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STANCE: Locomotion Adaptation over Soft Terrain
Shamel Fahmi, Michele Focchi, Andreea Radulescu, Geoff Fink, Victor Barasuol, and Claudio Semini

Abstract—Whole-Body Control (WBC) has emerged as an
important framework in locomotion control for legged robots.
However, most WBC frameworks fail to generalize beyond rigid
terrains. Legged locomotion over soft terrain is difficult due to
the presence of unmodeled contact dynamics that WBCs do not
account for. This introduces uncertainty in locomotion and affects
the stability and performance of the system. In this paper, we pro-
pose a novel soft terrain adaptation algorithm called STANCE:
Soft Terrain Adaptation and Compliance Estimation. STANCE
consists of a WBC that exploits the knowledge of the terrain to
generate an optimal solution that is contact consistent and an
online terrain compliance estimator that provides the WBC with
terrain knowledge. We validated STANCE both in simulation
and experiment on the Hydraulically actuated Quadruped (HyQ)
robot, and we compared it against the state of the art WBC. We
demonstrated the capabilities of STANCE with multiple terrains
of different compliances, aggressive maneuvers, different forward
velocities, and external disturbances. STANCE allowed HyQ to
adapt online to terrains with different compliances (rigid and
soft) without pre-tuning. HyQ was able to successfully deal with
the transition between different terrains and showed the ability
to differentiate between compliances under each foot.

Index Terms—Whole-Body Control, Legged Robots, Compli-
ance and Impedance Control, Optimization and Optimal Control

I. INTRODUCTION

WHOLE-BODY CONTROL (WBC) frameworks have
achieved remarkable results in legged locomotion con-

trol [1, 2, 3]. Their main feature is that they use optimization
techniques to solve the locomotion control problem. WBC can
achieve multiple tasks in an optimal fashion by exploiting the
robot’s full dynamics and reasoning about both the actuation
constraints and the contact interaction. These tasks include
balancing, interacting with the environment, and performing
dynamic locomotion over a wide variety of terrains [3]. The
tasks are executed at the robot’s end effectors, but can also be
utilized for contacts anywhere on the robot’s body [4] or for
a cooperative manipulation task between robots [5].

To date, most of the work done on WBC assumes that
the ground is rigid (i.e., rigid contact consistent). However,
if the robot traverses soft terrain (as shown in Fig. 1), the
mismatch between the rigid assumption and the soft contact
interaction can significantly affect the robot’s performance and
locomotion stability. This mismatch is due to the unmodeled
contact dynamics between the robot and the terrain. In fact,
under the rigid ground assumption, the controller can generate
instantaneous changes to the Ground Reaction Forces (GRFs).
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Fig. 1: HyQ traversing multiple terrains of different compliances.

This is equivalent to thinking that the terrain will respond with
an infinite bandwidth.

In order to robustly traverse a wide variety of terrains
of different compliances, the WBC must become compliant
contact consistent (c3). Namely, the WBC should be terrain-
aware. That said, a more general WBC approach should be
developed that can adapt online to the changes in the terrain
compliance.

A. Related Work - Soft Terrain Adaptation for Legged Robots

Locomotion over soft terrain can be tackled either from a
control or a planning perspective. In the context of locomotion
control, Henze et al. [6] presented the first experimental
attempt using a WBC over soft terrain. Their WBC is based
on the rigid ground assumption, but it allows for constraint
relaxation. This allowed the humanoid robot TORO to adapt
to a compliant surface. Their approach was further extended
in [7] by dropping the rigid contact assumption and using an
energy-tank approach. Despite balancing on compliant terrain,
both approaches were only tested for one type of soft terrain
when the robot was standing still.

Similarly, other works explicitly adapt to soft terrain by
incorporating terrain knowledge (i.e., contact model) into their
balancing controllers. For example, Azad et al. [8] proposed a
momentum based controller for balancing on soft terrain by re-
lying on a nonlinear soft contact model. Vasilopoulos et al. [9]
proposed a similar hopping controller that models the terrain
using a viscoplastic contact model. However, these approaches
were only tested in simulation and for monopods.

In the context of locomotion planning, Grandia et al. [10]
indirectly adapted to soft terrain by shaping the frequency of
the cost function of their Model Predictive Control (MPC)
formulation. By penalizing high frequencies, they generated
optimal motion plans that respect the bandwidth limitations
due to soft terrain. This approach was tested over three types
of terrain compliances. However, it was not tested during
transitions from one terrain to another. This approach showed
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an improvement in the performance of the quadruped robot in
simulation and experiment. However, the authors did not offer
the possibility to change their tuning parameters online. Thus,
they were not able to adapt the locomotion strategy based on
the compliance of the terrain.

In contrast to the aforementioned work, other approaches
relax the rigid ground assumption (hard contact constraint)
but not for soft terrain adaptation purposes. For instance,
Kim et al. [11] implemented an approach to handle sudden
changes in the rigid contact interaction. This approach relaxed
the hard contact assumption in their WBC formulation by
penalizing the contact interaction in the cost function rather
than incorporating it as a hard constraint. For computational
purposes, Neunert et al. [12] and Doshi et al. [13] proposed
relaxing the rigid ground assumption. Neunert et al. used a
soft contact model in their nonlinear MPC formulation to
provide smooth gradients of the contact dynamics to be more
efficiently solved by their gradient based solver. The soft
contact model did not have a physical meaning and the contact
parameters were empirically chosen. Doshi et al. proposed
a similar approach which incorporates a slack variable that
expands the feasibility region of the hard constraint.

Despite the improvement in performance of the legged
robots over soft terrain in the aforementioned works, none
of them offered the possibility to adapt to the terrain online.
Most of the aforementioned works lack a general approach that
can deal with multiple terrain compliances or with transitions
between them. Perhaps, one noticeable work (to date) in online
soft terrain adaptation was proposed by Chang et al. [14]. In
that work, an iterative soft terrain adaptation approach was
proposed. The approach relies on a non-parametric contact
model that is simultaneously updated alongside an optimiza-
tion based hopping controller. The approach was capable of
iteratively learning the terrain interaction and supplying that
knowledge to the optimal controller. However, because the
learning module was exploiting Gaussian process regression,
which is computationally expensive, the approach did not
reach real-time performance and was only tested in simulation,
for one leg, under one experimental condition (one terrain).

B. Related Work - Contact Compliance Estimation in Robotics
For contact compliance estimation, we need to accurately

model the contact dynamics and estimate the contact param-
eters online. In contact modeling, Alves et al. [15] presented
a detailed overview of the types of parametric soft contact
models used in the literature. In compliance estimation, Schin-
deler et al. [16] used a two stage polynomial identification
approach to estimate the parameters of the Hunt and Cross-
ley’s (HC) contact model online. Differently, Azad et al. [17]
used a Least Square (LS)-based estimation algorithm and
compared multiple contact models (including the Kelvin-
Voigt’s (KV) and the HC models). Other approaches that are
not based on soft contact models use force observers [18]
or neural networks [19]. These aforementioned approaches in
compliance estimation were designed for robotic manipulation
tasks.

To date, the only work on compliance estimation in legged
locomotion was the one by Bosworth et al. [20]. The authors

Fig. 2: An overview of the STANCE algorithm.

presented two online (in-situ) approaches to estimate the
ground properties (stiffness and friction). The results were
promising and the approaches were validated on a quadruped
robot while hopping over rigid and soft terrain. However,
the estimated stiffness showed a trend, but was not accurate;
the lab measurements of the terrain stiffness did not match
the in-situ ones. Although the estimation algorithms could
be implemented online, the robot had to stop to perform the
estimation.

C. Proposed Approach and Contribution

In this work, we propose an online soft terrain adap-
tation algorithm: Soft Terrain Adaptation aNd Compliance
Estimation (STANCE). As shown in Fig. 2, STANCE con-
sists of
• A Compliant Contact Consistent Whole-Body Control

(c3WBC) that is contact consistent to any type of terrain
given the terrain compliance. This is done by extending the
state-of-the-art WBC in [3], hereafter denoted as the Stan-
dard Whole-Body Control (sWBC). In particular, c3WBC
incorporates a soft contact model into the WBC formulation.

• A Terrain Compliance Estimator (TCE) which is an online
learning algorithm that provides the c3WBC with an es-
timate of the terrain compliance. It is based on the same
contact model that is incorporated in the c3WBC.

The main contribution of STANCE is that it can adapt to any
type of terrain (stiff or soft) online without pre-tuning. This
is done by closing the loop of the c3WBC with the TCE.
To our knowledge, this is the first implementation of such an
approach in legged locomotion.

STANCE is meant to overcome the limitations of the afore-
mentioned approaches in soft terrain adaptation for legged
robots. Compared to previous works on WBC that tested
their approach only during standing [6, 7], we test our
STANCE approach during locomotion. Compared to other
approaches [8, 9] that were tested on monopods in simulation,
STANCE is implemented and tested in experiment on HyQ.
Compared to previous work on soft terrain adaptation [10],
STANCE can adapt to soft terrain online and was tested on
multiple terrains with different compliances and with transi-
tions between them. Compared to [14], our TCE is computa-
tionally inexpensive, which allows STANCE to run real-time in
experiments and simulations. Compared to the previous work
done on compliance estimation, we implemented our TCE
on a legged robot which is, to the best of our knowledge,
the first experimental validation of this approach. Differently
from [20], our TCE approach could be implemented in parallel
with any gait or task. We also achieved a more accurate
estimation of the terrain compliance compared to [20].
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As additional contributions, we discussed the benefits (and
the limitations) of exploiting the knowledge of the terrain in
WBC based on the experience gained during extensive exper-
imental trials. To our knowledge, STANCE is the first work
to present legged locomotion experiments crossing multiple
terrains of different compliances.

II. ROBOT MODEL

Consider a legged robot with n Degrees of Freedom (DoFs)
and c feet. The total dimension of the feet operational space
nf can be separated into stance (nst = 3cst) and swing feet
(nsw = 3csw) where cst and csw are the number of stance and
swing legs respectively. Assuming that all external forces are
exerted on the stance feet, the robot dynamics is written asMcom 03×3 03×n

03×3 Mθ Mθj

0n×3 MT
θj Mj


︸ ︷︷ ︸

M(q)

ẍcom

ω̇b
q̈j


︸ ︷︷ ︸

q̈

+

hcom

hθ
hj


︸ ︷︷ ︸
h(q,q̇)

=

03×1

03×1

τj

+

JTst,com

JTst,θ
JTst,j


︸ ︷︷ ︸
Jst(q)T

Fgrf (1)

where q ∈ SE(3) × Rn denotes the generalized robot states
consisting of the Center of Mass (CoM) position xcom ∈ R3,
the base orientation Rb ∈ SO(3), and the joint positions
qj ∈ Rn. The vector q̇ = [ẋTcom ωTb q̇Tj ]T ∈ R6+n

denotes the generalized velocities consisting of the velocity
of the CoM ẋcom ∈ R3, the angular velocity of the base
ωb ∈ R3, and the joint velocities q̇j ∈ Rn. The vector
q̈ = [ẍTcom ω̇Tb q̈Tj ]T ∈ R6+n denotes the corre-
sponding generalized accelerations. All Cartesian vectors are
expressed in the world frame ΨW unless mentioned otherwise.
M ∈ R(6+n)×(6+n) is the inertia matrix. h ∈ R6+n is
the force vector that accounts for Coriolis, centrifugal, and
gravitational forces. τj ∈ Rn are the actuated joint torques,
Fgrf ∈ Rnst is the vector of GRFs (contact forces). The Jaco-
bian matrix J ∈ Rnf×(6+n) is separated into swing Jacobian
Jsw ∈ Rnsw × (6+n) and stance Jacobian Jst ∈ Rnst × (6+n)

which can be further expanded into Jst,com ∈ Rnst×3, Jst,θ ∈
Rnst×3, and Jst,j ∈ Rnst×n. The feet velocities v ∈ Rnf are
separated into stance vst ∈ Rnst and swing vsw ∈ Rnsw

feet velocities. Similarly, the feet accelerations v̇ ∈ Rnf are
separated into stance v̇st ∈ Rnst and swing v̇sw ∈ Rnsw feet
accelerations. The feet forces F = [FTst F

T
sw]T ∈ Rnf are

also separated into stance Fst ∈ Rnst and swing Fsw ∈ Rnsw

feet forces. We split the robot dynamics (1) into an unactuated
floating base part (the first 6 rows) and an actuated part (the
remaining n rows) as

Mu(q)q̈ + hu(q, q̇) = Jst,u(q)TFgrf (2a)
Ma(q)q̈ + hj(q, q̇) = τj + Jst,j(q)

TFgrf (2b)

where Mu ∈ R6×6+n and Ma ∈ Rn×6+n are sub matrices of
M , hu = [hTcom hTθ ]T ∈ R6 and hj ∈ Rn are sub vectors of
h, and Jst,u = [JTst,com JTst,θ]

T . Finally, we define the gravito-
inertial wrench as Wcom = Mu(q)q̈ + hu(q, q̇) ∈ R6.

III. STANDARD WHOLE-BODY CONTROLLER (SWBC)
This section summarizes the sWBC as detailed in [3].

Besides the WBC, our locomotion framework includes a
locomotion planner, state estimator and a low-level torque
controller as shown in Fig. 3. Given high-level user inputs, the
planner generates the desired trajectories for the CoM, trunk
orientation and swing legs, and provides them to the WBC.
The state estimation provides the WBC with the estimated
states of the robot.

The objective of the sWBC is to ensure the execution of
the trajectories provided by the planner while keeping the
robot balanced and reasoning about the robot’s dynamics,
actuation limits and the contact constraints [3]. We denote the
execution of the trajectories provided by the planner as con-
trol tasks. These control tasks alongside the aforementioned
constraints define the WBC problem. The control problem
is casted as a Whole-Body Optimization (WBOpt) problem
via a Quadratic Program (QP) which solves for the optimal
generalized accelerations and contact forces at each iteration
of the control loop [21]. The optimal solution of the WBC is
then mapped into joint torques that are sent to the low-level
torque controller.

A. Control Tasks
We categorize the sWBC control tasks into: 1) a trunk task

that tracks the desired trajectories of the CoM position and
trunk orientation, and 2) a swing task that tracks the swing
feet trajectories [3]. Similar to a PD+ controller [22], both
tasks are achieved by a Cartesian-based impedance controller
with a feed-forward term. The feedforward terms are added
in order to improve the tracking performance of the tasks
when following the trajectories from the planner [6, 23]. The
tracking of the trunk task is obtained by the desired wrench
at the CoM Wcom,d ∈ R6. This is generated by a Cartesian
impedance at the CoM, a gravity compensation term, and a
feed-forward term. Similarly, the tracking of the swing task
can be obtained by the virtual force Fsw,d ∈ Rnsw . This is
generated by a Cartesian impedance at the swing foot and a
feed-forward term. As in [3], we can also write the swing
task at the acceleration level by defining the desired swing
feet velocities v̇sw,d ∈ Rnsw as

v̇sw,d = v̇sw,ff + Ksw∆xsw + Dsw∆vsw (3)

where Ksw,Dsw ∈ Rnsw×nsw are positive definite PD gains,
∆xsw = xsw,d−xsw ∈ Rnsw and ∆vsw = vsw,d−vsw ∈ Rnsw

are tracking errors of the swing foot position and velocity,
respectively, and v̇sw,ff is a feed-forward term.

B. Whole-Body Optimization
To accomplish the sWBC objective (the control tasks in

Section III-A and constraints), we formulate the WBOpt
problem presented in Formulation 1 and detailed in [3].

1) Decision Variables: As shown in Formulation 1,
we choose the generalized accelerations q̈ and
the contact forces Fgrf as the decision vari-
ables u = [q̈T FTgrf ]

T ∈ R6+n+nst . Later in this
subsection, we will augment the vector of decision variables
with a slack term η ∈ Rnsw .
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Fig. 3: Overview of the WBC in our locomotion framework. The dashed black box presents the definition of the HyQ’s legs (Left-Front (LF), Right-Front
(RF), Left-Hind (LH) and Right-Hind (RH)) and the generated wrenches. The solid orange box presents the terminologies used for the soft contact model.
ΨW is the world frame and ΨCi

is the local contact frame for the leg i fixed at the touch down position.

2) Cost: The cost function (5) consists of two terms. The
first term ensures the tracking of the trunk task by minimizing
the two-norm of the tracking error between the actual Wcom

and desired Wcom,d CoM wrenches. The second term in (5)
regularizes the solution and penalizes the slack variable.

3) Physical Consistency: The equality constraint (6) en-
forces the physical consistency between Fgrf and q̈ by ensuring
that the contact wrenches due to Fgrf will sum up to Wcom.
This is done by imposing the unactuated dynamics (2a) as an
equality constraint.

4) Stance Task: To remain contact consistent, we incorpo-
rate the stance task that enforces the stance legs to remain in
contact with the terrain. Since the sWBC is assuming a rigid
terrain, the stance feet are forced to remain stationary in the
world frame, i.e., vst = v̇st = 0 (see [3]). As a result, we
incorporate the rigid contact model in the sWBC formulation
as an equality constraint at the acceleration level (7) in order to
have a direct dependency on the decision variables. In detail,
since vst = Jstq̇ = 0, differentiating once with respect to time
yields v̇st = Jstq̈ + J̇stq̇ = 0.

5) Friction and Normal Contact Force: The inequality
constraint (11) enforces the friction constraints by ensuring
that the contact forces lie inside the friction cones. This is
done by limiting the tangential component of the GRFs Fgrf,‖.
The inequality constraint (12) enforces constraints on the
normal component of the GRFs Fgrf,⊥. This includes the
unilaterality constraints which encodes that the legs can
only push on the ground by setting an “almost-zero” lower
bound Fmin to Fgrf,⊥. They also allow a smooth load-
ing/unloading of the legs, and set a varying upper bound Fmax

to Fgrf,⊥. For the detailed implementation of the inequality
constraints (11) and (12), refer to [23].

6) Swing Task: We implement the tracking of the swing
task (in Section III-A) at the acceleration level (3) rather
than the force level since we can express the swing feet
velocities v̇sw as a function of q̈ which is a decision variable,
i.e., v̇sw(q) = Jswq̈ + J̇swq̇. This task could be encoded as
an equality constraint v̇sw = v̇sw,d. Yet, it is important to
relax this hard constraint when the joint kinematic limits are
reached (see [3]). Hence, the swing task is encoded in (13) by
an inequality constraint that bounds the solution around the
original hard constraint and a slack term η that is penalized for
its non-zero values in the cost function (5) and is constrained
to remain non-negative in (13).

Formulation 1 Whole-Body Optimization: sWBC Vs. c3WBC

(Trunk Task)

(Decision Variables)

(Physical Consistency)

((((((Stance Task)

(c3-Stance Task)

(Friction)

(Normal Contact Force)

(Swing Task)

(Torque Limits)

(Joint Limits)

min
u
‖Wcom −Wcom,d‖2Q + ‖u‖2R (5)

u = [q̈T FTgrf η
T εT ]T

s.t.:

Muq̈ + hu = JTst,uFgrf (6)

((((((((((
v̇st = Jstq̈ + J̇stq̇ = 0 (7)
Fgrf =Kstε+Dstε̇ (8)

v̇st = Jstq̈+ J̇stq̇ = −ε̈ (9)
ε ≥ 0 (10)

|Fgrf,‖| ≤ µ|Fgrf,⊥| (11)
Fmin ≤ Fgrf,⊥ ≤ Fmax (12)

−η ≤ v̇sw − v̇sw,d ≤ η, η ≥ 0 (13)
τmin ≤ τj ≤ τmax (14)
q̈jmin ≤ q̈j ≤ q̈jmax (15)

7) Torque and Joint Limits: The torque and joint limits
are enforced in the inequality constraints (14) and (15),
respectively.

8) Torque Mapping: The WBOpt (5)-(7), (11)-(15) gener-
ates optimal joint accelerations q̈∗j and contact forces F ∗grf ,
that are mapped into optimal joint torques τ∗ and sent to the
low-level controller using the actuated dynamics (2b) as

τ∗ = Maq̈
∗ + hj − JTst,jF ∗grf (4)

C. Feedback Control

The computation of the optimal torques τ∗ relies on the
inverse dynamics in (4) which might be prone to model
inaccuracies [24]. In order to tackle this issue, the desired
torques τd sent to the lower level control could combine the
optimal torques τ∗ in (4) with a feedback controller τfb as
shown in Fig. 3. The feedback controller improves the tracking
performance if the dynamic model of the robot becomes
less accurate [24]. The feedback controller is a proportional-
derivative (PD) joint space impedance controller [23].

Remark 1: Throughout this work and similar to [3] and [21],
we found it sufficient to use only the inverse-dynamics term
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(the optimal torques τ∗) and not the joint feedback part. This
is due to the fact that we can identify the parameters of our
dynamic model with sufficient accuracy as detailed in [25].
That said, we carried out the simulation and experiment
without any need of the feedback loop.

IV. C3 WHOLE BODY CONTROLLER

Over soft terrain, the feet positions are non-stationary and
are allowed to deform the terrain. Thus, the rigid contact
assumption of the stance task (7) in the sWBC does not hold
anymore and should be dropped. To be c3, the interaction
between the stance feet and the soft terrain must be governed
not just by the robot dynamics but also by the soft contact
dynamics. That said, the c3WBC extends the sWBC by:
1) modeling the soft contact dynamics and incorporating it
as a stance task similar to the control tasks in Section III-A,
and 2) encoding the stance task in the WBOpt as a function
of the decision variables. The differences between the sWBC
and the c3WBC are highlighted in boldface in Formulation 1.

Remark 2: The term contact consistent is a well-established
term in the literature that was initially introduced in [26]. It
implies formulating the control structure to account for the
contact with the environment. The term c3 is an extension of
the term contact consistent. Hence, c3 implies formulating the
control structure to account for the compliant contact with the
environment.

A. c3-Stance Task

We model the soft contact dynamics with a simple explicit
model (the KV model). This consists of 3D linear springs
and dampers normal and tangential to the contact point [12].
The normal direction of this impedance emulates the normal
terrain deformation while the tangential ones emulate the shear
deformation. Although several models that accurately emulate
contact dynamics are available [27, 28, 15], we implemented
the KV model for several reasons. First, since the model is
linear in the parameters, it fits our QP formulation. Second,
estimating the parameters of the KV model is computationally
efficient. As a result, using this model, we can run a learning
algorithm online which would be challenging if a model
similar to [14] is used. For a legged robot with point-like feet,
for each stance leg i, we formulate the contact model in the
world frame as

Fgrf,i = kst,ipi + dst,iṗi (16)

where kst,i ∈ R3×3, dst,i ∈ R3×3, Fgrf,i ∈ R3, pi ∈ R3,
and ṗi ∈ R3 are the terrain stiffness, the terrain damping,
the GRFs, the penetration and the penetration rate of the i-th
stance leg, all expressed in the world frame, respectively (see
Fig. 3). We define pi and ṗi as

pi = xtd,i − xst,i, ṗi = 0− vst,i (17)

where xtd,i ∈ R3 denotes the position of the contact point of
foot i at the touchdown in the world frame. By appending all
of the stance feet, the contact model can be re-written in a
compact form as

Fgrf = Kstp+Dstṗ = Kst(xtd − xst)−Dstvst (18)

where Kst ∈ Rnst×nst and Dst ∈ Rnst×nst are the block-
diagonal stiffness and damping matrices of the terrain of all
the stance feet, respectively, and xtd ∈ Rnst are the touchdown
positions of all the stance feet.

Similar to Section III-A, we deal with the contact
model (18) as another WBC task (alongside the trunk and
swing (3) tasks). We can think of (18) as a desired stance
task that keeps the WBC c3. This stance task is achieved by
a Cartesian impedance at the stance foot which is represented
by the impedance of the terrain (Kst and Dst). This similarity
makes us encode the contact model in the WBOpt as a
stance constraint similar to what we did for the swing task
in Section III-B. Hereafter, we refer to this stance task as
the c3-stance task (see Fig. 3).

B. Whole-Body Optimization Revisited

The c3-stance task is included in the WBOpt by writing the
soft contact model (18) as a function of the decision variables.
Ideally, we can directly reformulate (18) as a function of Fgrf

and v̇st. Indeed, v̇st can be expressed as a function of the
joint accelerations q̈ which is a decision variable (as explained
in [3]). By numerically integrating v̇st (once to obtain vst and
twice to obtain xst), we can associate Fgrf with v̇st. This
approach requires the knowledge of xtd to compute p which
might be prone to estimation errors and it requires a reset of
the integrator at every touchdown.

We choose a more convenient approach which is to add the
desired foot penetration ε as an extra decision variable in the
WBOpt formulation. The difference between p and ε is that p
is the actual penetration due to the interaction with the soft
contact while ε is the desired penetration in the world frame
generated from the optimization problem. Both variables imply
the same physical phenomenon (the soft contact deformation).
That said, we can rewrite Fgrf in (18) as a function of ε
and ε̇ (by numerically differentiating ε) without the previous
knowledge of xtd, which is advantageous.

To do so, ε is appended to the vector of decision variables u
and regularized in (5). Then, we incorporate (18) directly as
a function of Fgrf and ε as in the equality constraint (8).
We numerically differentiate ε to obtain ε̇k = εk−εk−1

∆t .
To maintain physical consistency, we need to enforce an
additional constraint between the desired penetration ε and
the contact acceleration (ε̈ = −v̇st). This is encoded as an
equality constraint as shown in (9). To do so, we numerically
differentiate ε twice to obtain ε̈k = εk−2εk−1+εk−2

∆t2 . We
also ensure the consistency of the physical contact model
throughout the optimization problem by ensuring that the
penetration is always positive in (10).

We also consider the loading and unloading phase, ex-
plained in [3] and [23], to be terrain-aware. We tune the
loading and unloading phase period Tl/u for each leg to follow
the settling time of a second order system response that is a
function of the terrain compliance and the robot’s mass [29].
Hence, Tl/u is

Tl/u = 4.6/

√
kst,i

me
(19)
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where me is the equivalent mass felt at the robot’s feet
(i.e., the weight of the robot mR spread across its stance
feet me = mR/nst) and the constant in the numerator
represents a 1% steady-state error.

Finally, the WBOpt (5), (6), (8)-(15) generates optimal joint
accelerations q̈∗j and contact forces F ∗grf , that are mapped into
optimal joint torques τ∗ and sent to the low-level controller
using the actuated part of the robot’s dynamics as shown in (4).
Note that similar to the sWBC, we found it sufficient to use
only the inverse-dynamics term (the optimal torques τ∗) and
not the joint feedback part.

As explained above, adding ε as a decision variable involved
adding two constraints in the optimization which increases the
problem size and the computation time. Yet, we are still able to
run the c3WBC in real-time. The advantage of our approach
is that the knowledge of the touchdown position xtd is not
required. We only need the previous two time instances of the
penetration εk−1 and εk−2 that we already computed in the
previous control loops.

V. TERRAIN COMPLIANCE ESTIMATION

The purpose of the TCE is to estimate online the terrain
parameters (namely Kst and Dst) based on the states of the
robot. It is a stand-alone algorithm that is decoupled from
the c3WBC. The TCE uses the contact model (18). Based on
that, the current measurement of the contact states (contact
status α, GRFs Fgrf , the penetration p, and the penetration
rate ṗ) of each leg i at every time step are required. Given
the contact states, we use supervised learning to learn the
terrain parameters. As shown in Fig. 4, the TCE consists
of two main modules: contact state estimation (Section V-A)
and supervised learning (Section V-B). The contact state
estimation module estimates the contact states and provides
it to the supervised learning module that collects these data
and computes the estimates of the terrain parameters.

A. Contact State Estimation

The contact states are estimated solely from the current
states of the robot by the state estimator. The GRFs are
estimated from the torques and the joint states, and the
penetration and its rate are estimated from the floating base
(trunk) states and the joint states.

1) GRFs Estimation: To estimate the GRF, we use actuated
part of the dynamics in (2b) as

Fgrf,i = αiJ
−T
j,i (Ma,iq̈i + hj,i − τj,i) (20)

where Fgrf,i, Jj,i, Ma,i, q̈i, hj,i, and τj,i correspond to
Fgrf , Jst,j , Ma, q̈, hj , and τj for the i-th leg, respectively.
Additionally, αi is the contact status variable that detects if
there is a contact in the i-th leg or not. The contact is detected
when the GRF exceed a certain threshold Fmin. Hence, αi
computed along the normal direction of the i-th leg ni as:

αi =

{
1, if nTi (J−Tj,i (Ma,iq̈i + hj,i − τj,i) ≥ Fmin

0, otherwise
(21)

2) Penetration Estimation: As shown in (17), we estimate
the penetration and its rate using the stance feet positions xst,i

and velocities vst,i, and the touchdown position xtd,i all in the
world frame. To estimate the feet states in the world frame,
we use the forward kinematics and the base state in the world
frame. Thus, the penetration and its rate are written as

pi = xtd,i − xst,i = xtd,i − xb −RWB xBst,i (22)

ṗi = −vst,i = −vb −RWB vBst,i − (ωb ×RWB )xBst,i (23)

where xb ∈ R3 and vb ∈ R3 are the base position and velocity
in the world frame, respectively. The terms xBst,i and vBst,i are
the stance feet position and velocity of the i-th leg in the base
frame, respectively. The terms RWB ∈ SO(3) and ωb are the
rotation matrix mapping vectors from the base frame to the
world frame and the base angular velocity, respectively. The
touch down positions are obtained using a height map.

3) Contact States Mapping: Since, the KV model consists
of 3D linear springs and dampers, normal and tangential
to the contact point, this makes the stiffness and damping
matrices diagonal with respect to the contact frame. However,
if expressed in the world frame, the stiffness and damping
matrices become dense. Thus, if we formulate the KV model
in the contact frame rather than the world frame, we estimate
less number of elements per matrix per leg: three elements
instead of nine. Henceforth, the KV model in the TCE should
be formulated with respect to the contact frame rather than
the world frame to reduce the computational complexity. To
do so, the GRFs (20), the penetration (22) and its rate (23) of
the i-th leg are transformed from the world frame ΨW to the
contact frame ΨCi

as (see Fig. 3)

FCgrf,i = RCi

W Fgrf,i (24)

pCi = RCi

W pi (25)

ṗCi = RCi

W ṗi (26)

where the superscript •C refers to the contact frame and RCi

W

is the rotation matrix mapping from the world ΨW to the
contact ΨCi frames for the i-th leg. Note that the transforma-
tion (26) is linear since the contact frame is fixed with respect
to the world frame at the touch down position (i.e., ṘCi

W = 0).

B. Supervised Learning

Considering the contact model in the contact frame and
using the estimated contact states (24)-(26), we learn the
terrain parameters online via supervised learning. In particular,
we use weighted linear least squared regression. The algorithm
is treated as a batch algorithm with m-examples such that, at
every time instant k, we gather samples from the previous m
time instances and compute the terrain parameters [30].

For the k-th time instant, of the i-th leg in the d-th
direction (d ∈ {ni, t1,i, t2,i}, see Fig. 3), the terms FC,dgrf,i(k),
pC,di (k), and ṗC,di (k) are estimated as shown in Section V-A
where •di (k) refers to the k-th time instance of the i-th leg
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Fig. 4: Overview of the TCE’s architecture inside the state estimator.

in the d-th direction. That said, we construct the following
objects (buffers) with size m

Fdi =
[
FC,dgrf,i(k) · · · FC,dgrf,i(k −m)

]T
(27)

Pdi =
[
pC,di (k) · · · pC,di (k −m)

]T
(28)

Ṗdi =
[
ṗC,di (k) · · · ṗC,di (k −m)

]T
(29)

Pdi =
[
Pdi Ṗdi

]
(30)

where Fdi ∈ Rm is the GRFs buffer and Pdi ∈ Rm×2

is the penetration, and penetration rate buffer. Given Fdi
and Pdi as inputs and outputs of the learning algorithm
respectively, we estimate the terrain impedance parameters as

Idi =
[
kC,dst,i d

C,d
st,i

]T
∈ R2 using the analytical solution

Idi = (PdTi WPdi )−1PdTi WFdi (31)

where kC,dst,i ∈ R and dC,dst,i ∈ R are the terrain stiffness
and damping parameters expressed in the contact frame. The
matrix W ∈ Rm×m is a weighting matrix used to penalize the
error on most recent sample compared to the less recent ones
and thus, giving more importance to the most recent samples.

All of the legs in the learning algorithm are decoupled. We
found it advantageous to treat each leg separately because the
robot can be standing on a different terrain at each foot.

C. Implementation Details

Algorithm 1 sketches the entire TCE process. To initialize
the buffers, we acquire samples when the robot is at full stance
and return the first estimate of Idi once the buffers are full.
After initialization, we acquire samples and update the buffers
only when the leg is at stance.

The buffers are continuously updated in a sliding window
fashion. When a leg finishes the swing phase and is at a new
touch down, it continues to use the previous samples from the
previous stance phase. This is advantageous since it gives a
smooth transition between terrains, but it adds a delay.

Remark 3: Since the c3WBC formulation is based in the
world frame, it is essential to map the estimated stiffness and
damping matrices back to the world frame before providing
them to the c3WBC (see Fig. 4).

Remark 4: The TCE can be used with any arbitrary terrain
geometry given the terrain normal and thus RCi

W . The terrain
normal ni at the contact point i can be provided by a height
map that is generated via an RGBD sensor.

Algorithm 1 Terrain Compliance Estimation

1: initialize the buffers (Fdi and Pdi ) and Idi
2: for each iteration k do
3: for each leg i do
4: if leg is in contact (αi == 1) then (21)
5: for each direction d do
6: estimate F dgrf,i(k) (20)
7: estimate pdi (k) (22)
8: estimate ṗdi (k) (23)
9: transform F dgrf,i(k) into FC,dgrf,i(k) (24)

10: transform pdi (k) into pC,di (k) (25)
11: transform ṗdi (k) into ṗC,di (k) (26)
12: update buffers Fdi and Pdi (27)-(30)
13: solve for Idi (31)
14: end for
15: map the estimated parameters to ΨW

16: end if
17: end for
18: end for

VI. EXPERIMENTAL SETUP

A. State Estimation

We implemented our approach on HyQ [31] which is
equipped with a variety of sensors. Each leg contains two
load-cells, one torque sensor, and three high-resolution optical
encoders. A tactical-grade Inertial Measurement Unit (IMU)
(KVH 1775) is mounted on its trunk. Of particular importance
to this experiment is the Vicon motion capture system (MCS).
It is a multi-camera infrared system capable of measuring the
pose of an object with high accuracy. During experiments, an
accurate and non-drifting estimate of the position of the feet
in the world frame is required to calculate the real penetration
for the TCE. Typically, HyQ works independently of external
sensors (e.g., MCS or GPS), however, soft terrain presents
problems for state estimators [6]. This was re-affirmed in
experiment.

The current state estimator [32] relies upon fusion of IMU
and leg odometry data at a high frequency and uses lower
frequency feedback from cameras or lidars to correct the
drift. The leg odometry makes the assumption that the ground
is rigid. On soft terrain, the estimator has difficulties in
determining when a foot is in contact with the ground (i.e.,
is the foot in the air, or compressing the surface?). These
errors cause the leg odometry signal to drift jeopardizing the
estimation. Although, incorporating vision information could
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be a possibility to correct for the drift in the estimation,
improving state estimation on soft terrain is an ongoing area
of research and is out of the scope of this paper.

Despite the drifting problem, we used the current state
estimator [32] in our WBC because the planner in Fig. 3 has
a re-planning feature that makes our WBC robust against a
drifting state estimator [33]. However, the TCE still requires
an accurate and non drifting estimate of the feet position in
the world frame. Therefore, to validate the TCE, we used an
external MCS that completely eliminates the drift problem.
The MCS measures the pose of a special marker array placed
on the head of the robot. Then the position of the feet in
the world frame was calculated online by using the MCS
measurement and the forward kinematics of the robot.

B. Terrain Compliance Estimator TCE Settings

In this work we used a sliding window of m = 250 samples
(or 1 s for a control loop running at 250 Hz). Despite the
general formulation, in this paper we estimate the terrain
parameters only for the direction normal to the terrain, and
assume that the tangential directions are the same. We carried
out the simulation and experiment on a horizontal plane. Thus,
the rotation matrix RCi

W is identity. Furthermore, we did not
estimate the damping parameter due to the inherent noise in the
feet velocity signals that would jeopardize the estimation. The
damping term Dstvst in (18) is less dominant in computing
the GRFs compared to the stiffness term. This is because the
feet velocities in the world frame vst are usually orders of
magnitude smaller than the penetration during stance, and the
damping parameter Dst is usually orders of magnitude smaller
than the stiffness parameter as shown in [28].

C. Tuning of the Low Level Control

During experiments, we found that the low level torque
loop creates system instabilities when interacting with soft
environments. In particular, when we used the same set of
(high) torque gains in the low level control loop tuned for rigid
terrain, we noticed joint instabilities when walking over soft
terrain. This is because interacting with soft terrain reduces
the stability margins of the system. Thus, keeping a high
bandwidth in the inner torque loop given the reduced stability
margin will cause system instability. In our previous work [34],
we experimentally validated that increasing the torque gain
of the inner loop can indeed cause system instabilities. In
fact, this is a well know issue in haptics [35]. As a result,
reducing the bandwidth by decreasing the torque gains in the
inner torque loop was necessary to address these instabilities.

Our control design is a nested architecture consisting of the
WBC and the low level torque control in which, both control
loops contribute to the system stability [34, 36]. Over soft
terrain, the dynamics of the environment also plays a role and
must be considered in analyzing the stability of the system.
That said, there is a nontrivial relationship between soft terrain
and the stability of a nested control loop architecture, and a
formal and thorough analysis is an ongoing work.

TABLE I
Mean Absolute Tracking Error (MAE) [N] of the GRFs in Simulation using

sWBC, c3WBC and STANCE over Multiple Terrains.

Terrain sWBC c3WBC STANCE
Soft 7.7261 7.4419 6.3547

Moderate 8.0594 7.4585 7.9889
Rigid 4.889 6.6523 5.128

VII. RESULTS

In this section, we evaluate the proposed approach on HyQ
in simulation and experiment. We compare three approaches:
the sWBC which is the baseline, the c3WBC which is our
proposed WBC without the TCE, and STANCE which in-
corporates both the c3WBC and TCE. We show the extent
of improvement given by the c3WBC controller with respect
to the sWBC as well as the importance of the TCE during
locomotion over multiple terrains with different compliances.
We set the same parameters and gains throughout the entire
simulations and experiments, unless mentioned otherwise. The
results are shown in the accompanying video1.

A. Simulations

To render soft terrain in simulation, we used the Open
Dynamics Engine (ODE) physics engine [37]. We used ODE
because it is easily integrable with our framework, and it is
numerically fast and stable for stiff and soft contacts [38].
Moreover, ODE can render soft contacts that emulates physical
parameters (using the SI units N/m and Ns/m for springs
and dampers, respectively) unlike other engines that uses non-
physical ones [39]. ODE’s implicit solver uses linear springs
and dampers for their soft constraints which fits perfectly with
our contact model (18). In this way, we have a controlled sim-
ulation environment where we can emulate any terrain compli-
ance by manipulating its stiffness Kt and damping Dt param-
eters similar to our contact model. Throughout the simulation,
we use four types of terrains with the following parameters:
soft T1 (Kt = 3500 N/m), moderate T2 (Kt = 8000 N/m),
stiff T3 (Kt = 10000 N/m), and rigid T4 (Kt = 2×106 N/m)
all with the same damping (Dt = 400 Ns/m).

1) Locomotion over Multiple Terrains: We evaluate the
three approaches with the robot walking at 0.05 m/s over the
terrains: T1 (soft), T2 (moderate), and T4 (rigid). We provided
the c3WBC with the terrain parameters of the moderate
terrain T2 for all the three simulations. We do that in order
to test the performance of c3WBC if given the real terrain
parameters (in case of T2) or inaccurate parameters (in case
of T1 and T4). In this simulation, we compare the actual
values of Fgrf,⊥ against the optimal values F ∗grf,⊥(solution
of the WBOpt) as well as the actual penetration p against
the desired penetration ε of the LF leg. We have omitted
the other three feet for space as all four legs have the
same performance. The results are shown in Fig. 5. The
Mean Absolute Tracking Error (MAE) of the GRFs in these
simulations are presented in Table I. The MAE of the GRFs is
defined as: MAE = 1

T

∫ T
0
|Fgrf − F ∗grf |dt.

1Link: https://youtu.be/0BI4581DFjY

https://youtu.be/0BI4581DFjY
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Desired
Actual

Fig. 5: Simulation. Comparison of sWBC, c3WBC, and STANCE over three type of terrains: soft T1 (Kt = 3500 N/m), moderate T2 (Kt = 8000 N/m),
and rigid T4 (Kt = 2× 106 N/m) all with the same damping (Dt = 400 Ns/m). (a)-(c): The actual and desired contact forces in the normal direction of the
LF leg for one gait cycle. (d)-(f): The actual p and desired ε penetration in the normal direction of the LF leg for one gait cycle. The red and green ellipses
highlight the performance of the three approaches in adapting to soft terrain.

Fig. 5a captures the effect of the three approaches on the
GRFs over soft terrain. We can see that a WBC based on a
rigid contact assumption (sWBC) assumes that it can achieve
an infinite bandwidth from the terrain and thus supplying an
instantaneous change in the GRFs as highlighted by the red
ellipses in Fig. 5a. On the other hand, STANCE and c3WBC
were both capable of attenuating this effect as highlighted by
the green ellipses. For the reasons explained earlier in this
paper and in [10], instantaneous changes in the GRFs are
undesirable over soft terrain. This resulted in an improvement
in the tracking of the GRFs in STANCE and c3WBC compared
to sWBC as shown in Table I. Moreover, by comparing
c3WBC and STANCE over soft terrain T1, we can see that
the shape of the GRFs did not differ. However, the tracking of
the GRFs in STANCE is better than the c3WBC. This shows
that suppling the c3WBC with the incorrect values of the
terrain parameters deteriorates the GRFs tracking performance.
Fig. 5b shows the GRFs on a moderate terrain. Since the
c3WBC is provided with the exact terrain parameters of T2,
we can perceive the c3WBC as STANCE with a perfect
TCE on moderate terrain. As a result, Table I shows that
in this set of simulations, c3WBC outperformed STANCE in
the GRFs tracking. This shows that a more accurate TCE
can result in a better GRFs tracking. Additionally, Fig. 5c
shows the GRFs on rigid terrain. We can see that the sWBC
resulted in a typical (desired) shape of the GRFs for a crawl
motion in rigid terrain [33]. STANCE showed a shape of
the GRFs similar to the sWBC which is expected since the
TCE provided STANCE with parameters similar to the rigid
terrain. However, for c3WBC, the GRFs shape did not change
compared to the other three terrains. As shown in Table I,
the best tracking to the GRFs was by the sWBC, which
was expected since the sWBC was designed for rigid terrain.
However, sWBC was only slightly better than STANCE due
to small estimation errors from the TCE.

Fig. 5a-c show the superiority of STANCE compared to
sWBC and c3WBC. STANCE adapted to the three terrains by
estimating their parameters and supplying them to the WBC.
This resulted in changing the shape of the GRFs accordingly
that improved the tracking of the GRFs. Unlike STANCE, the
sWBC and the c3WBC both are contact consistent for only
one type of terrain which resulted in a deterioration of the

Desired

Fig. 6: Simulation. Traversing multiple terrains of different compliances
(T4, T1, T2, T3, T4). Top: Tracking of the desired terrain penetration of the
LF leg in the xz-plane. Bottom: Estimated terrain stiffness of the LF leg. For
readability purposes we only plot estimated values less than 2 × 104. The
green shaded areas highlight the overlap between terrains that results in higher
estimated stiffness (black ellipses).

GRFs tracking over the other types of terrains. The advantages
of STANCE compared to sWBC and c3WBC are also shown in
Fig. 5d-f. Since the sWBC is always assuming a rigid contact,
the penetration ε was always zero throughout the three terrains.
Similarly, since the c3WBC alone is aware only of one type
of terrain, it is always assuming the same contact model, in
which the desired penetration ε was similar throughout the
three terrains. STANCE, however, was capable of predicting
the penetration correctly for all the three terrains.

In general, even if the contact model is for soft contacts,
STANCE was capable of correctly predicting the penetration
of the robot even in rigid terrain (zero penetration). This re-
sulted in STANCE adapting to rigid, soft and moderate terrains
by means of adapting the GRFs and correctly predicting the
penetration.

2) Longitudinal Transition Between Multiple Terrains:
We show the adaptation of STANCE when walking and
transitioning between multiple terrains. We test the accuracy
of the TCE and the effect of closing the loop of the c3WBC
with the TCE on the feet trajectories and terrain penetration.
In this simulation, HyQ is traversing five different terrains,
starting and ending with a rigid terrain: T4, T1, T2, T2, T4.
The results are presented in Fig. 6. The top plot presents the
actual foot position against the desired penetration ε of the LF
leg in the xz-plane of the world frame. The origin of the z-
direction (normal direction) is the uncompressed terrain height.
Thus, trajectories below zero represent the penetration of the
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TABLE II
Mean µ [N/m], Standard Deviation σ [N/m], and Percentage Error of the

Estimated Terrain Stiffness of the LF Leg in Simulation.

Terrain Actual Stiffness Mean µ ± STD σ % Error
T1 3500 3530 ± 200 0.9%
T2 8000 8110 ± 400 1.4%
T3 10000 10110 ± 400 1.1%
T4 2000000 2240000 ± 740000 12%
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Fig. 7: Simulation. Comparing sWBC and STANCE under aggressive trunk
maneuvers. Left: Top view of the front feet (RF and LF) positions. Right:
Side view of the LF position.

LF leg. The bottom plot shows the history of the estimated
terrain stiffness of the TCE of the LF leg. Table II reports
the mean, standard deviation, and percentage error2 of the
estimated terrain stiffness of the LF leg against the ground
truth value set in ODE. The table shows that the TCE had
an estimation accuracy below 2% for the soft terrains T1, T2

and T3. However, the estimation accuracy of the rigid terrain
was lower than that of the soft terrains. This is expected since
on a rigid terrain, the penetrations are (almost) zero. Thus,
a small inaccurate penetration estimation due to any model
errors could result in a lower estimation accuracy. Apart from
the rigid case, the standard deviation is always below 6% of the
ground truth value. Fig. 6 shows that STANCE is always c3,
the actual foot position is always consistent with the desired
penetration during stance. We can see that, when HyQ is
standing over rigid terrain, both the actual foot position and
desired penetration are zero. As HyQ walks, over the soft
terrains, the penetration is highest in the softest terrain and
smallest in the stiffest terrain.

In the simulation environment, we overlapped the terrains
to prevent the feet from getting stuck between them. This
overlap created a transition (highlighted in green in the figure)
which resulted in a stiffer terrain. The overlap was captured
by the TCE and resulted in a slight increase in the estimated
parameters as highlighted by the two ellipses in the lower
plot. We also noticed a lag in estimation, due to a filtering
effect, since the TCE is using the most recent m-samples.
As highlighted by the black box in Fig. 6, HyQ was on
rigid terrain (actual penetration is zero) while STANCE still
perceived it as being on T3 (desired penetration is non-zero).

3) Aggressive trunk maneuvers: We tested sWBC and
STANCE under aggressive trunk maneuvers by commanding
desired sinusoidal trajectories at the robot’s height (0.05 m
amplitude and 1.8 Hz frequency) and at roll orientation (0.5
rad amplitude and 1.5 Hz frequency) over the soft terrain T1.
The results are shown in Fig. 7. The left plot shows a top

2 The percentage error is defined as: % Error = | Estimate−Actual
Actual | × 100

Fig. 8: Simulation. Speed test. Increasing the desired forward velocity
from 0.05 to 0.3 m/s. Left: Side view of the RF (a) and LH (b) positions.
Right: (c) Closeup section of the top left plot. The green lines are the desired
step height. The black dashed lines are the terrain height.

view of the actual front feet (LF and RF) positions in the
world frame. The right plot shows a side view of the actual
LF foot position in the world frame. We notice that the feet of
HyQ are always in contact with the terrain in STANCE which
is expected since STANCE is c3. Unlike STANCE, the feet
did not remain in contact with the terrain in the sWBC. This is
clearly seen in Fig. 7 where HyQ lost contact multiple times.
This resulted in the robot falling over in the sWBC case as
shown in the video.

4) Speed Test: We carried out a simulation where HyQ
walks over soft terrain T1, starting with a forward velocity
of 0.05 m/s until it reaches 0.3 m/s with an acceleration
of 0.005 m/s2. In this simulation, we compare STANCE
against the sWBC. Fig. 8a and Fig. 8b show the actual
trajectories of the RF and LH legs in the world frame,
respectively. Fig. 8c shows a closeup section of the RF leg’s
trajectory. The simulation shows that STANCE was c3 over
the entire simulation while the sWBC was not.

In particular, STANCE was able to remain in contact with
the terrain that allowed HyQ to start the swing phase directly
from the terrain height. Unlike STANCE, the sWBC is not
terrain aware and did not remain c3 which resulted in starting
the swing trajectory while still being inside the deformed
terrain. This is highlighted by the two ellipses in the right
plot. Additionally, the compliance contact consistency property
of STANCE enabled the robot to maintain the desired step
clearance (i.e., achieving the desired step height of 0.14 cm)
compared to sWBC. Most importantly, as shown in the accom-
panying video, the sWBC failed to complete the simulation
and could not achieve the final desired forward velocity;
It fell at a speed of 0.21 m/s. Note that both approaches
could reach higher velocities with a more dynamic gait (trot).
However, this simulation is not focusing on analyzing the
maximum speed that the two approaches can reach but rather
the differences between these approaches at a higher crawl
speeds.

5) Power Test: In this test, we compare the power con-
sumption using STANCE and sWBC on HyQ during walk-
ing over the soft terrain T1 at different forward velocities
(0.05 m/s, 0.15 m/s and 0.25 m/s). Fig. 9 presents the energy
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Fig. 9: Simulation. Power consumption comparison between sWBC and
STANCE with different forward velocities (0.05 m/s, 0.15 m/s and 0.25 m/s).

Fig. 10: Experiment. Comparing sWBC, c3WBC and STANCE over a soft
foam block (Kt = 2400 N/m). Top: Tracking of the GRFs of the RF leg.
Bottom: Tracking of the foot penetration. The gray shaded areas represent the
uncertainty of the measurements.

plots of STANCE and sWBC. The plot shows that STANCE
requires less power than the sWBC because it knows how the
terrain will deform. STANCE exploits the terrain interaction
to achieve the motion. The difference in consumed energy is
negligible at 0.05 m/s but becomes significant at higher speeds.

B. Experiment

We validated the simulation presented in Section VII-A on
the real platform. We analyzed sWBC, c3WBC (with fixed
terrain parameters) and STANCE as well as the performance
of the TCE module itself.

A foam block of 160 cm × 120 cm × 20 cm was selected
as a soft terrain for these experiments. To obtain a ground
truth of the foam stiffness, we carried out indentation tests on
a 50 cm3 sample of the foam with a stress-strain machine that
covers the range of penetration of interest for our robot (below
0.15 cm). The indentation test showed a softening behavior of
the foam with an average stiffness of 2400 N/m. The MAE of
the GRFs of the upcoming experiments are shown in Table III.

1) Locomotion over Soft Terrain: In this experiment, HyQ
is walking over the foam with a forward velocity of 0.07 m/s
using the three approaches. The results are presented in Fig. 10
that shows the actual and desired Fgrf,⊥ and penetration of
the RF leg. The shaded gray area in the lower plots of Fig. 10
represents the uncertainty in the estimation of the foot position
(see Section VI-A). In these experiments, all three approaches
performed well; none of them failed. However, the shape
of GRFs were different within the three approaches. As in
Section VII-A1, since sWBC is rigid contact consistent, the

TABLE III
Mean Absolute Tracking Error (MAE) [N] of the GRFs using sWBC,

c3WBC and STANCE under Different Sets of Experiments.

Description sWBC c3WBC STANCE
Soft Terrain (Sec. VII-B1) 73.9042 68.5581 61.8207
Longitudinal Trans. (Sec. VII-B2) 70.5276 64.2636 60.6285
Lateral Trans. (Sec. VII-B3) 73.0766 - 53.0107

TABLE IV
Mean µ [N/m], Standard Deviation σ [N/m], and Percentage Error of the

Estimated Terrain Stiffness of the Four Legs in Experiment over Soft
Terrain (2400 N/m).

Leg Mean µ ± STD σ % Error
LF 2186 ± 166 9%
RF 2731 ± 173 14%
LH 2368 ± 317 1%
RF 2078 ± 331 13%

desired GRFs were designed for rigid contacts. Unlike sWBC,
STANCE is c3, which was capable of changing the shape of
the GRFs. This is highlighted in Table III in which STANCE
outperformed sWBC in the tracking of the GRFs.

In simulation, when we provided the c3WBC with the true
value of the stiffness, the MAE of the GRFs was better.
However, in this experiment, providing the value obtained
from the indentation tests to the c3WBC resulted in a worse
GRFs MAE. This outperformance of STANCE compared to
the c3WBC in this experiment could be because of the TCE.
To clarify, the actual terrain compliances are not constant, but
since the TCE is online, it is able to capture these changes in
the terrain compliances as well as model errors. As shown in
the accompanying video, STANCE had a smoother transition
during crawling compared to sWBC. We found the robot
transitioning from swing to stance more aggressively in sWBC
than STANCE. Such smooth behavior was also noticed in [10].

Table IV shows the mean, standard deviation, and percent-
age error of the estimated terrain stiffness of all the four legs
against the ground truth value (2400 N/m) obtained from the
indentation tests. The table shows that the accuracy of the TCE
in simulation is better than in experiments. This is expected
since in simulation, the TCE has a perfect knowledge of the
feet penetration. However, the accuracy of our TCE is better
compared to [20] in which the percentage error exceeded 50%
(the actual stiffness was more than double that of the estimated
one in [20]).

2) Longitudinal Transition Between Multiple Terrains:
Similar to Section VII-A2, we compare the three approaches
while transitioning between the foam block and a rigid pallet.
We added a pad between between the two terrains to avoid
the foot getting stuck (see Fig. 1a). Fig. 11a-c show the actual
position and the desired penetration of the RF leg in the xz-
plane for the three approaches. Fig. 11d shows the estimated
terrain stiffness of the TCE for all four feet.

From Fig. 11a-b we see that both sWBC and c3WBC did not
adapt to terrain changes. Since both controllers are designed
for a specific constant terrain, the desired penetration did not
change from soft to rigid. In the sWBC, there is no tracking
of the penetration, and in the c3WBC, the tracking of the
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Desired

Fig. 11: Experiment. Longitudinal transition from soft to rigid terrain. The
first three plots show the tracking of the desired foot penetration of RF leg
using the three approaches (the sWBC, c3WBC with fixed terrain stiffness
and STANCE. The fourth plot shows the stiffness estimated by the TCE for
the four legs.

penetration is good only when the leg is on the foam where
the stiffness is consistent to the one used in the controller. On
the other hand, as shown in Fig. 11c-d, STANCE changes its
parameters when facing a different terrain; it was capable of
adapting its desired penetration to the type of terrain. In fact,
the desired penetration was non-zero on soft terrain and was
almost zero on rigid terrain. This again resulted in STANCE
achieving the best GRFs tracking as shown in Table III.

Fig. 11d shows the importance of having a TCE for each
leg. The estimated terrain parameters are different between the
legs where the hind legs are on the foam while the rigid ones
transitioning from foam to rigid. The figure also shows that
the LF leg walked over the rigid terrain before the RF and that
the TCE captures the intermediate stiffness estimation due to
the rubber pad (see video).

3) Lateral Transition Between Multiple Terrains: Unlike
the previous experiment, we set the foam and the pallet
laterally as shown in Fig. 1c and in the accompanying video.
This is a more challenging scenario for stability reasons. In
particular, the robot must extend its leg further in the soft
terrain maintain the trunk’s balance. Consequently, since the
width of HyQ’s torso is smaller than its length, the Zero
Moment Point (ZMP) is more likely to get out of the support
polygon. The GRFs MAE in Table III show that STANCE
can outperform sWBC during both longitudinal and lateral
transitions.

4) External Disturbances over Soft Terrain: In this experi-
ment, we test the sWBC and STANCE when the user applies
a disturbance on HyQ. The results are shown in Fig. 12.
The top plots show the actual and desired Fgrf,⊥ in sWBC
and STANCE, respectively. The bottom plots show the actual
torque and torque limits of the Knee Flexion-Extension (KFE)
joint of the RF leg in sWBC and STANCE, respectively. In
the accompanying video, we can qualitatively see that with
STANCE, the feet of HyQ keep moving to remain c3 with the
terrain. On the other hand, the sWBC kept its feet stationary.
This behavior was also reported by [6].

Most importantly, we noticed that HyQ reaches the torque
limits in the sWBC as shown in Fig. 12. However, in STANCE,

Fig. 12: Experiment. The sWBC and STANCE under disturbances over
soft terrain. Top: The actual and desired Fgrf,⊥ in sWBC and STANCE,
respectively. Bottom: The actual torque and torque limits of the Knee Flexion-
Extension (KFE) joint of the RF leg in sWBC and STANCE, respectively.

TABLE V
Mean µ [N/m] and Standard Deviation σ [N/m] of the Estimated Terrain

Stiffness of the Four Legs in Experiments (see Fig. 1b).

Leg Mean µ ± STD σ

LF 448400 ± 165100
RF 55200 ± 48400
LH 2645000 ± 336000
RH 1393000 ± 442000

since the robot was constantly moving its feet, hence re-
distributing its forces, the torque limits were not reached.
This behavior was also reflected on the GRFs in which, the
GRFs were resonating in the sWBC as highlighted by the
ellipse in Fig. 12.

5) TCE’s Performance over Multiple Terrains: We analyze
the performance of the TCE on HyQ over multiple terrains
with various softnesses. The softness of the four used terrains
are shown in Fig. 1b. The estimated stiffness (mean and
standard deviation) under each leg is shown in Table V. As
shown in the table, the robot can differentiate between the
types of terrain. Although we did not measure the true stiffness
value of these terrains, we can observe their softness in the
video and Fig. 1b and compare it to the values in Table V.

C. Computational Analysis

STANCE is running online which means that we can
estimate the terrain compliance (using the TCE) continuously
while walking, and run the entire framework without breaking
real-time requirements. We validated the first argument by
showing that indeed the TCE can continuously estimate the
terrain compliance. Hereafter, we validate the second argument
by analyzing the computational complexity of STANCE and
compare it against the sWBC. Since our WBC framework is
running at 250 Hz, it is essential that the computation does
not exceed the 4 ms time frame. Hence, we conducted a
simulation in which we calculated the time taken to process
the entire framework without the lower level control (ie., the
state estimator, the planner and the WBC) that is running
on a different real-time thread at 1 kHz. We compared the
computation time on an Intel Core i7 quad core CPU in the
case of STANCE (the c3WBC and the TCE) and the sWBC.
We used the same parameters and gains as in Section VII-A1.
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The results show that the average processing time taken was
0.68 ms and 0.74 ms for the sWBC and STANCE respectively.
In both cases, the maximum computation time was always
below 2 ms.

VIII. CONCLUSIONS

We presented a soft terrain adaptation algorithm called
STANCE: Soft Terrain Adaptation aNd Compliance
Estimation. STANCE can adapt online to any type of
terrain compliance (stiff or rigid). STANCE consists
of two main modules: a compliant contact consistent
whole-body controller (c3WBC) and a terrain compliance
estimator (TCE). The c3WBC extends our previously
implemented WBC (sWBC) [3], such that it is contact
consistent to any type of compliant terrain given the terrain
parameters. The TCE estimates online the terrain compliance
and closes the loop with the c3WBC. Unlike previous works
on WBC, STANCE does not assume that the ground is rigid.
Stance is computationally lightweight and it overcomes the
limitations of the previous state of the art approaches. As
a result, STANCE can efficiently traverse multiple terrains
with different compliances. We validated STANCE on our
quadruped robot HyQ over multiple terrains of different
stiffness in simulation and experiment. This, to the best of
the authors’ knowledge, is the first experimental validation
on a legged robot of closing the loop with a terrain estimator.

Incorporating the terrain knowledge makes STANCE c3.
This allows STANCE to generate smooth GRFs that are
physically consistent with the terrain, and continuously adapt
the robot’s feet to remain in contact with the terrain. As
a result, the tracking error of the GRFs and the power
consumption were reduced, and the impact during contact
interaction was attenuated. Furthermore, STANCE is more
robust in challenging scenarios. As demonstrated, STANCE
made it possible to perform aggressive maneuvers and walk
at high walking speeds over soft terrain compared to the state
of the art sWBC. In the standard case, the contact is lost
because the motion of the terrain is not taken into account.
On the other hand, there are minor differences in performance
between STANCE and the sWBC for less dynamic motions.

STANCE can efficiently transition between multiple terrains
with different compliances, and each leg was able to indepen-
dently sense and adapt to the change in terrain compliance.
We also tested the capability of the TCE in discriminating
between different terrains. The insights gained in simulation
have been confirmed in experiment.

In future works, we plan to implement an algorithm to
improve the TCE. In particular, we plan on using onboard
sensors, such as a camera, instead of relying on the external
measurements from an MCS. We also plan to explore other
non-linear contact models in the TCE and the c3WBC.
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