
between the airspeed measurements – likely due to 
the aircraft's pitot tubes being obstructed by ice 
crystals – caused the autopilot to disconnect, after 
which the crew reacted incorrectly and ultimately led 
the aircraft to an aerodynamic stall from which they did 
not recover.”  [Source: Wikipedia]

What are potential causes?

Pitot tube for 
Airbus A380, 

together with an 
angle-of-attack 

vane (left). 
Air-flow is right to 

left.

https://en.wikipedia.org/wiki/Coordinated_Universal_Time
https://en.wikipedia.org/wiki/Airspeed
https://en.wikipedia.org/wiki/Pitot_tube
https://en.wikipedia.org/wiki/Autopilot
https://en.wikipedia.org/wiki/Airbus_A380
https://en.wikipedia.org/wiki/Angle-of-attack


Wrapup, UC Berkeley: 8

787 Power System Issue 
[Identified by FAA, May 2015]

    “A Model 787 airplane that has been powered continuously for 
248 days can lose all alternating current (AC) electrical power 
due to the generator control units (GCUs) simultaneously going 
into failsafe mode." 

    This condition is caused by the state of a software counter 
internal to the GCUs reached after 248 days of continuous power 
and could lead to loss of all AC electrical power, which could 
result in loss of control of the airplane.

What might the software bug be? How to catch it?

248 days == 2^31 100ths of a second.
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GM Cadillac bug (2004)

“General Motors Corp will recall 12,329 Cadillac SRXs 
equipped with all-wheel drive, following two reports of a 
software anomaly that causes a one-second delay in the 
anti-lock brakes activating to stop the vehicle -- reportedly only 
in the first few seconds of driving when the SUV is moving 
slowly. One owner crashed his SRX into his garage wall 
following the brake delay, but was uninjured.”               

[Source: Reuters, 2 Apr 2004; obtained from RISKS digest]

What might the software bug be? How to catch it?
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2003 Northeast Blackout
(Power Grid failure)
“Worst outage in North American history.”

“One [reason] was buried in a massive piece of 
software compiled from four million lines of C 
code and running on an energy management 
computer in Ohio… A silent failure of the alarm 
function in FirstEnergy's computerized Energy 
Management System (EMS) is listed in the 
final report as one of the direct causes of a 
blackout that eventually cut off electricity to 50 
million people in eight states and Canada.”  
[The Register, UK, 8 Apr 2004.]

What could have gone wrong?
[Hint: multi-threaded software]

An overloaded 
transmission line sagged 

into unpruned foliage.
A race condition disabled 

the alarm system in a 
control room in Ohio.
Cascading failures 

followed.
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Even small systems can be a problem…
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Usability?

thanks to Bjoern Hartmann
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Segal Lock. 
Lifespan: ~100 years

August Bluetooth Lock. 
Lifespan:?

Lifespan?
Thanks to Bjoern Hartmann
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Dependability?
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Dependability?
https://twitter.com/dakotathekat/status/744504193847791616

Thanks to Bjoern Hartmann
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Some Characteristics of Cyber-Physical Systems 

Reactive 
● operates at the speed of the environment 

Real-time
● timing of events matters!

Concurrent
● system + environment, at a minimum

Heterogeneous
● hardware/software/networks, physical processes

(increasingly) Networked
● distributed, exposed to attacks
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Modeling, Design, Analysis

Modeling is the process of 
gaining a deeper understanding 
of a system through imitation. 
Models specify what a system does. 

Design is the structured creation of 
artifacts. It specifies how a system does 
what it does. This includes optimization. 

Analysis is the process of gaining a deeper 
understanding of a system through dissection. 
It specifies why a system does what it does 
(or fails to do what a model says it should do). 
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Determinacy

Some of the most valuable models are 
deterministic.

A model is deterministic if, given the initial state and the 
inputs, the model defines exactly one behavior.

Deterministic models have proven extremely valuable in 
the past. It simplifies design and enables analysis.
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Laplace’s Demon

“We may regard the present state of the 
universe as the effect of its past and the 
cause of its future. An intellect which at a 
certain moment would know all forces that 
set nature in motion, and all positions of 
all items of which nature is composed, if 
this intellect were also vast enough to 
submit these data to analysis, it would 
embrace in a single formula the 
movements of the greatest bodies of the 
universe and those of the tiniest atom; for 
such an intellect nothing would be 
uncertain and the future just like the past 
would be present before its eyes.”
— Pierre Simon Laplace

Pierre-Simon Laplace (1749–1827). 
Portrait by Joan-Baptiste Paulin Guérin, 1838
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Did quantum mechanics 
dash this hope?

“At first, it seemed that these hopes for a 
complete determinism would be dashed 
by the discovery early in the 20th 
century that events like the decay of 
radioactive atoms seemed to take place 
at random. It was as if God was playing 
dice, in Einstein’s phrase. But science 
snatched victory from the jaws of defeat 
by moving the goal posts and redefining 
what is meant by a complete knowledge 
of the universe.” 

(Stephen Hawking, 2002)
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Nevertheless, Laplace’s Demon cannot 
exist.
In 2008, David Wolpert, then at NASA, 
now at the Santa Fe Research Institute, 
used Cantor’s diagonalization technique 
to prove that Laplace’s demon cannot 
exist. His proof relies on the observation 
that such a demon, were it to exist, 
would have to exist in the very physical 
world that it predicts.

David Wolpert
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The Koptez Principle

Many properties that we assert about systems 
(determinism, timeliness, reliability) are in fact 
not properties of the system, but rather 
properties of a model of the system.

If we accept this, then it makes no sense to 
talk about whether the physical world is 
deterministic. It only makes sense to talk 
about whether models of the physical world 
are deterministic.

Hermann Kopetz
Professor (Emeritus)

TU Vienna
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The question switches from whether a 
model is True to whether it is Useful

“Essentially, all models are wrong, 
but some are useful.”

Box, G. E. P. and N. R. Draper, 1987: Empirical Model-Building and 
Response Surfaces. Wiley Series in Probability and Statistics, Wiley. 
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Physicists continue to debate whether the world is 
deterministic

Determinism is a 
property of 
models, not a 
property of the 
systems they 
model.

Deterministic 
model

Deterministic 
system?
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Schematic of a simple 
Cyber-Physical System

What kinds of models should we use?

Let’s look at the most successful kinds of models from 
the cyber and the physical worlds. 
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Software is a Model

Physical System Model

Single-threaded imperative programs
are deterministic models
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Software relies on another deterministic 
model that abstracts the hardware

Physical System Model

Instruction Set Architectures (ISAs)
are deterministic models.

Image: Wikimedia Commons
Waterman, et al., The RISC-V Instruction Set Manual,

UCB/EECS-2011-62, 2011
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… which relies on yet another 
deterministic model

Physical System Model

Synchronous digital logic
is a deterministic model.
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Deterministic Models for the 
Physical Side of CPS

Physical System Model

Sig
nal

Sig
nal

Differential Equations
are deterministic models.

Image: Wikimedia Commons
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Signal Signal

Image: Wikimedia Commons

A major problem for CPS: combinations of 
deterministic models are nondeterministic

Not Dependable!
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Correct execution of a program in all widely used 
programming languages, and correct delivery of a network 
message in all general-purpose networks has nothing to do 
with how long it takes to do anything.

Programmers have to step outside the 
programming abstractions to specify 
timing behavior.

CPS designers have no map!

Timing is not part of 
software and network semantics
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In science, the value of a model lies in how well its 
behavior matches that of the physical system.
In engineering, the value of the physical system lies 
in how well its behavior matches that of the model.

In engineering, model fidelity is a two-way street!

For a model to be useful, it is necessary 
(but not sufficient) to be able to be able to 

construct a faithful physical realization.

The Value of Models
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A Model
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A Physical Realization
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Model Fidelity

To a scientist, the model is flawed.

To an engineer, the realization is flawed.

I’m an engineer…
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For CPS, we need to
change the question

The question is not whether deterministic models can 
describe the behavior of cyber-physical systems (with 
high fidelity).

The question is whether we can build cyber-physical 
systems whose behavior matches that of a deterministic 
model (with high probability).
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Existence proofs that useful 
deterministic models for CPS exist
Deterministic models for CPS with 
faithful implementations exist:

PTIDES: distributed real-time software
● http://chess.eecs.berkeley.edu/ptides

PRET: time-deterministic architectures
● http://chess.eecs.berkeley.edu/pret 

These two projects ended in 2015.

Together, these 
technologies give a 
programming model 
for distributed and 
concurrent real-time 
systems that is 
deterministic in the 
sense of 
single-threaded 
imperative programs, 
and also 
deterministic w.r.t. to 
timing of external 
interactions.

http://chess.eecs.berkeley.edu/ptides
http://chess.eecs.berkeley.edu/pret
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Determinism?
What about resilience? Adaptability?

Deterministic models do not eliminate the need for 
robust, fault-tolerant designs.

In fact, they enable such designs, because they make 
it much clearer what it means to have a fault!
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Conclusion

Think 
critically!

Plato and the Nerd
On Technology and 

Creativity

Edward Ashford Lee
MIT Press, 2017

Forthcoming book
My first for a general 

audience
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Model-Based Design

1. Create a mathematical model of all the parts of the 
cyber-physical system
� Physical processes
� Controllers: software, hardware, etc.
� Software environment
� Hardware platform
� Network
� Sensors and actuators

2. Construct the implementation from the model
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Modeling Techniques covered in the course (1)

� Differential Equations  🡪  Physical processes
� Actor Models
� Time-domain modeling
� Feedback control 
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Modeling Techniques covered in the course (2)

� Finite-State Machines 🡪 for Modal Behavior, as in a 
controller, software

� Determinism, Receptiveness
� Trace – modeling the input/output behavior of an FSM
� Composition and Hierarchy 

● Synchronous/Asynchronous composition, StateCharts
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Modeling Techniques covered in the course (3)

� Timed/Hybrid Automata 🡪 for Modal Behavior + 
continuous dynamics  

� Jumps and flows
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Modeling & Design: Sensors and Actuators

❑ How Sensors and Actuators Work: Basics
❑ Interfacing to Sensors
❑ Modeling Sensors and Actuators
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Design: Memory Architectures

❑ Types of Memory
❑ Memory Maps and Organization
❑ Memory Model for C programs
❑ Memory Hierarchy and Protection

Source: ATmega168 Reference Manual
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Design: Concurrent Programming with Interrupts

❑ I/O Mechanisms in Software: Polling vs. Interrupts
❑ Setting up Interrupts
❑ Reasoning about Interrupt-Driven Programs

volatile uint timer_count = 0;

void ISR(void) {

  if(timer_count != 0) { 

    timer_count--;

  }

}

int main(void) {

  // initialization code

  SysTickIntRegister(&ISR);  

  ... // other init

  timer_count = 2000;

  while(timer_count != 0) {

    ... code to run for 2 seconds

  }

}
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Concurrency: Modeling and Design

� Threads

� Processes

� Multi-Tasking and Priorities

� Synchronous/Reactive Languages

� Dataflow
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Real-Time: Design and Analysis

� Scheduling 
● Pre-emptive and non-preemptive
● RMS vs EDF
● Priority inversion, protocols: PIP, PCP
● Anomalies in multiprocessor scheduling

� Execution Time Analysis
� Blending measurements, platform modeling, and static 

analysis of code
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Modeling & Analysis: Specification & Temporal 
Logic

❑ The Need for Formal Specification
❑ Linear Temporal Logic
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Analysis and Verification

� Reachability Analysis
● Compute the set of all states of the system reachable 

from any initial state

� Model Checking
● Does the (closed-loop) system satisfy a temporal logic 

property?

� Equivalence and Refinement
● When are two state machines equivalent?
● When does one model refine another?
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Fault Tolerance and Security

� Tolerating faults in sensors, computation, actuators
● Self-checking, N-modular redundancy, interval readings 

for sensors, etc.

�  Security & Privacy
● Integrity, Confidentiality, Availability under attacks
● Besides traditional issues, need to worry about physical 

properties and constraints (e.g. power) 
● Privacy properties and enforcement 
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Distributed Systems and Networking

� Proprietary protocols: CAN and FlexRay

� Clock synchronization (IEEE 1588) 
 
� Wireless protocols: BLE, ZigBee, OpenWSN, …

� Time-Triggered Ethernet, …
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The Lab

❑ CPS Programming in C (low-level language)
❑ CPS Programming in LabVIEW (modeling language)
❑ Modeling Physical Processes and Interfacing to 

Sensors and Actuators
❑ Specification & Temporal Logic

    

+
0.4

F[0,40]   z ≥ 0.4
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Other Relevant Topics we didn’t cover in-depth

� Architecture for embedded systems
● E.g. low power, predictable timing, etc.

� Programming languages and compilers
� Testing and debugging
� Controller synthesis 
� Simulation strategies
� Hybrid systems (more than timed automata)
� …
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Future of CPS Design

Rising trend: combine model-based design with 
data-driven methods (learning from data)

This course discussed how design is done today, but you 
can be sure that the technology will change!

Our goal has been to give you what you need to think 
critically about the technology.
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Agradecemos ao Professor Edward Lee da Universidade de 
Berkeley por oferecer os slides que usamos como base neste 
curso


