
SAA - 0180

Introdução aos Sistemas Dinâmicos de Aeronaves Resposta em Freqüência

- 1 Determinar as curvas de relação de amplitudes (dB) e ângulo de fase das funções transferência $\frac{Q_{o1}}{Q_{i1}}(s) = \frac{1}{0.769s + 1}$ e de $\frac{Q_{o2}}{Q_{i2}}(s) = 0.25s + 1$.
- 2 Determinar as curvas de relação de amplitudes (dB) e ângulo de fase de $\frac{Q_{o1}}{Q_{i1}}(s) = \frac{1}{\frac{s^2}{2^2} + \frac{0.4}{2}s + 1}.$
- 3 Determinar as curvas de relação de amplitudes (dB) e ângulo de fase de $\frac{Q_{o1}}{Q_{i1}}(s) = \frac{s^2}{16} + \frac{0.4}{4}s + 1.$
- 4 No sistema da figura abaixo, pretende-se mudar a massa M = 2 kg para M = 8 kg. Determinar percentualmente quanto diminuirá, ou aumentará, a amplitude de x_o . Sabese que $x_i(t) = 1.5 \times 10^{-3} sen(4.8t)$.

5 - Um sistema dinâmico possui Função Transferência
$$\frac{X_o}{X_i}(s) = \frac{K}{\frac{s^2}{\omega_p^2} + \frac{2\zeta}{\omega_p} s + 1}$$
, com

ganho K=10, $\omega_n=50$ rad/s e $\zeta=0.1$. Qual o valor de ω na qual a Relação de amplitudes (RA) é máxima? Qual a banda de freqüência para qual X_o é amplificado? Qual o valor de ω para o qual o ângulo de fase φ é zero?

6 - Esboce os gráficos da Resposta em Freqüência (RA e \$\phi\$) em dB para a função

transferência
$$\frac{X_o}{X_i}(s) = \frac{0.1s\left(\frac{s^2}{400} + \frac{0.2}{20}s + 1\right)}{\left(0.1s + 1\right)\left(\frac{s^2}{2500} + \frac{0.4}{50}s + 1\right)}$$
. Determinar $x_o(t)$ (regime) para

 $x_i(t) = 0.2 sen(20t)$.

7 - Esboce os gráficos da Resposta em Freqüência (RA e ϕ) em dB para a função transferência $\frac{X_o}{X_i}(s) = \frac{10s}{\left(1.25s+1\right)\left(\frac{s^2}{10.24} + \frac{0.2}{3.2}s+1\right)}$. Para $\omega = 20$ rad/s determinar o valor de

RA e φ.