
A D R L

Human-Robot Interaction Force Estimation
for Transparency Control on Wearable

Robots

Master Thesis

April 4, 2016

Supervised by

Dr. Thiago Boaventura

Author

Lisa Hammer

Eigenständigkeitserklärung

Die unterzeichnete Eigenständigkeitserklärung ist Bestandteil jeder während des Studiums verfassten
Semester-, Bachelor- und Master-Arbeit oder anderen Abschlussarbeit (auch der jeweils elektronischen
Version).

Die Dozentinnen und Dozenten können auch für andere bei ihnen verfasste schriftliche Arbeiten eine
Eigenständigkeitserklärung verlangen.
__

Ich bestätige, die vorliegende Arbeit selbständig und in eigenen Worten verfasst zu haben. Davon
ausgenommen sind sprachliche und inhaltliche Korrekturvorschläge durch die Betreuer und Betreuerinnen
der Arbeit.

Titel der Arbeit (in Druckschrift):

Verfasst von (in Druckschrift):
Bei Gruppenarbeiten sind die Namen aller
Verfasserinnen und Verfasser erforderlich.

Name(n): Vorname(n):

Ich bestätige mit meiner Unterschrift:
− Ich habe keine im Merkblatt „Zitier-Knigge“ beschriebene Form des Plagiats begangen.
− Ich habe alle Methoden, Daten und Arbeitsabläufe wahrheitsgetreu dokumentiert.
− Ich habe keine Daten manipuliert.
− Ich habe alle Personen erwähnt, welche die Arbeit wesentlich unterstützt haben.

Ich nehme zur Kenntnis, dass die Arbeit mit elektronischen Hilfsmitteln auf Plagiate überprüft werden kann.

Ort, Datum Unterschrift(en)

Bei Gruppenarbeiten sind die Namen aller Verfasserinnen und
Verfasser erforderlich. Durch die Unterschriften bürgen sie
gemeinsam für den gesamten Inhalt dieser schriftlichen Arbeit.

Human-Robot Interaction Force Estimation for Transparency Control on Wearable Robots

Hammer Lisa

Zürich, 04.04.2016

Abstract

Exoskeletons have become one of the most popular research topics in robotics and rehabili-

tation within recent years. Thus, the EU Balance Project [3] was brought into life. It aims

at developing an exoskeleton for postural balance control. This means that the exoskeleton

should support the user whenever balance issues arise but be imperceptible otherwise. This

type of exoskeleton could be used as support for healthy people as well as patients in everyday

life or rehabilitation. Especially rehabilitation patients who can walk independently but have

trouble retaining postural balance could benefit from this project.

The main role of ETH or more specifically ADRL in the project is the implementation of ro-

bust and flexible interaction control. The controller consists of two overall parts - the balance

and the transparency controller. The transparency controller hereby takes care of making the

exoskeleton imperceptible to the user, i.e. reducing all interaction forces due to joint friction,

damping etc. down to zero. This part needs to work exceptionally well since it is active most of

the time unless there are balance issues. To this end, a new transparency control paradigm was

proposed in [7] specifically for this application. It uses an inverse dynamics feedforward as well

as one acceleration and one force feedback term for interaction force reduction. Additionally

it uses a Kalman filter to estimate interaction force, which cannot be directly measured. This

thesis describes the first step of implementing this new control paradigm in both simulation

and hardware.

First, the system was modelled in a linear fashion as two spring-coupled masses. This system

was then simulated using MATLAB Simulink to get first information on the most important

system parameters. This resulted in the notion that, for Kalman filter estimation, the crucial

parameters were related to the attachment spring dynamics, which need to be known quite

reliably in both value and overall dynamics to achieve estimation errors below 20%. For the

controller itself, actuator saturation can become an issue when either the robot and human

masses are very di↵erent or very fast movements are being performed. Furthermore, the overall

quality of the Kalman filter estimate also influences controller performance significantly since

the estimate is being used directly in the force feedback controller. Other tested parameters

like noise and delays were negligible for both Kalman filter and controller performance as long

as they were not too large. Human force models also seemed to have a smaller influence on

Kalman filter performance than the correct spring dynamics model.

With these simulation results we started our hardware experiments. Some hardware adjust-

ments were necessary due to limited sampling frequency capabilities in the previous setup.

Thus, a new PCB interface between microcontroller and mechanical hardware was introduced

to enable the usage of a new, faster microcontroller. Additionally,two electric motors were

I

installed to replace the hydraulic actuators which were previously used.

With this setup, first experiments on controller and Kalman filter performance were conducted.

Both perform similar to what was seen in simulation as far as conclusions can be drawn from

the available data.

Future work will have to show more detailed experimental results on the full control paradigm

as well as a more sophisticated Kalman filter approach. Furthermore, the results will have

to be adapted to the articulated case to draw final conclusions on performance of the real

exoskeleton.

II

Acknowledgements

This thesis was made possible with the help of many people, some actively advising and some

in the background.

Firstly I want to thank Thiago Boaventura for his continuous support and advice as well as

always bringing in new ideas on what to try when everything else failed. Secondly I want to

thank Jonas Buchli for the opportunity to participate in this project. Last but not least, a

thank you is due to my parents as well as my friends who listened to my frustrations and

excitement for 6 months and kept me sane.

III

Contents

Glossary IX

Acronyms XI

1 Introduction 1

2 System Model 3

2.1 Mechanical Model . 3

2.2 Controller Concept . 4

2.2.1 Schematic . 4

2.2.2 Feedforward . 4

2.2.3 Feedback . 5

2.2.4 Lyapunov Stability . 6

2.2.5 Kalman Filter . 8

3 Simulation 11

3.1 Simulink Model . 11

3.2 Simulation Results . 13

3.2.1 Kalman Filter Performance . 13

3.2.2 Controller Performance . 13

3.3 Discussion . 29

4 Mechanical Setup 35

4.1 Original Setup . 35

4.2 LinMot Adjustments . 36

4.2.1 Components and wiring . 36

4.2.2 Configuring the motors . 36

5 Electronics 41

5.1 Motivation . 41

5.2 Valve Signal Conversion . 41

5.3 Load Cell Amplification . 44

5.4 Pressure Sensor Signal Conversion . 45

5.5 Auxiliary parts . 46

5.6 Evaluation . 47

V

6 Experiments 53

6.1 Code Adjustments . 53

6.2 Results . 53

6.2.1 Controller . 53

6.2.2 O✏ine Kalman Filter . 54

6.2.3 Kalman Filter . 54

6.3 Discussion . 58

7 Conclusion and Outlook 61

A Code 63

A.1 Structures . 63

A.2 Initialization . 64

A.3 Kalman Filter . 65

B Adjusted Kalman Matrices 67

Bibliography . 69

VI

List of Figures

2.1 Spring-mass model of the exoskeleton . 3

2.2 Controller schematic of the whole system . 4

3.1 Controller model . 11

3.2 Model of the mechanical system . 12

3.3 Kalman filter model . 12

3.4 Kalman filter model without a human force input 12

3.5 Kalman filter performance with an o↵set human model 14

3.6 Kalman filter performance with a varied human model amplitude 14

3.7 Kalman filter performance with a varied human model delay 15

3.8 Kalman filter performance with a varied human model frequency 15

3.9 Kalman filter performance with a varied human model complexity 16

3.10 Kalman filter performance with delayed measurements 16

3.11 Kalman filter performance with delayed measurements and a damped attachment 17

3.12 Kalman filter performance with unknown spring sti↵ness; Linear springs 17

3.13 Kalman filter performance with unknown spring sti↵ness; Lower exponential

nonlinearity . 18

3.14 Kalman filter performance with unknown spring sti↵ness; Higher exponential

nonlinearity . 18

3.15 Kalman filter performance with unknown spring sti↵ness; Logarithmic nonlinearity 19

3.16 Kalman filter performance with unknown spring sti↵ness; RMSE evaluation linear 19

3.17 Kalman filter performance with unknown linear spring sti↵ness; RMSE evalua-

tion nonlinear . 20

3.18 Kalman filter performance with unknown masses 20

3.19 Kalman filter performance with unknown masses; RMSE evaluation 21

3.20 Kalman filter performance with unknown damping in the attachment 21

3.21 Ideal case feedforward controller performance 22

3.22 Controller performance depending on actuator dynamics. 23

3.23 Controller performance depending on actuator saturation. 24

3.24 Controller performance depending on actuator saturation with fast human force

pulses. 25

3.25 Controller performance depending on measurement noise. 26

3.26 Controller performance depending on measurement delay. 27

3.27 Controller performance depending on use of Kalman filter or measuring inter-

action force. 28

VII

3.28 RMSE of Kalman filter estimates under di↵erent conditions 31

4.1 FC2D mechanical setup . 35

4.2 Wiring of the LinMot linear motor . 37

4.3 LinMot-Talk 6.4 Main Window . 38

5.1 Circuits for valve signal conversion. 42

5.2 Circuit diagram for load cell amplification . 44

5.3 Circuit diagram for pressure sensor signal conversion 45

5.4 Auxiliary voltage regulator circuits. 46

5.5 Rail splitter for transforming 30V to ±15V . 47

5.6 Board response to a 50Hz square wave. 48

5.7 Board response to a 100Hz square wave. 49

5.8 Board response to a 200Hz square wave. 49

5.9 Board response to a 500Hz square wave. 49

5.10 Moog amplifier response to a 50Hz square wave. 50

5.11 Moog amplifier response to a 100Hz square wave. 50

5.12 Moog amplifier response to a 200Hz square wave. 50

5.13 Moog amplifier response to a 500Hz square wave. 51

6.1 First transparency control experiment. 54

6.2 O✏ine Kalman filter experiment. 55

6.3 Kalman filter experiment with manual movement and one measurement. 56

6.4 Kalman filter experiment with automatic movement and one measurement. . . 56

6.5 Kalman filter experiment with manual movement and two measurements. . . . 57

6.6 Kalman filter experiment with automatic movement and two measurements. . . 57

VIII

Glossary

K Spring Sti↵ness.

f
i

Interaction Force.

f
r

Robot Force.

f
h

Human Force.

f
FF

Feedforward Controller Force.

f
FB,a

Acceleration Feedback Controller Force.

f
FB,f

Force Feedback Controller Force.

� Characteristic Equation Root.

x
r

Robot Position.

ẋ
r

Robot Velocity.

ẍ
r

Robot Acceleration.

x
h

Human Position.

ẋ
h

Human Velocity.

ẍ
h

Human Acceleration.

m
r

Robot Mass.

m
h

Human Mass.

IX

Acronyms

ADRL Agile & Dexterous Robotics Lab.

ETH Eidgenössische Technische Hochschule (Swiss Federal Institute of Technology) Zürich.

FC2D Force Control in Two Degrees Experimental Setup.

IIT Istituto Italiano di Tecnologia (Italian Institute of Technology).

IMU Inertial Measurement Unit.

MC Microcontroller.

RMSE Root Mean Square Error.

XI

Introduction

1 Introduction

With both robotics technology and the knowledge of human motion advancing during recent

years, exoskeletons have become widely popular as a research topic combining the two fields.

There are many di↵erent types of exoskeletons, ranging from fully trajectory controlled robots

to purely supportive versions. The applications range from rehabilitation, e.g. Lokomat [6]

by Swiss company Hocoma, over support functionality to human performance enhancement,

both of which can be found in the function range of Japanese venture firm Cyberdyne’s Hybrid

Assistive Limb (HAL) [5]. As wide as the application range, as varied are the types of ex-

oskeletons. While there are many projects on lower-limb exoskeletons, i.e. walking assistance,

there also are projects on arm [1], hand [4] and full-body robots.

In the light of these developments, the EU Balance Project [3] was started in 2013 to develop a

“platform-independent control strategy and architecture” [2] for exoskeletons. The main focus

of the project is to improve postural balance of the user, thereby supporting them in everyday-

life tasks in both clinical and home settings. This type of development is necessary since state

of the art exoskeletons are often controlled quite rigidly and cannot account for disturbances,

i.e. movement of the human, very well. This becomes an issue when the exoskeleton is worn

by a healthy person or a person with at least some extent of motor control in the respective

limb. These disturbances then induce significant balance problems, which in the worst case

lead to a fall. Additionally, tasks like walking uphill and rapid direction or speed changes are

di�cult to do, even for healthy users, when working against the robot.

Therefore, a new control paradigm needs to be developed to follow human motion instead

of inhibiting it. That means that the exoskeleton should generally be imperceptible and only

support when needed, i.e. when postural balance assistance is required. This could be used for

support of elderly people or people with motor impairment who tend to trip or stumble more

often than usual. The exoskeleton would then prevent them from falling whenever a dangerous

situation occurs but allow independent movement of the user while they can maintain postural

balance on their own.

A basic function that an exoskeleton needs to keep from disturbing the user’s motions is trans-

parency control. Transparency in human-robot interaction is defined as the absence of all

interaction forces between human and robot. To achieve transparency, all friction, damping,

inertia etc. in the robot joints need to actively be compensated for. Ideally, the robot should

then follow the user’s motion without applying any force onto them.

State of the art transparency controllers use “interaction force feedback, impedance and ad-

mittance controllers, and/or electromyography” [7]. However, all of these methods either have

stability or calibration issues, which decrease their performance outside of theoretical work

1

Introduction

significantly. Therefore, a new acceleration-based transparency control concept was proposed

in [7]. It uses acceleration measurements from IMUs which are attached to both robot and

human to do feedforward and acceleration control. Additionally, the measurements are fed

into a Kalman filter to estimate the interaction force, which is then used in an additional force

controller resulting in three controllers in total.

Chapter 2 explains the system model and controller concept in more detail. Chapter 3 contains

results and discussion of the system simulation. Chapter 4 describes the general hardware of

the test setup. In Chapter 5, the development of new electronics for the test setup is described.

Chapter 6 explains the experiments conducted on the test setup and the respective results.

Finally, Chapter 7 concludes the work and gives an outlook on future research to be done.

2

System Model

2 System Model

2.1 Mechanical Model

We model our system as two spring-coupled masses. The masses correspond to the human

and the exoskeleton, from here on also referred to as the robot. The spring represents the

attachment between the exoskeleton and the human body with e.g. an elastic band. Both

parts can apply a force or movement to the system, which leads to the spring producing an

interaction force. In a first stage we model everything linearly for model simplicity reasons.

This model can then later be adapted to an articulated case. Figure 2.1 shows a sketch of the

system. The relationships between the three forces and the mass trajectories are as follows.

mr mh
Kf r

ẋr
f i ẋh

f h

Figure 2.1: Spring-mass model of the exoskeleton. Adapted from [7].

ḟ
i

= K(ẋ
r

� ẋ
h

) (2.1a)

f
r

� f
i

= m
r

ẍ
r

(2.1b)

f
h

+ f
i

= m
h

ẍ
h

(2.1c)

Combining them leads to

f
h

+ f
r

= m
r

ẍ
r

+m
h

ẍ
h

(2.2a)

=
m

r

f̈
i

K
+m

r

ẍ
h

+m
h

ẍ
h

(2.2b)

which then results in

m
r

f̈
i

+ f
i

K = K(f
r

�m
r

ẍ
h

) (2.2c)

3

2.2 Controller Concept System Model

2.2 Controller Concept

2.2.1 Schematic

As opposed to state of the art impedance or admittance control schemes for doing transparency

control on the system, a new acceleration-based controller framework was proposed in [7]. A

block diagram of the system including controllers can be seen in Figure 2.2, where the three

blocks on the right represent the mechanical model descibed in Section 2.1 and the four blocks

on the left form the controller.

Figure 2.2: Controller schematic of the whole system. Adapted from [7]. Robot Dynamics:
Inertial and actuator terms. Human Dynamics: Inertial terms. Attachment Dy-
namics: Spring term.

2.2.2 Feedforward

The first block of the controller part is the “Inverse Dynamics” block. The inverse dynamics

term is given by

f
FF

= m
r

ẍ
h

(2.3)

which, in the ideal case, exactly compensates for the force induced on the robot by a human

acceleration. With pure feedforward, the system dynamics become

m
r

f̈
i

+ f
i

K = K(m
r

ẍ
h

�m
r

ẍ
h

) = 0 (2.4a)

4

System Model 2.2 Controller Concept

resulting in a characteristic equation of

m
r

�2 +K = 0 (2.4b)

with roots

�1,2 = ±
r
� K

m
r

(2.4c)

This corresponds to a purely oscillatory response with a frequency of f =
q

K

mr
.

2.2.3 Feedback

The next part is the feedback controller, consisting of a PI acceleration and a PD force

controller. The controller terms are given as acceleration feedback

f
FB,a

= K
p,a

(ẍ
h

� ẍ
r

) +K
i,a

(ẋ
h

� ẋ
r

) (2.5)

and force feedback

f
FB,f

= K
p,f

(f
des

� f
i

) +K
d,f

(ḟ
des

� ḟ
i

) (2.6a)

which, with our transparency goal of the desired force f
des

= 0, becomes

f
FB,f

= �K
p,f

f
i

�K
d,f

ḟ
i

(2.6b)

In the ideal case, these two feedback controllers are redundant. However, since we do not have

perfect information on the interaction force, we use the acceleration feedback as support. On

the other hand, using acceleration feedback only is not su�cient to reduce the interaction force

to zero. An example for which the pure acceleration feedback does not work is a movement

starting from rest with an initial spring compression, i.e. an initial f
i

. Since the acceleration

controller will not see the acceleration leading to that force, it will not counteract it, resulting

in a fixed force o↵set. Therefore we need both controllers to achieve the most transparent

behaviour possible.

With the feedback controllers we always use the feedforward as well, which leads to the

following system dynamics.

m
r

f̈
i

+ f
i

K = K(m
r

ẍ
h

+K
p,a

(ẍ
h

� ẍ
r

) +K
i,a

(ẋ
h

� ẋ
r

)�K
p,f

f
i

�K
d,f

ḟ
i

�m
r

ẍ
h

)

= K(K
p,a

(ẍ
h

� ẍ
r

) +K
i,a

(ẋ
h

� ẋ
r

)�K
p,f

f
i

�K
d,f

ḟ
i

) (2.7a)

This results in a characteristic equation of

(m
r

+K
p,a

)�2i+ (KK
d,f

+K
i,a

)�+K(1 +K
p,f

) = 0 (2.7b)

5

2.2 Controller Concept System Model

with roots

�1,2 =
�(KK

d,f

+K
i,a

)±
p

(KK
d,f

+K
i,a

)2 � 4K(m
r

+K
p,a

)(1 +K
p,f

)

2(m
r

+K
p,a

)
(2.7c)

In the ideal case, we would tune both feedback controllers to the same critically damped

behaviour to then compare their performance. To find these controllers, we examine the roots

for each feedback controller separately. For critical damping, we need the radicand to be zero,

which gives us the first two conditions for the controller parameters.

KK2
d,f

� 4Km
r

(1 +K
p,f

)
!
= 0 (2.8a)

K2
i,a

� 4K(m
r

+K
p,a

)
!
= 0 (2.8b)

The third condition arises from the fact that we want both controllers to behave in the same

way to be able to compare them. This, together with the radicand of zero gives us

KK
d,f

2m
r

!
=

K
i,a

2(m
r

+K
p,a

)
(2.8c)

By choosing one parameter freely, we can then determine the other three according to these

conditions.

2.2.4 Lyapunov Stability

For the situation of both feedback controllers activated at the same time we conducted a

Lyapunov stability analysis to get stability conditions for this general case. To this end, we

first write the combined controller forces from Equations 2.3, 2.5 and 2.6b as an overall robot

force in terms of f
i

with the help of the system dynamics from Equations 2.1a-2.1c.

f
r

= m
r

ẍ
h

�K
p,f

f
i

�K
d,f

f
i

� K
p,a

k
a

f̈
i

� K
i,a

k
a

ḟ
i

(2.9)

The whole system dynamics from Equation 2.2c then becomes

m
r

f̈
i

+ k
a

f
i

= k
a

(m
r

ẍ
h

�K
p,f

f
i

�K
d,f

f
i

� K
p,a

k
a

f̈
i

� K
i,a

k
a

ḟ
i

�m
r

ẍ
h

) (2.10a)

which leads to

f̈
i

(m
r

+K
p,a

) + ḟ
i

K
i,a

+ f
i

k
a

(1 +K
p,f

+K
d,f

) = 0 (2.10b)

Separating this into two first-order equations yields

f̈
i

ḟ
i

!
=

 �Ki,a

(mr+Kp,a)
�Ka(1+Kp,f+Kd,f)

(mr+Kp,a)

1 0

!
ḟ
i

f
i

!
(2.11)

6

System Model 2.2 Controller Concept

for which we define

F =

 �Ki,a

(mr+Kp,a)
�Ka(1+Kp,f+Kd,f)

(mr+Kp,a)

1 0

!
=

↵ �

1 0

!
(2.12)

According to [8] we want to find a Lyapunov function of the form

V (x) = xTPx, where x =

ḟ
i

f
i

!
(2.13)

From the derivative

V̇ (x) = ẋTPx+ xTPẋ (2.14)

plugging in our system dynamics of the form ẋ = Fx yields the Lyapunov equation

F TP + PF = �Q (2.15)

where, if Q is any positive definite matrix and all eigenvalues of F are in the left half plane,

the solution P will be positive as well. For better readability we solve the equation in terms

of ↵ and �. We choose the most simple positive definite Q-matrix possible, which is the 2x2

identity matrix.

↵ 1

� 0

!
p q

q r

!
+

p q

q r

!
↵ �

1 0

!
=

�1 0

0 �1

!
(2.16)

This results in three equations

2↵p+ 2q = �1 (2.17a)

↵q + r + p� = 0 (2.17b)

2�q = 1 (2.17c)

Solving them gives us p, q and r, which we can expand again with our real ↵ and � values.

p =
1

2↵
(
1

�
� 1) (2.18)

=
(m

r

+K
p,a

)

2K
i,a

(
(m

r

+K
p,a

)

k
a

(1 +K
p,f

+K
d,f

)
+ 1)

q = � 1

2�
(2.19)

=
(m

r

+K
p,a

)

2k
a

(1 +K
p,f

+K
d,f

)

7

2.2 Controller Concept System Model

(2.20)

r =
↵

2�
� 1

2↵
(1� �) (2.21)

=
K

i,a

2(1 +K
p,f

+K
d,f

)k
a

� (m
r

+K
p,a

)

2K
i,a

�
k
a

(1 +K
p,f

+K
d,f

)

2K
i,a

We want to make P positive definite. Therefore we determine the leading principal minors µ
i

of P, which for a positive definite matrix all have to be greater than zero.

µ1 = p (2.22a)

µ2 = pr � q2 (2.22b)

Setting both µ
i

greater than zero leads us to the following conditions for Lyapunov stability

or our system.

m
r

+K
p,a

+ k
a

(1 +K
p,f

+K
d,f

) > 0 (2.23a)

K2
i,a

+ k
a

(1 +K
p,f

+K
d,f

)2 � (m
r

+K
p,a

)2 > 0 (2.23b)

The first condition will always be fulfilled as long as we set our control parameters to positive

values. The second condition then gives us a relationship between the parameters to keep the

system Lyapunov stable.

2.2.5 Kalman Filter

The final part of the control system is a Kalman filter. It is not straightforward to attach

force sensors to an elastic attachment like the one that will be used in the exoskeleton and get

an accurate readout. Thus, we might not be able to measure force directly. Since we want

to control interaction force, we need a means to determine interaction force, ideally, without

measuring it. This is achieved by using a Kalman filter, which uses a model of the system

dynamics to estimate interaction force from related measurements.

Generally, a Kalman filter consists of two stages. The first one is the prediction stage, where the

new system state is estimated according to the system model. The second stage, i.e. the cor-

rection stage, takes the prediction and corrects it with respect to the available measurements.

The equations for this are as follows.

x
k

= Ax
k�1 +Bu

k�1 (predicts the new state) (2.24a)

P
k

= AP
k�1A

T +Q (predicts the new error covariance) (2.24b)

8

System Model 2.2 Controller Concept

K
k

= P
k

HT (HP
k

HT +R)�1 (determines the Kalman gain) (2.25a)

x
k

= x
k

+K
k

(y
k

�Hx
k

) (corrects the state estimate) (2.25b)

P
k

= (I �K
k

H)P
k

(corrects the error covariance) (2.25c)

Hereby, x and y correspond to the system state and the measurement vector. They are

updated at each timestep just like the control input u. The A and B matrices are the state

matrices, which describe the propagation of the state from one timestep to the next, i.e.

x
k+1 = Ax

k

+Bu
k

where x
k

and u
k

are the respective state and control input at timestep k.

H is the measurement matrix, which relates the measurements to the system states. Q and R

are covariance matrices describing the uncertainty in the process itself, i.e. state propagation,

and the measurements, i.e. noise, delay, etc., respectively. P is the state covariance matrix.

At each step it is updated to the current uncertainty in the estimated states. Finally, K is the

Kalman gain. It is iteratively updated and corresponds to the correction factor which relates

the propagated state and the current measurement.

The states and the state space matrices that we use in our Kalman filter are the following. P

and K are not listed since they are updated at every step. These matrices are untested on the

microcontroller as of now as explained in Chapter 6.

x =
⇣
x
r

ẍ
r

x
h

ẍ
h

⌘
(state) (2.26)

y =
⇣
x
r

ẍ
r

x
h

ẍ
h

⌘
(measurement) (2.27)

u =
⇣
ḟ
r

0
⌘

(control input) (2.28)

A =

0

BBBB@

1 dt

2

2 0 0

0 1 dt

2

2 0

0 � K

mr
0 K

mr

0 K

mh
0 � K

mh

1

CCCCA
(system matrix) (2.29)

B =

0

BBBB@

0 0
1
mr

0

0 0

0 1
mh

1

CCCCA
(input matrix) (2.30)

9

2.2 Controller Concept System Model

H =

0

BBBB@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1

CCCCA
(measurement matrix) (2.31)

Q =

0

BBBB@

0.1 0 0 0

0 0.1 0 0

0 0 0.1 0

0 0 0 10

1

CCCCA
(process noise covariance matrix) (2.32)

R =

0

BBBB@

1 0 0 0

0 10 0 0

0 0 1 0

0 0 0 10

1

CCCCA
(measurement noise covariance matrix) (2.33)

10

Simulation

3 Simulation

3.1 Simulink Model

Before we went over to the experimental setup we simulated our model extensively to get an

overview of the relevant parameters for a good performance of our system. Figures 3.1 to 3.4

show the top level of the Simulink model used to simulate the system. The following section

shows the simulation results. A more detailed reasoning and discussion of all of the cases can

be found in the Discussion section.

Figure 3.1: Controller model with possibility to switch all controllers on separately. The gen-
erated robot force is run through a second order system and a saturation block
to emulate real actuator behaviour. The latter two blocks could also be consid-
ered part of the robot dynamics block in the Figure 3.2 as previously mentioned in
Section 2.2.1.

11

3.1 Simulink Model Simulation

[x_r]

Robot Position

[x_h]

Human Position

[dx_r]

Robot Velocity

[dx_h]

Human Velocity

[ddx_r]

Robot Acceleration

[ddx_h]

Human Acceleration

[f_i]

Interaction Force

f_h

Human Force

f_r

f_i
ddx_r

Robot Dynamics

ddx_r

ddx_h

f_i

dx_r

x_r

dx_h

x_h
Attachment Dynamics

f_i

f_h
ddx_h

Human Dynamics

ddx_r

f_i

dx_r

x_r

dx_h

x_h

ddx_h

ddx_r_out

dx_r_out

f_i_out

x_r_out

ddx_h_out

x_h_out

dx_h_out
Add Noise/Delay/Disturbance

[f_i]

Interaction Force

[f_i]

Interaction Force

[f_r]

Robot Force

Figure 3.2: Model of the mechanical system. The three coloured blocks correspond to the
respective blocks in Section 2.2.1 and contain the mechanical equations from Sec-
tion 2.1. The white block adds noise and delay onto all signals and a pulse distur-
bance onto the interaction force to emulate real measurements.

Human Force Model 2

x' = Ax+Bu
y = Cx+Du

Kalman Filter

[x_r]

Robot Position [dx_r]

Robot Velocity [ddx_r]

Robot Acceleration [ddx_h]

Human Acceleration

dx_e

ddx_he

f_ie

f_he

Get f_i and f_h
from acceleration

estimates

du/dt

du/dt

[f_ie]

Estimated
Interaction Force

[f_he]

Estimated
Human Force

Human Force Model 1
U Y

Select dx_r and dx_h

U Y

Select ddx_h

Human Force Model 3

[f_r]

Robot Force [f_h]

Human Force

Select
Human Model

control inputs

measurements

Figure 3.3: Kalman filter model. The Kalman filter itself is generated with the “kalman”
command in MATLAB and imported into Simulink as state space matrices. The
robot trajectory and human acceleration are fed into the filter as measurements.
The robot force and a human force model are used as system inputs. Di↵erent
human force models can be selected. After the Kalman filter, the estimates for the
interaction force and the human force are calculated from the Kalman filter state
estimates.

[f_r]

Robot Force
[dx_r]

Robot Velocity
[dx_h]

Human Velocity

f_r

dx_r

dx_h

f_ie_wofh

Kalman Filter
w/o Human Model

[f_ie_wofh]

Estimated Interaction Force
w/o Human Model

Figure 3.4: Kalman filter model without a human force input. This filter generally works the
same way as the one in Figure 3.3 but with di↵erent system matrices which do not
use a human force model to estimate the states.

12

Simulation 3.2 Simulation Results

3.2 Simulation Results

3.2.1 Kalman Filter Performance

We began our simulation with the investigation of the Kalman filter performance. We tested

the influence of di↵erent separate factors which could possibly decrease force estimation ac-

curacy. For this we switched o↵ all controllers, noise and delays and examined the resulting

interaction force estimate produced by the Kalman filter, depending on di↵erent settings.

We started out by investigating the influence of di↵erent human force models on Kalman filter

performance. To get detailed information on the influence of the human model quality we

systematically changed our model in terms of o↵set, amplification etc. and simulated them

one after the other. First, we analyzed the influence of a human force model o↵set. The

results can be seen in Figure 3.5. Next, we performed the same experiment for an amplitude

change, a delay and a frequency change in the human force model as pictured in Figures 3.6

to 3.8. Lastly, we investigated the influence of human force model complexity on the Kalman

filter estimate. The results can be seen in Figure 3.9.

After this analysis, we investigated the influence of delays on Kalman filter performance. We

performed this test for both the case of a damped and a pure spring attachment to see if the

incorporation of a damper, which uses the velocity term, changes the influence of delays in the

separate measurements. The results of this simulation are shown in Figures 3.10 and 3.11.

Figures 3.12 to 3.17 show the influence of an unknown spring sti↵ness on the Kalman filter

estimation accuracy. We tried this for both variations in the linear spring sti↵ness and nonlinear

springs while still assuming a linear spring for estimation.

The final two simulation experiments investigated uncertainties in the human and robot masses

as seen in Figures 3.18 and 3.19 and an unknown attachment damping, shown in Figure 3.20.

3.2.2 Controller Performance

After having evaluated the performance of the Kalman filter, we now needed to know which

parameter most influences controller performance. Thus, we conducted similar simulation

experiments for the controllers as we had done for the Kalman filter before. For this, we first

used the real interaction force for the force controller to avoid our controller evaluation being

influenced by estimation errors. We also switched all non-ideal behaviour, e.g. noise, o↵ at the

start to investigate the parameters separately. All controllers were retuned to similar dynamics

where possible to receive a comparable result. The tuning goals were the following.

• phase margin 70�

• settling time < 0.5s

• rise time < 0.1s

• overshoot < 15%

13

3.2 Simulation Results Simulation

−50 0 50
0.35

0.35

0.35

0.35

0.35

0.35

0.35

0.35

0.35

0.35

Offset [% of Real Amplitude]

R
M

S
E

 [
N

]

RMSE values for estimates with varied f
model

 offset

actual values
fitted curve

0 0.2 0.4 0.6 0.8 1
−20

−10

0

10

20

30

40

50

60

70

80

Human force models with varied offset

Time [s]

M
o
d
e
lle

d
 H

u
m

a
n
 F

o
rc

e

Real human force
−50% offset
10% offset
50% offset

Figure 3.5: Kalman filter performance with an o↵set human model. Left: Estimated interac-
tion force. Right: RMSE of the estimate. There are hardly any changes in the
estimation error, which stays around 0.35N.

0 100 200 300
0

5

10

15

20

25

Amplification [% of Real Amplitude]

R
M

S
E

 [
N

]

RMSE values for estimates with varied f
model

 amplitude

actual values
fitted curve

0 1 2 3
0

10

20

30

40

50

60
Human force models with varied amplitude

Time [s]

M
o
d
e
lle

d
 H

u
m

a
n
 F

o
rc

e
 [
N

]

f
model

=f
h

f
model

=0.9*f
h

f
model

=0.75*f
h

f
model

=0.5*f
h

Figure 3.6: Kalman filter performance with a varied human model amplitude. Left: Human
models used for estimation. Real human force and models with 90%, 75% and
50% of the real amplitude. Right: RMSE of the estimate for 10% increments
in amplification. The estimation error varies linearly with the human force model
amplitude in both de- and increase.

14

Simulation 3.2 Simulation Results

0 20 40 60 80 100
0

5

10

15

20

25

Delay [% of Real Time Period]

R
M

S
E

 [
N

]

RMSE values for estimates with varied f
model

 delay

actual values
fitted curve

0 1 2 3
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Human force models with varied delay

Time [s]

H
u

m
a

n
 F

o
rc

e
 [

N
]

no delay
10% delay
50% delay
90% delay

Figure 3.7: Kalman filter performance with a varied human model delay. Left: Human models
used for estimation. Real human force and models with delays of 10%, 50% and
90% of the real force period. Right: RMSE of the estimate for the models shown
on the left. The estimation error rises up to around 25N for a delay of 50% of the
period, then it decreases symmetrically to the increase.

0 20 40 60 80 100
0

2

4

6

8

10

12

14

Frequency Change [% of Real Frequency]

R
M

S
E

 [
N

]

RMSE values for estimates with varied f
model

 frequency

actual values
fitted curve

0 0.2 0.4 0.6 0.8 1
5

10

15

20

25

30

35

40

45

50

55
Human force models with varied frequency

Time [s]

M
o

d
e

lle
d

 H
u

m
a

n
 F

o
rc

e
 [

N
]

original frequency
10% faster
50% faster
100% faster

Figure 3.8: Kalman filter performance with a varied human model frequency. Left: Human
models used for estimation. Real human force and models with 10%, 50% and
100% increase in frequency. Right: RMSE of the estimate for selected frequency
increments in the human force model. The RMSE rises quickly for small frequency
increments but then flattens towards a doubling of the frequency.

15

3.2 Simulation Results Simulation

0 0.5 1 1.5 2
-60

-40

-20

0

20

40

60

Human force models used to estimate interaction force

Time [s]

M
o
d
e
lle

d
 H

u
m

a
n
 F

o
rc

e
 [
N

]

f
h,est

 = f
h

f
h,model

 = "good" model

f
h,model

 = "bad" model

exact good bad no model
0

5

10

15

20

25

Model Complexity
R

M
S

E
 [
N

]

RMSE values for estimates with varied f
h,model

 quality

actual values
fitted curve

Figure 3.9: Kalman filter performance with a varied human model complexity. Left: Human
models used for estimation. Real human force, one model closely, one only partly
following the real force. Right: RMSE of the estimate for the human force models
on the left as well as a separate Kalman filter without any human force model.
The estimation error decreases with model complexity. An overly simplified model
even performs worse than no model at all.

0 0.2 0.4 0.6 0.8 1
−70

−60

−50

−40

−30

−20

−10

0

10

Time [s]

In
te

ra
ct

io
n

 F
o

rc
e

 [
N

]

Kalman Filter estimate with 10ms delays in the measurements

0.27 0.28

−64.8

−64.6

f
i

f
i,est

, no delay,

RMSE=0.35004N

f
i,est

, positions delayed,

RMSE=0.34985N

f
i,est

, velocities delayed,

RMSE=0.32208N

f
i,est

, accelerations delayed,

RMSE=10.1541N

f
i,est

, all three delayed,

RMSE=10.1525N

Figure 3.10: Kalman filter performance with delayed measurements. First the measurements
were delayed one after the other, then all of them at once. Position and velocity
measurement delays show no significant e↵ect on estimation quality. Acceleration
measurement delay shifts the whole estimate, increasing the RMSE to around 10N.

16

Simulation 3.2 Simulation Results

0 0.2 0.4 0.6 0.8 1
−60

−50

−40

−30

−20

−10

0

10

Time [s]

In
te

ra
ct

io
n

 F
o

rc
e

 [
N

]
Kalman Filter estimate with 10ms delays in the measurements; Damped case

0.545 0.55 0.555
−18.3

−18.2

−18.1

−18

f
i

f
i,est

, no delay,

RMSE =0.031858N
f
i,est

, positions delayed,

RMSE =0.031921N
f
i,est

, velocities delayed,

RMSE =0.032137N
f
i,est

, accelerations delayed,

RMSE =0.34157N
f
i,est

, all three delayed,

RMSE =0.34159N

Figure 3.11: Kalman filter performance with delayed measurements and a damped attachment.
First the measurements were delayed one after the other, then all of them at once.
Again, position and velocity measurement delays show no significant e↵ect on
estimation quality. Acceleration measurement delay shifts the estimate but only
raises the RMSE to about 0.34N as opposed to 10N in the undamped case.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−180

−160

−140

−120

−100

−80

−60

−40

−20

0

20
K varied within Kalman filter

Time [s]

In
te

ra
ct

io
n
 F

o
rc

e
 [
N

]

f
i

f
i,est

, K = K
real

, RMSE=0.072874N

f
i,est

, K = K
real

/2, RMSE=21.1631N

f
i,est

, K = K
real

*2.5, RMSE=63.3134N

Figure 3.12: Kalman filter performance with unknown spring sti↵ness. The attachment spring
sti↵ness was held constant while the spring sti↵ness used for estimation in the
Kalman filter was varied by factors of 0.5 and 2.5. The estimate amplitude varies
with the modelled spring sti↵ness. The higher the variation, the extremer the
amplification.

17

3.2 Simulation Results Simulation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−120

−100

−80

−60

−40

−20

0

20

Linear spring in Kalman filter, F
real

 = K*u3

Time [s]

In
te

ra
ct

io
n
 F

o
rc

e
 [
N

]

f
i

f
i,est

, RMSE=28.4249N

Figure 3.13: Kalman filter performance with unknown spring sti↵ness. The attachment spring
was changed to an exponential nonlinear behaviour with f

i

= Ku3 while the spring
model in the Kalman filter stayed linear with f

i

= Ku. The linear Kalman filter
model is unable to account for the nonlinear spring behaviour, which becomes
especially apparent when the force changes rapidly.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−250

−200

−150

−100

−50

0

50

Linear spring in Kalman filter, F
real

 = K*u5

Time [s]

In
te

ra
ct

io
n
 F

o
rc

e
 [
N

]

f
i

f
i,est

, RMSE=70.4619N

Figure 3.14: Kalman filter performance with unknown spring sti↵ness. The attachment spring
was changed to a higher order exponential nonlinear behaviour with f

i

= Ku5

while the spring model in the Kalman filter stayed linear with f
i

= Ku. Again,
the Kalman filter is unable to estimate the nonlinear behaviour correctly.

18

Simulation 3.2 Simulation Results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1.5

−1

−0.5

0

0.5

1
x 10

4 Linear spring in Kalman filter, F
real

 = K*log(u+2)

Time [s]

In
te

ra
ct

io
n
 F

o
rc

e
 [
N

]

f
i

f
i,est

, RMSE=4377.2463N

Figure 3.15: Kalman filter performance with unknown spring sti↵ness.The attachment spring
was changed to a logarithmic nonlinear behaviour with f

i

= Klog(u + 2) while
the spring model in the Kalman filter stayed linear with f

i

= Ku. In this case
the Kalman filter can estimate the general periodic motion but can never reach
the high amplitudes of the nonlinear spring, resulting in the highest RMSE of all
tested cases.

0 0.5 1 1.5 2
0

1

2

3

4

5

6
x 10

4

Spring force for different stiffness values

Distance [m]

S
p

ri
n

g
 F

o
rc

e
 [

N
]

K = 12000 N/m
K = 6000 N/m
K = 30000 N/m

0 100 200 300 400 500

20

40

60

80

100

120

140

160

RMSE for changes in estimated spring stiffness

Estimated Spring Stiffness [% Of Real K]

R
M

S
E

 [
N

]

Figure 3.16: Kalman filter performance with unknown spring sti↵ness as in Figure 3.12. Left:
Spring force for varied spring sti↵ness values, where the green line corresponds to
the real spring sti↵ness. Right: RMSE of the corresponding estimated interaction
force for 1% increments in the modelled linear spring sti↵ness. The estimation
error varies linearly with the change in linear spring sti↵ness.

19

3.2 Simulation Results Simulation

−2 −1 0 1 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
x 10

5
Spring force for different spring stiffness nonlinearities

Distance [m]

S
p
ri
n
g
 F

o
rc

e
 [
N

]

F = K * x = F

est

F = K * x3, RMSE =51.12N

F = K * x5, RMSE =148.5237N
F = K * log(x+2), RMSE =4151.0817N

0 5 10 15

−60

−40

−20

0

20

40

60

80

100

120

140

n

R
M

S
E

 [
N

]

RMSE For nonlinear springs of the form K*x(2n−1)

actual values
fitted curve

Figure 3.17: Kalman filter performance with unknown spring sti↵ness as seen in Figures 3.13
to 3.15. Left: Spring force for varied nonlinear springs, where the blue line
corresponds to the spring used for estimation. Right: RMSE of the estimated
interaction force for springs of the form Kx(2n�1) for integer increments of n.
The RMSE increases rapidly for smaller exponents but then seems to flatten out
around 120N.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−300

−250

−200

−150

−100

−50

0

50
Kalman Filter estimates with inaccurately modelled robot and human masses

Time [s]

In
te

ra
ct

io
n
 F

o
rc

e
 [
N

]

f
i

f
i,est

, correct masses, m
r
=30kg, m

h
=2kg, RMSE=0.34957N

f
i,est

, m
r
=35kg, m

h
=2kg, RMSE=3.7748N

f
i,est

, m
r
=10kg, m

h
=2kg, RMSE=17.633N

f
i,est

, m
r
=30kg, m

h
=10kg, RMSE=39.341N

f
i,est

, m
r
=30kg, m

h
=20kg, RMSE=135.7889N

Figure 3.18: Kalman filter performance for unknown masses. Both human and robot masses
were varied separately. For small variations in both masses, the RMSE is negligible.
If the uncertainties become large, the estimation error rises rapidly.

20

Simulation 3.2 Simulation Results

0 100 200 300 400 500
0

10

20

30

40

50

60

70

80

90

RMSE of Kalman Filter estimate with

inaccuracies in modelled robot mass

Modelled Mass [% Of Real Robot Mass]

R
M

S
E

 [
N

]

0 100 200 300 400 500
0

5

10

15

20

25

30

35

RMSE of Kalman Filter estimate with

inaccuracies in modelled human mass

Modelled Mass [% Of Real Human Mass]
R

M
S

E
 [

N
]

Figure 3.19: Kalman filter performance for unknown masses. Both human and robot masses
were varied separately in 1% increments. Left: Estimation RMSE for varied robot
mass. Right: Estimation RMSE for varied human mass. The estimation error
rises almost linearly for variations in both human and robot mass.

0 0.2 0.4 0.6 0.8 1
−4

−3

−2

−1

0

1

2

3

4
x 10

4
Force trajectory for x = sin(pi/3*t) in damped system

Distance [m]

In
te

ra
ct

io
n

 F
o

rc
e

 [
N

]

undamped
B = 1000kg/s
B = 10000kg/s
B = 20000kg/s
B = 30000kg/s

0 1 2 3 4 5

x 10
4

0

1

2

3

4

5

6

Damper Constant B [kg/s]

R
M

S
E

 [
N

]

RMSE for damped system with undamped estimate

actual values
fitted curve

Figure 3.20: Kalman filter performance with unknown damping in the attachment. Left: Force
trajectory for a sinusoidal position change. The blue line corresponds to the
attachment used for estimation. Right: Estimation RMSE for increasingly damped
attachment with undamped estimate. The RMSE rises quickly as soon as damping
is present but then stays almost constant around 5N independent of the damper
strength.

21

3.2 Simulation Results Simulation

0 0.5 1 1.5 2 2.5 3
−80

−60

−40

−20

0

20
Feedforward Controller performance

Time [s]

In
te

ra
ct

io
n

 F
o

rc
e

 [
N

]

no control
with feedforward

0 0.5 1 1.5 2 2.5 3
0

20

40

60

Time [s]

F
o

rc
e

 [
N

]

Human force input

Figure 3.21: Ideal case feedforward controller performance. Bottom: Human force input to the
system. Top: System response without any control and pure feedforward in terms
of interaction force. The feedforward controller removes the slow oscillations
caused by the human input force but retains the fast oscillations from spring
deflection.

To start our experiment, we examined the controllers separately. First, we switched o↵ both

feedback controllers and evaluated the feedforward controller in the ideal case. The results

can be seen in Figure 3.21.

Next, we investigated the influence of non-ideal parts. We started with the actuator, which

we modelled with a second order dynamics term to emulate actuator dynamics as well as

force saturation as seen in Figures 3.22 and 3.23 respectively. In Figure 3.24 we repeated the

saturation experiment but with equal masses and fast force pulses to show that both large

mass di↵erences and fast changes in force lead to actuator saturation issues.

For the next two experiments we looked at non-ideal sensors which produce noisy or delayed

measurements. The results from this can be seen in Figures 3.25 and 3.26.

Finally, we tried to emulate the most realistic case that we could produce in simulation. We

used the Kalman filter estimate for force control and switched all previously discussed issues on.

After retuning the Kalman filter and controllers to adjust for this non-ideal case, we obtained

the results shown in Figure 3.27.

22

Simulation 3.2 Simulation Results

0 0.5 1 1.5 2 2.5 3
0

50

100

Time [s]

Fo
rc

e
[N

]

0 0.5 1 1.5 2 2.5 3

−20

−10

0

10

20

Controller performance with actuator dynamics;
feedforward + acceleration feedback (Kp,a = 0, Ki,a = 120) + force feedback

Time [s]

In
te

ra
ct

io
n

Fo
rc

e
[N

]

ideal case (Kp,f = 52218, Kd,f = 53.34)
RT = 7.0469e−05s, ST = 0.0016345s,
SSE = 1.0965e−10N
with 250Hz actuator dynamics (Kp,f = 23.1,
Kd,f = 1.17) RT = 0.0024904s,
ST = 0.064397s, SSE = 0.0019347N
with 75Hz actuator dynamics (Kp,f = 7.7,
Kd,f = 0.33) RT = 0.0058707s,
ST = Inf, SSE = 0.028563N
with 30Hz actuator dynamics (Kp,f = 5.1,
Kd,f = 0.0987) RT = 0.0096225s,
ST = Inf, SSE = 0.10554N
with 10Hz actuator dynamics (Kp,f = 5.65,
Kd,f = 0) RT = 0.009122s,
ST = Inf, SSE = 0.33908N

Human force input
External disturbance force

Figure 3.22: Controller performance depending on actuator dynamics. Bottom: Human force
input to the system and external disturbance to that force. Top: System response
for di↵erent actuator bandwidths. Listed in the legend are the respective controller
parameters as well as rise time (RT), settling time (ST) and steady-state error
(SSE). A fast actuator controls the system almost perfectly. Actuator bandwidths
under 75Hz start to lead to some oscillation at the frequency of the human
movement.

23

3.2 Simulation Results Simulation

0 0.5 1 1.5 2 2.5 3
0

20

40

60

Time [s]

Fo
rc

e
[N

]

Human force input
External disturbance force

0 0.5 1 1.5 2 2.5 3
−40

−30

−20

−10

0

10

20

30

Time [s]

In
te

ra
ct

io
n

Fo
rc

e
[N

]

Controller performance with actuator saturation, mr = 30kg, mh = 2kg;
feedforward + acceleration feedback (K

p,a
= 0, K

i,a
= 120) + force feedback

ideal case (Kp,f = 52218,
Kd,f = 53.34) RT = 6.627e−05s,
ST = 0.0015113s, SSE = 4.9618e−08N
saturation at 800N (Kp,f = 459.12,
Kd,f = 5.27) RT = 0.024511s,
ST = 0.051861s, SSE = −9.1098e−10N
saturation at 600N (Kp,f = 459.12,
Kd,f = 5.27) RT = 0.025049s,
ST = Inf, SSE = −1.5611N
saturation at 300N (Kp,f = 459.12,
Kd,f = 5.27) RT = 0.014182s,
ST = Inf, SSE = −11.6068N

Figure 3.23: Controller performance depending on actuator saturation. Bottom: Human force
input to the system and external disturbance to that force. Top: System response
for di↵erently saturated actuators. Listed in the legend are the respective con-
troller parameters as well as rise time, settling time and steady-state error. The
black lines show the entering and leaving of 600N saturation. Depending on the
saturation force, the actuator is unable to counteract the human force at either
its higher or both peaks.

24

Simulation 3.2 Simulation Results

0 0.5 1 1.5 2 2.5 3
0

200

400

Time [s]

Fo
rc

e
[N

]

Human force input
External disturbance force

0 0.5 1 1.5 2 2.5 3
−30

−20

−10

0

10

20

Controller performance with actuator saturation, mr = mh, human movement with high force disturbance;
feedforward + acceleration feedback (Kp,a = 0, Ki,a = 120) + force feedback

Time [s]

In
te

ra
ct

io
n

Fo
rc

e
[N

]

ideal case (Kp,f = 52218,
Kd,f = 53.34) RT = 6.9671e−05s,
ST = 0.001589s, SSE = −2.4285e−08N
saturation at 800N (Kp,f = 662,
Kd,f = 6.1) RT = 0.02088s,
ST = 0.044134s, SSE = −6.0894e−09N
saturation at 600N (Kp,f = 662,
Kd,f = 6.1) RT = 0.020751s,
ST = 0.044668s, SSE = −1.1181e−08N
saturation at 300N (Kp,f = 662,
Kd,f = 6.1) RT = 0.021511s,
ST = Inf, SSE = −0.88473N

Figure 3.24: Controller performance depending on actuator saturation with fast human force
pulses. Bottom: Human force input to the system and external disturbance to
that force. Top: System response for di↵erently saturated actuators. Listed in the
legend are the respective controller parameters as well as rise time, settling time
and steady-state error. With the masses equal, only very fast changes in force
lead to actuator saturation. Apart from the lowest saturated actuator, behaviour
is almost perfect.

25

3.2 Simulation Results Simulation

0 0.5 1 1.5 2 2.5 3
0

20

40

60

Time [s]

Fo
rc

e
[N

] Human force input
External disturbance force

0 0.5 1 1.5 2 2.5 3
−15

−10

−5

0

5

10

15

20

Time [s]

In
te

ra
ct

io
n

Fo
rc

e
[N

]

Noise influence on controller performance; feedforward + acceleration feedback (Kp,a = −29.7, Ki,a = 120)

ideal case RT = 0.016936s,
ST = 0.016616s, SSE = −1.8268e−14N

0.1% noise RT = 0.016688s,
ST = 0.016715s, SSE = −0.017984N

1% noise RT = 0.016472s,
ST = 0.016626s, SSE = −0.056458N

Figure 3.25: Controller performance depending on measurement noise. Bottom: Human force
input to the system and external disturbance to that force. Top: System response
for di↵erent amounts of measurement noise. Listed in the legend are the respective
controller parameters as well as rise time, settling time and steady-state error.
Noise was added onto both human and robot acceleration measurements. The
controller performance is hardly being influenced by adding noise into the system.

26

Simulation 3.2 Simulation Results

0 0.5 1 1.5 2 2.5 3
−30

−20

−10

0

10

20

Time [s]

In
te

ra
ct

io
n

Fo
rc

e
[N

]

Delay influence on controller performance;
feedforward + force feedback + acceleration feedback (Kp,a = 0, Ki,a = 120)

0 0.5 1 1.5 2 2.5 3
0

20

40

60

Time [s]

Fo
rc

e
[N

]

Human force input
External disturbance force

ideal case (Kp,f = 52218,
Kd,f = 53.34) RT = 0.00037416s,
ST = 0.079728s, SSE = 1.3669e−07N
1ms delay (Kp,f = 23.1,
Kd,f = 1.17) RT = 0.0038272s,
ST = 0.082533s, SSE = 0.024727N
10ms delay (Kp,f = 23.1,
Kd,f = 1.17) RT = 0.026993s,
ST = Inf, SSE = 1.3765N

Figure 3.26: Controller performance depending on measurement delay. Bottom: Human force
input to the system and external disturbance to that force. Top: System response
for di↵erent measurement delays. Listed in the legend are the respective controller
parameters as well as rise time, settling time and steady-state error. For simplicity
reasons, all measurements were delayed by the same amount. Up to a 1ms delay,
controller performance is similar to the ideal case. At 10ms delay, significant
oscillations arise, similar to the actuator dynamics case.

27

3.2 Simulation Results Simulation

0 0.5 1 1.5 2 2.5 3
−60

−40

−20

0

20

40

Overall controller performance with/without Kalman Filter;
feedforward + acceleration feedback (Kp,a = 0, Ki,a = 120) + force feedback

Time [s]

In
te

ra
ct

io
n

Fo
rc

e
[N

]

0 0.5 1 1.5 2 2.5 3
0

20

40

60

Time [s]

Fo
rc

e
[N

] Human force input
External disturbance force

force controller using real fi
(Kp,f = 5.65,Kd,f = 0)
RMSE = 3.6818N
force controller using fi,e
(Kp,f = 5.65,Kd,f = 0)
RMSE = 6.1285N

no force feedback
RMSE = 6.7811N

Figure 3.27: Controller performance depending on use of Kalman filter or measuring interac-
tion force. Bottom: Human force input to the system and external disturbance
to that force. Top: System response with actuator dynamics, saturation and
combinations of using the Kalman filter estimate for control vs. not using any
force control at all. Listed in the legend are the respective controller parameters
as well as the RMSE of the controlled interaction force. The black lines show the
entering and leaving of 600N saturation. The Kalman filter causes high frequency
and amplitude oscillations whenever quick changes in input force arise, as seen
at the initial decrease. Apart from some minor oscillations, the controller works
well if no fast changes in force arise. Compared to this case, the pure acceleration
feedback/feedforward controller seems to oscillate significantly more in the long
term. The RMSE comparison hardly shows any di↵erence between the latter two
controllers since the high amplitude and the long term oscillations of the Kalman
filtered and the pure acceleration controller respectively are similar in overall error
sum.

28

Simulation 3.3 Discussion

3.3 Discussion

The Kalman filter performance was evaluated in terms of the estimation RMSE as indicated

in the plots in Section 3.2.1.

The first aspect we investigated was the influence of di↵erent human force models on the

Kalman filter estimate. This was necessary because, ideally, we want to run the whole system

without any information on the human force input whatsoever. To be able to compare this

case to the one where information on the human force is available, we need to know how

di↵erent human models influence the quality for our estimate.

We started out by applying an o↵set to the human force model. This did not change the

estimation results in a significant way. This might be due to the fact that the o↵set of the

Kalman filter estimate is more influenced by the initial conditions than the measurement or

control inputs. Therefore, with the right initial conditions, the o↵set influence becomes negli-

gible.

As expected, the influence of human force model amplification rises linearly with the amplifi-

cation value as seen in Figure 3.6.

Similarly, the estimate for human model delay behaves exactly as expected. Up until a delay of

50% of the period, i.e. the maximum shift with respect to the real input, the error increases,

then it decreases until, at 100% real and modelled input are the same again.

For a change in frequency of up to 50%, the error increases just like in the delayed case but

then stays approximately the same instead of falling again. This is because, as opposed to the

delay case, a doubled frequency does not mean that the signal returns to its original shape

and value. However, since the signals are periodic and have common points whenever their

frequencies are an integer multiple of each other, they become more similar and therefore the

error does not rise any more.

As a last point on human model evaluation we investigated the influence of model complexity

on the estimation result. Figure 3.9 shows the estimation results for human models of di↵erent

complexity. One models the real force closely, one uses a significantly lower frequency. Lastly

we also included the case where there is no human model at all. We can see that, if we have

a good human model, which models the higher frequencies of the system, it is an advantage

to use it for estimation. However, if we cannot provide a good human model, it is better to

not use it at all, which intuitively makes sense.

Next, we analyzed the influence of measurement delay on the Kalman filter estimate. All

measurements were delayed by 10ms, which corresponds to approximately 1% of the input

force period. Figures 3.10 and 3.11 show that, in both the undamped and the damped case,

acceleration delay is the only measurement influencing the Kalman filter estimate. We believe

that this is due to acceleration being most directly related to force and therefore the force

estimate being more susceptible to acceleration than position or velocity delays.

The next overall experiment we performed was on uncertain attachment behaviour. Fig-

ures 3.12 to 3.15 show the estimate for di↵erent uncertainties in the linear spring sti↵ness as

29

3.3 Discussion Simulation

well as nonlinearities. We see that, while an unknown linear spring can be problematic when

the uncertainty is large, the more significant problem lies in unmodelled nonlinearities. This

is a major issue since the traditional Kalman filter can only estimate linear behaviour. It is

therefore important to make sure that the attachment behaves linearly. Otherwise, a change

towards an extended or unscented Kalman filter would become necessary. Figures 3.16 and

3.17 sum up the RMSE values for the tested attachment uncertainties. This shows us that,

while the nonlinearities result in a higher initial error, the uncertain linear spring error rises

much faster. Therefore we conclude that it is also important to know the spring sti↵ness as

exactly as possible. This high dependency of the estimation quality on the attachment model

is probably due to the fact that the spring model is the defining factor of the interaction force

dynamics. If we do not model this parameter correctly, the whole of our estimated dynamics

will be a↵ected.

The next aspect we investigated were changes in robot and human mass while the Kalman

filter retains its nominal parameters. We can see from Figures 3.18 and 3.19 that, as expected,

the estimation error changes linearly with mass uncertainties. The robot mass will be known

exactly in the exoskeleton. The mass of human limb segments can be estimated reasonably

accurately with techniques like described in [9]. With those two facts in mind we can safely

assume not to run into any issues due to mass uncertainties, since simulation shows us that

mass only becomes a problem when the modelled values significantly di↵er from the real ones.

Lastly, we investigated an attachment damping which is not modelled in the Kalman filter.

Figure 3.20 shows that, while unknown damping leads to an immediate error in the estimate,

increasing the damping does not further increase the error. We assume that this happens

because the damping is not modelled. Thus, while the sudden existence of a damping where

none is modelled will influence the estimate, increasing this damping does not have any further

worsening e↵ect on estimation quality.

Figure 3.28 shows a summary of the Kalman filter estimation errors. We can see clearly that

the most prominently contributing factor in estimation errors is the modelled spring sti↵ness.

Especially unmodelled spring nonlinearities make the estimation error skyrocket. Uncertainties

in robot and human masses can also become an issue to a certain extent, especially when one

mass is significantly smaller than the other as was the case in our simulation.

While the other influences are small compared to the previously mentioned ones, they might

not be negligible in the real setup. Particularly delays and amplitude changes in the human

model, whose estimation error ranges around 20% of the input force might create a significant

interaction force when combined. Therefore, while focussing on spring behavior estimation,

we also need to keep the remaining issues in mind.

Controller performance was harder to evaluate quantitatively than Kalman filter performance

since we specifically tuned the controllers to meet certain performance criteria whenever pos-

sible. However, some criteria were harder to meet than others. Especially settling time was an

30

Simulation 3.3 Discussion

0.58 20 20.83 11.67 10.83 16.67 16.67 0.58 50 333.33 66.67 4.17
0

20

40

60

80

100

120

140

160

180

200

RMSE [% of the input force]

R
M

S
E

 [
N

]

Kalman filter estimation error

offset
human model amplitude
human model delay
human model frequency
human model complexity
no human model
measurement delay
measurement delay damped case
uncertain linear spring stiffness
unknown spring nonlinearity
uncertain masses
unknown attachment damping

Figure 3.28: RMSE of Kalman filter estimates under di↵erent conditions. The y-axis shows the
actual error force values, the x-axis shows them as a percentage of the human input
force. The values shown are average values for each tested condition. While we
show a mean value, the variance was not evaluated since we do not have enough
data from di↵erent experiments for each case to result in a statistically meaningful
statement.

issue for the cases where some oscillation remained in the system. These cases are indicated

with an infinite (Inf) settling time in Section 3.2.2.

The first tested case, i.e. pure feedforward control shows us that, while the feedforward

command accounts for the average force resulting from a nonzero human input, it cannot

compensate for the oscillations due to a nonzero initial force. This is consistent with the no-

tion that a feedforward controller only applies a command according to another input, in our

case the human acceleration. It does not take into account any past states of the system and

thus cannot correct for the nonzero initial condition. Therefore we know that we need at least

one feedback controller to reduce the interaction force to zero for arbitrary initial conditions.

We did not perform separate experiments on the two feedback controllers since we deemed it

unnecessary. On one hand we know that we need the acceleration controller because our force

estimate and thus our force controller performance will never be ideal. On the other hand

we can think of the case where we start our experiment at zero acceleration but a nonzero

interaction force. Then the acceleration controller would not be able to reduce this initial force

down to zero. Therefore we use both controllers in any case. Figure 3.27 also shows a case

where pure acceleration feedback performs worse than the combination with force control,

thereby supporting our theory.

The next investigated issue was the influence of internal actuator behaviour on controller per-

formance. While we assume our desired robot force to be directly translated to a real force

31

3.3 Discussion Simulation

in the setup, this real force can be influenced by actuator dynamics or saturation. The results

from Figures 3.23, 3.24 and 3.25 show that this can have a significant influence on controller

performance. The actuator dynamics plot shows some oscillations, which the controller cannot

reduce. This becomes more prominent the closer the actuator bandwidth gets to the human

input force frequency. This behaviour is reasonable considering that the actuator has no way

of following a movement at a specific frequency if its bandwidth does not allow for movement

at that frequency. Even while the frequency is still lower but close to the actuator dynamics,

there will be some extent of oscillation since actuator performance will decrease close to its

bandwidth limits. Thus, we should always keep our actuators fast enough to be far outside of

the human motion bandwidth.

Actuator saturation becomes an issue especially when human and robot mass are very di↵erent,

as seen in Figure 3.24. The same goes for high acceleration movements as seen in Figure 3.25.

In both of those cases a small input force results in a large desired robot force, which may not

be produced by the actuator. Therefore we should keep the desired motions and moved masses

in mind when choosing the actuators to ensure that saturation will not be reached even with

a large robot mass or fast movements.

Concerning our simulation results, noise does not seem to have a significant influence on con-

troller performance. This is mostly due to the fact that we have low noise acceleration sensors.

This experiment was conducted without the force controller since it would either change the

result to the positive or negative depending on the usage of the Kalman filter estimate or the

perfect interaction force value for force control.

Measurement delay however seems to influence controller performance quite significantly. The

results are similar to the actuator dynamics results for lower frequencies. This might have

to do with the fact that, in both cases, the controller cannot follow the human force as fast

as necessary - in one case because it is inherently too slow, in the other case because the

information it gets arrives too late to be used in the corresponding time step. Both cases lead

to high amplitude oscillations which cannot be reduced by retuning.

Lastly, the influence of the Kalman filter was investigated. This was done including some of

the previously tested issues, like actuator dynamics and saturation to generate a slightly more

complicated signal for the Kalman filter to estimate. We see that the Kalman filter seems to

have di�culties with estimation at high frequencies. This leads to high frequency oscillations

at every disturbance peak. This makes sense since the Kalman filter is a linear estimator and

there are nonlinear terms like actuator saturation in the system. For small accelerations, the

desired forces will be small and thus saturation will not be an issue. In that case the Kalman

filter will return a good estimate. As soon as accelerations become higher, the system be-

haviour di↵ers significantly from a linear one and the estimation quality decreases. Other than

that, the estimate stays reasonably close to the ideal case. For comparison we repeated this

experiment without any force feedback, which showed us that, even with a non-ideal inter-

action force estimate our controller performs better with both feedback controllers than with

acceleration feedback only. This is exactly what we expected.

32

Simulation 3.3 Discussion

Overall it can be said that we can expect good controller performance when we do not run

into any issues with actuator saturation, actuator dynamics and delays, which is all feasible by

choosing the correct hardware.

33

Mechanical Setup

4 Mechanical Setup

4.1 Original Setup

This section will describe the general mechanical concept and wiring of the setup. For details

on the electronics, refer to Chapter 5.

Our test setup for the linear model described in 2.1 is the FC2D (force control in two degrees)

setup, which can be seen in Figure 4.1.S The system consists of the following components,

Double Spring
Attachment

Load Cell

Encoder

Hydraulic
Actuator

Linmot
Actuator

Robot/Human
Mass

Figure 4.1: FC2D mechanical setup consisting of two masses connected by two springs, two
actuators, two load cells, two encoders and sti↵ connecting parts. Not pictured are
the IMUs, which sit on top of the mass carts.

where the range either refers to the measuring or the actuator force range and the output

corresponds to the analog sensor output, if applicable. Listed are all of the active and sensing

parts. The remainder of the setup consists of Misumi slide bearings, attachments and rods as

well as custom parts.

Qty Manufacturer Part # Part Range Output

2 Hoerbiger LB6-1610-0080-4M hydraulic actuator 0.1� 3.2kN

2 Moog E024-177LA servo valve

2 Parker PTD.VB2501B1C1 pressure sensor 0� 250bar 0� 5V

4 RS 797-4986 pressure sensor 0� 250bar 0� 5V

2 Burster 8417-6005-V217 load cell 0� 5kN 1mV

V

2 XSENS MTI-100-2A504 IMU 0� 50m

s

2 serial bus

2 RLS LM10IC001AB10F00 incremental encoder serial bus

2 Spiral AG spring

35

4.2 LinMot Adjustments Mechanical Setup

The original setup, which was an adapted version of the HyQ robot using the same actuators

and load cells, used two hydraulic cylinders for actuation. In experimentation the whole setup

turned out to be inadequate for stable and robust force control. While the system was running,

noise and delays made it unfit for high performance force reference tracking, especially at low

force magnitudes. Therefore we decided to make adjustments to the setup described in the

following section.

4.2 LinMot Adjustments

4.2.1 Components and wiring

We decided to incorporate two electric linear motors in the system as a replacement for the

hydraulic actuators. The actuators we chose were the LinMot PS01-37x120F-HP-C stators

combined with PL01-20x240/180-HP sliders. To power and control the system we also needed

a driver and a power supply for each motor. We used the LinMot B1100-GP-HC drive and the

S01-72/1000 power supply. Figure 4.2 shows how the components were wired. additionally,

we had to adjust some of the mechanical parts to account for the di↵erent stator shape, which

can be seen in Figure 4.1.

After initial testing we decided to replace the load cell as well, since our new actuators only

provide up to 250N of force. With our previously used load cell range of 0-5000N, this put

us at the lowest part of our measurement range, resulting in a low signal to noise ratio. We

used an Interface SMT1-250N load cell as a replacement, which has a 250N force range and

significantly better accuracy. With this load cell we managed to achieve very good force control

performance which can be seen in Section 6.2.

4.2.2 Configuring the motors

The configuration of the motors is done in LinMot-Talk, a software which can be downloaded

from the LinMot homepage. We used the current version of the software, i. e. LinMot-Talk 6.4.

Figure 4.3 shows a screenshot of the main control window. Starting the software for the first

time, the first thing to be done is to choose the correct drive via “File ! Login/Open O✏ine”.

This opens the RS-232 connection with the driver and shows the window from Figure 4.3.

Next, the correct motor type is chosen. This is done via the motor wizard, which is symbolized

by a sparking wand in the toolbar. In this application, stator and slider type, mounting, cables

controller parameters and any additional information that can help with motor control can be

selected. After finishing this wizard, the motor is ready to operate.

The Control Panel in the main window can be used to operate the motor manually. Since we

wanted to control it by analog inputs however, we needed to configure it accordingly.

First, we had to set the Homing Procedure. Homing is necessary for the motor to go into

36

Mechanical Setup 4.2 LinMot Adjustments

380V Network
Socket

Safety
Switch

Microcontroller
Interface Board

LinMot K05 cable

3x 4mm2 phases
1x 10mm2 GND

3x 4mm2 phases
1x 10mm2 GND

2x 2.5mm2 motor power
1x 16A slow-blow fuse

in positive lead

4x 0.25mm2 signal&power (24V)

Figure 4.2: Wiring of the LinMot linear motor with its drive, power supply and the rest of the
setup.

operational mode since it is position controlled by default and therefore needs to know its start

position. We navigated to the “Parameters ! Easy Steps ! Smart Control Word Behavior”

tab and set the “Intf Switch On Flag Behavior” and “Intf Home Flag Behavior” parameters

to “Autostart” and “Autohome” respectively. This leads to the motor automatically starting

the firmware and then beginning homing as soon as the analog input is powered up with 24V.

Since our only hard mechanical stop in the system is the ring on the motor slider we needed

to use that as our home position. This position is set via the “Homing Mode” parameter in

the motor wizard.

Both of our motors’ analog inputs use the same power supply. Thus, they are both powered

up and start homing at the same time. Since they are not strong enough to stretch the spring

and go back to the mechanical stop on the slider at the same time, we set one actuator to the

“Mechanical Stop Negative Search” and one to “Mechanical Stop Positive Search” homing

mode. This means that, on power up, one motor will be homed correctly at the mechanical

stop while the other one will compress the spring until it reaches the required current to identify

a mechanical stop. After this homing procedure, both motors will be operational.

Since the position is also used for counteracting the cogging forces and adjusting for the

percentage of the slider outside if the stator, i.e. the slider percentage not reachable by the

magnets, we wanted to re-home the second actuator. To this end, we set the “Parameters

37

4.2 LinMot Adjustments Mechanical Setup

1

2

3

4 5

6

7

Figure 4.3: LinMot-Talk 6.4 Main Window. 1: Software navigation tree. 2: Current control
settings. 3&6: Manually set parameters. 4: Current actuator status. 5: Actuator
monitoring. 7: Motor wizard.

! Motion Control SW ! Motion Interface ! Run Mode Settings ! Run Mode Selection”

parameter to “Command Table Mode”. This leads to the motor automatically executing the

Command Table entry specified in “Parameters ! Motion Control SW ! Motion Interface !
Run Mode Settings ! Command Table Settings ! Command Table Entry ID” after homing.

We set this parameter to 1. From there we navigated to the command table and created a new

entry at ID 1 containing the command “Variable/Parameter Access ! Write Live Parameter

! 61E8h ! 00000001h”, which corresponds to setting the homing mode to “Mechanical Stop

Negative Search”. For this step we also checked the “Auto execute new command on next

cycle” tick box and set the sequenced entry to 2. On ID 2 we then generated the command

“Variable/Parameter Access ! Write Interface Control Word ! 0043Fh”, which has the same

e↵ect as manually enabling homing on the Control Panel. With these settings the second motor

will first be homed with the other motor as described before and then re-home to the correct

position.

The next issue was that, after this second homing procedure, the driver automatically started

the command table at ID 1 again. Thus we shifted the previously created entries down one

line and added a “Conditions ! IF Current Greater Than ! 5A ! 2 ! 4” command. This

means that, on first entry into the command table, i.e. at the false home position with a

compressed spring and therefore high current, the next command that is executed will be the

command table entry at ID 2. At second entry into the command table, the motor will have

been homed correctly and therefore be situated in a neutral position with hardly any current.

38

Mechanical Setup 4.2 LinMot Adjustments

Thus, the execution will jump to entry ID 4. Now the last task was to set an entry for that

case.

Since we want to operate the actuators via analog inputs we had to set the driver up for

that. This was done by generating a “Variable/Parameter Access ! Write Interface Control

Word ! 0083Fh” command on ID 4, which sets the “Parameters ! Motion Control SW !
State Machine Setup ! Special Mode ! Mode” parameter to “+/-10V Current Command

Mode”. This leads to the motor generating a current proportional to the di↵erential analog

input voltage. The maximum output current is set via the “Parameters ! Motion Control

SW ! State Machine Setup ! Special Mode ! Current Command Cinfig ! 10V Current”

parameter. We set this to be 15A, i.e. the maximum allowed current for our actuator type.

For the correctly homed motor at power up we set the Run Mode to Command Table Mode as

well but entered the Special Mode Command at ID 1 so that it immediately goes into Current

Command Mode after initial homing.

With that our drivers and actuators were setup for analog control via the microcontroller and

interface boards. The boards are described in more detail in Chapter 5.

39

Electronics

5 Electronics

5.1 Motivation

Starting into the project, there was a previous version of the FC2D setup, which first exper-

iments were being performed on. However, this setup had a major drawback, namely the

slow microcontroller (MC), sampling at a maximum of 800Hz. While this might have been

fast enough to achieve a working transparency controller, it would have been impossible to

investigate the influence of sampling rates on performance since we would have had to always

use the highest possible sampling frequency. Thus, a new MC was included in the setup. The

new MC is the STM32F4 with a maximum bandwidth of 30kHz, enabling us to oversample

for a resulting sampling and control frequency of 5kHz with enough range in both directions

to vary this frequency if necessary.

While this majorly increased frequency provided us with a much better ability to track small

and fast movements, the new MC presented us with a new problem. The old MC had a

reference voltage of 4.1V, whereas the new one only used 3.3V. Therefore we had to adjust

the remaining electronics to account for this new voltage. The board was originally created

for the hydraulic actuators and then adjusted for the electric motors by leaving out the valve

current and pressure sensor signal conversion as described in Sections 5.2 and 5.4. We decided

to create a new PCB including all electronics except for the MC itself on one board, making

wiring easy and convenient. We created one board for each actuator to retain the possibility of

exchanging the actuators separately, e.g. for an electric motor. The following sections describe

the di↵erent parts of the circuit and the final evaluation of the board.

5.2 Valve Signal Conversion

The hydraulic actuators used in FC2D are controlled by two Moog E024 valves, which take a

current input between -10 and 10mA and proportionally translate it to opening ratios. There-

fore, the signal from the microcontroller has to be converted into the appropriate current range.

This is done in two steps. Firstly, the voltage range is adjusted to -10 to +10V as seen in

Figure 5.1a. This voltage is then put through a second stage which transforms it into current.

This can be seen in 5.1. Since there is no current into an op-amp per definition, we can infer

the following relationship between the currents through the respective resistors

I1 + I2 + I3 = I4 (5.1a)

41

5.2 Valve Signal Conversion Electronics

R1 R2

R3

R4 R5

V-

V+

LM358N

+5V

+15V

-15V

V_IN (0

V_AMP

to 3V)

(-10 to +10V)

(a) Valve voltage amplification. R1=18k⌦, R2=1.5k⌦, R3=39k⌦, R4=10k⌦, R5=100k⌦

NC
NC
FLAG
V-
-IN
+IN
V+ OUT

OPA551

U2

D1

D2

R6

R7

R8

C1

C2

C3

C4

C5

V_AMP
I_AMP

0_V_REF

+15V

-15V

-15V

+15V

(-10 to +10mA)
(-10 to +10V)

(b) Voltage to current conversion. R6=500⌦, R7=47k⌦, R8=47k⌦, C1=100nF, C2=1.8nF,
C3=100nF, C4=4.7µF, C5=4.7µF, D1=yellow, D2=green

Figure 5.1: Circuits for valve signal conversion.

which, in terms of voltages and resistors with U
ref

as the 5V input to R1 and U
out

as op-amp output, then becomes

U
ref

� U�
R1 +R2

+
U
out

� U�
R3

=
U�
R4

(5.1b)

The second thing which we know about op-amps is that they keep both of their inputs at the

same voltage. Therefore,

U
ref

� U+

R1 +R2
+

U
out

� U+

R3
=

U+

R4
(5.2a)

42

Electronics 5.2 Valve Signal Conversion

which results in

U
out

= (
U+

R4
�

U
ref

� U+

R1 +R2
)R3 + U+ = 6.9U+ � 10V (5.2b)

where U+ refers to the MC signal. Since this part of the circuit is actually adjusted to a MC

range of 0 to 3V, this exactly corresponds to a transformed range of -10 to +10.7V. The second

part seen in Figure 5.1b is again adapted from a previous IIT design. Hereby the capacitor

pairs C1 and C4 and C3 and C5 serve as decoupling capacitors between the ±15 voltage rails

and ground. This leads to a more stable supply voltage. R7 and C2 form a low-pass filter with

cuto↵ frequency

f
c

=
1

2⇡R7C2
⇡ 1.9kHz (5.3)

R8 is connected to ground, thereby halving the voltage at the positive op-amp input. The

voltage gain of the op-amp is given by

G = 1 +
R

L

R6
=

R6 +R
L

R6
(5.4a)

and thus

U
out

=
R6 +R

L

R6
U
in

(5.4b)

where R
L

is the load resistance corresponding to the inner resistance of the valve.

We know that, internally, the valve current input (I
AMP

in Figure 5.1b) and the current

feedback (0V
REF

in Figure 5.1b) are connected through the load resistance. Therefore the

output current is equal to

I
out

=
V
out

R6 +R
L

(5.5a)

which, with Equation 5.4b, becomes

I
out

=
R6+RL

R6
U
in

R6 +R
L

=
U
in

R6
= 0.002U

in

(5.5b)

Remembering that our -10 to +10V range gets halved by R8, this leads to an exact transfor-

mation to a current range of -10 to +10mA. The two diodes indicate if the output current is

positive (green) or negative (yellow).

Since for the LinMots we needed a voltage instead of a current input we used the same PCB

layout but left out all parts from Figure 5.1b and instead fed the ±10V from Figure 5.1a

directly back to the output pins.

43

5.3 Load Cell Amplification Electronics

5.3 Load Cell Amplification

This part was taken directly from a previous design done at IIT. It amplifies the load cell

voltage to the full MC 0 to 3.3V range. The only adjustment we had to do was to change the

reference voltage to 3.3V instead of 4.1V. Figure 5.2 shows all of the components. The gain

V-

V+

G+

G-

VREF

AD627N

R1

C1

C2

+3.3V

LC_AMP_OUT

R2

R3

R4

R5

R6

R7

C3

C4

C5

C6

C7

+3.3V

2

3

5

4

1

LC_IN

(0 to 3.3V)

(-3.3 to +3.3mV)

Figure 5.2: Circuit diagram for load cell amplification. R1=402⌦, R2=20k⌦, R3=20k⌦,
R4=100k⌦, R5=200⌦, R6=47k⌦, R7=47k⌦, C1=1nF, C2=0.33µF, C3=1nF,
C4=22nF, C5=10nF, C6=0.33µF, C7=1µF

of the AD627 op-amp depends purely on resistor R1, which determines it to be

G = 5 + (
200k⌦

R1
) = 502.5 (5.6)

The RC pairs R2 and C1 and R3 and C3 are low-pass filters for the input signal. The cuto↵

frequency for both filters is

f
c

=
1

2⇡R2C1
=

1

2⇡R3C3
⇡ 8kHz (5.7)

C4 serves as decoupling capacitor between the two op-amp inputs, making the input voltages

more stable. C2 and C5 do the same for the supply rail. R5 and C6 form an additional low-pass

filter at the output with a cuto↵ of

f
c

=
1

2⇡R5C6
⇡ 2.4kHz (5.8)

44

Electronics 5.4 Pressure Sensor Signal Conversion

R4 serves as a pull-down resistor to ground, stabilizing the op-amp output. R6 and R7 set

the local reference voltage (local ground) for the op-amp to half the supply voltage with their

equal resistance values. C7 again acts as a decoupling capacitor between the actual and the

local ground. This leads to an output voltage of

U
out

= GU
in

+ U
ref

= 502.5U
in

+ 1.67V (5.9)

with the previously calculated gain and the local ground U
ref

. This produces an output range

of approximately 0 to 3.3V. The approximate value is due to the fact that we rely on standard

resistor values for R1. The deviation from the desired values is in the millivolt range.

5.4 Pressure Sensor Signal Conversion

The most straightforward part of the board was the conversion of the pressure sensor signals

from their output range of 0 to 5V to the MC input range of 0 to 3.3V. Figure 5.3 shows the

circuit diagram for one sensor. This circuit was included four times per board - twice for the

two pressure sensors needed per actuator, once for the tank and once for the supply pressure.

The first stage of the circuit consists of a basic voltage divider formed by resistors R1 and R3.

V-

V+

R1

R2

R3

P_IN
(0 to 5V)

P_OUT

+15V

-15V

(0 to 3.3V)

Figure 5.3: Circuit diagram for pressure sensor signal conversion. R1=39k⌦, R2=39k⌦,
R3=20k⌦

The voltage at the positive input of the op-amp then becomes

U+ = U
in

R1

R1 +R3
⇡ 0.66U

in

(5.10)

which exactly transforms the pressure sensor range (0 to 5V) to the microcontroller range (0

to 3.3V). The op-amp itself acts as a bu↵er to make the voltage conversion more stable and

independent of resistive loads. With no parallel resistor it has a gain of one, which leads to the

voltage at the output being equal to the positve input voltage. Since, per definition, the input

45

5.5 Auxiliary parts Electronics

current into an op-amp is zero, the current through R2 is zero as well resulting in no voltage

drop between the op-amp output and the output pin. The purpose of R2 is the attenuation

of very high frequency oscillations from the op-amp output, also resulting in a more stable

output signal.

Again, this part was left out on the boards for the electric motors since it is only necessary for

the hydraulic pressures.

5.5 Auxiliary parts

Finally, there are three auxiliary circuit parts needed for the functional parts described in the

previous sections. First of all, there are two voltage regulator circuits. One produces 3.3V and

is used as a reference voltage for the load cell amplifier. The other one produces 5V and is

used for the same purpose in the first stage of the valve amplifier. Both circuits can be seen

in Figure 5.4.

Figure 5.5 shows the third auxiliary circuit part. This part splits the applied 30V into two

voltage rails of ±15V. We need this for the valve amplifier since the voltage range is shifted

down to -10V, which requires a dual power supply for the op-amp. The LED is added to

indicate whenever the board is powered.

VOVI

GND

LM7805

C1 C2

+15V +5V

(a) 5V voltage regulator. C1=0.3µF, C2=0.1µF

GND SET

LBOOFF
LBI

IN

GND

OUT
MAX882

C3 C4

+15V +3.3V

(b) 3.3V voltage regulator. C3=0.1µF, C4=2.2µF

Figure 5.4: Auxiliary voltage regulator circuits.

46

Electronics 5.6 Evaluation

+15V

-15V

R1

C1
TLE2426CLP

RAIL SPLITTER

D1

30V_IN

Figure 5.5: Rail splitter for transforming 30V to ±15V. R1=1k⌦, C1=220µF, D1=red

5.6 Evaluation

To verify that our new board worked the way it was supposed to and was fast enough to drive

the required signals, we performed some evaluation experiments. For both pressure sensor

and load cell parts, we just put in a constant voltage from a DC power supply and directly

measured if the output range was correct.

The valve amplification part however needed some further investigation. Since the valves need

to react quite quickly during a control task, we wanted to additionally evaluate the dynamic

behaviour of the circuit. To this end, we applied a square wave to the circuit and examined the

response with an oscilloscope. The following figures show the results for di↵erent frequencies

and amplitudes. The full amplitude range always refers to a square wave input between 0 to

3.3V, ideally resulting in an output of -10 to +10mA.

From Figure 5.6a we can see that the first stage of the valve amplifier works almost perfectly,

transforming the 0 to 3.3V square wave to -10 to +10V. Thus we concentrated on the current

conversion stage, as seen in Figures 5.6b-5.9b. There we can see that while at 50Hz the

response is still reasonably fast for all amplitude ranges, we run into issues when driving the

signal at higher frequencies and full amplitude range. Especially the 500Hz wave shows that,

at full amplitude range, we do not even reach the maximum value within the step time. At

quarter amplitude range however - which we will mostly be staying in - the maximum value is

still reached fairly quickly, still enabling us to experiment at high frequencies.

As a means to quantify the performance we estimated the circuit bandwidth for full, half and

quarter according to

BW ⇡ 0.35

T
r

(5.11)

where T
r

is the current rise time. We had the oscilloscope display rise times, giving us values of

T
r,100 = 1.47ms, T

r,50 = 484µs, T
r,25 = 197.8µs for full, half and quarter range respectively.

47

5.6 Evaluation Electronics

(a) Voltage response at full amplitude range. (b) Current response at full amplitude range.

(c) Current response at half amplitude range. (d) Current response at quarter amplitude range.

Figure 5.6: Board response to a 50Hz square wave. Blue: square wave reference. Orange:
board response. The voltage response follows the reference almost perfectly with-
out any significant delay. For the current response, the delay gets smaller with a
decrease in amplitude, making the lower amplitude range responses almost imme-
diate.. The full reference value is reached for all amplitude ranges.

This results in approximate bandwidth values of BW100 ⇡ 240Hz, BW50 ⇡ 720Hz and

BW25 ⇡ 1.77kHz, which is consistent with our graphical evaluation at higher frequencies.

To make sure that we would not decrease performance with our new board compared to the

old setup, we did the same experiments with the Moog G123-815 Bu↵er Amplifier, which

was previously used. Figures 5.10-5.13 show that, while the Moog amplifier performs faster at

higher frequencies, it has a consistent large overshoot over the whole frequency range, resulting

in hard to distinguish high and low values. Clearly, the focus of this amplifier lies on speed as

opposed to a critically damped step response. This is apparent from the bandwidth evaluation

as well. Rise time varies between 30�40µs for quarter and full range, resulting in approximate

bandwidths of BW100 ⇡ 8.75kHz and BW25 ⇡ 11.67kHz. Despite those higher bandwidths

however, the large overshoot leads to similar settling times for the Moog amplifier and our

board.

Since we were not aiming at control frequencies higher than 1.5kHz and we mostly stay within

smaller amplitude ranges, we concluded that the performance of our new board was good

enough to work for our setup in spite of the lower bandwidth.

48

Electronics 5.6 Evaluation

(a) Current response at full amplitude range. (b) Current response at quarter amplitude range.

Figure 5.7: Board response to a 100Hz square wave. Blue: square wave reference. Orange:
board response. The full reference value is reached for all amplitude ranges. The
full amplitude response takes almost 50% of the pulse time to reach the reference.

(a) Current response at full amplitude range. (b) Current response at quarter amplitude range.

Figure 5.8: Board response to a 200Hz square wave. Blue: square wave reference. Orange:
board response. The full reference force is reached for all amplitude ranges. The
full amplitude response takes over 50% of the pulse time to reach the reference.

(a) Current response at full amplitude range. (b) Current response at quarter amplitude range.

Figure 5.9: Board response to a 500Hz square wave. Blue: square wave reference. Orange:
board response. The full amplitude response does not reach the reference within
the pulse time anymore. The quarter amplitude range response still reaches the
full reference with a small delay.

49

5.6 Evaluation Electronics

(a) Current response at full amplitude range. (b) Current response at quarter amplitude range.

Figure 5.10: Moog amplifier response to a 50Hz square wave. Blue: square wave reference.
Orange: board response. The full value is reached almost immediately with a
large overshoot. A steady state is reached after approximately 10-30% of the
pulse time.

(a) Current response at full amplitude range. (b) Current response at quarter amplitude range.

Figure 5.11: Moog amplifier response to a 100Hz square wave. Blue: square wave reference.
Orange: board response. The full value is reached almost immediately with a
large overshoot. A steady state is reached after approximately 20-50% of the
pulse time.

(a) Current response at full amplitude range. (b) Current response at quarter amplitude range.

Figure 5.12: Moog amplifier response to a 200Hz square wave. Blue: square wave reference.
Orange: board response. The full value is reached almost immediately with a
large overshoot. A steady state is reached after approximately 40-60% of the
pulse time.

50

Electronics 5.6 Evaluation

(a) Current response at full amplitude range. (b) Current response at quarter amplitude range.

Figure 5.13: Moog amplifier response to a 500Hz square wave. Blue: square wave reference.
Orange: board response. The full value is reached almost immediately with a
large overshoot. No steady state is reached.

51

Experiments

6 Experiments

6.1 Code Adjustments

Since most of the needed functions like the operating system and basic controllers were already

implemented, the main addition to the code was the Kalman filter. The biggest challenge in

implementing a Kalman filter on a microcontroller is speed since it inherently does not have the

computation power of a full computer. A Kalman filter consists of several matrix operations,

which require quite a lot of computational power, even if programmed very e�ciently. We

want to use our Kalman filter results for the controllers in real time. Thus, while the filter

does not necessarily have to run in real time due to slower changes in the measurements, it

still has to run at a frequency similar to the sensor sampling frequencies, e.g. 400Hz for the

IMUs.

We first experimented with the Meschach library and self-written matrix functions but finally

settled on the CMSIS DSP library, which is specifically tailored to Cortex-M processors. Since

our MC uses a Cortex-M4, this seemed to be the most e�cient solution.

The Kalman filter code consists of two main parts, both of which can be seen in Appendix A.

Appendix A also lists the structures used in the Kalman functions.

The initialization is called in the main function. It sets all of the initial values and system

matrices and allocates memory for several auxiliary matrices. Those auxiliary matrices are

needed since we can only perform one matrix operation at a time and therefore need a place

to store our result until it is used in the next step.

The Kalman filter itself is run in the real time tasks function. Therefore, as of now, the filter

is running at the real time frequency of 5kHz. This function executes one matrix operation

after the other according to the Kalman filter equations shown in Section 2.2.5. The following

sections show and discuss our preliminary experimental results.

6.2 Results

6.2.1 Controller

Firstly, we performed an experiment with the existing controller code to verify that our hardware

adjustments had led to good controller performance. As of now, only the feedforward controller

is implemented. The results of this experiment can be seen in Figure 6.1. It shows force tracking

of the desired robot force as well as the resulting interaction force.

53

6.2 Results Experiments

0 1 2 3 4 5 6 7 8 9 10

−50

0

50

Time [s]

F
o

rc
e

 [
N

]

Interaction force

0 1 2 3 4 5 6 7 8 9 10
−60

−40

−20

0

20

40

Time [s]

F
o

rc
e

 [
N

]

Desired vs. actual robot force

Reference
Actual

Figure 6.1: First transparency control experiment. This experiment was performed with feed-
forward control only. The controller is switched on at t=1.5s. Top: Robot force
reference versus actual applied force. Bottom: Resulting interaction force. The
force tracking is very accurate in both phase and frequency. Some noise peaks can
be seen in the amplitude. The controlled interaction force retains some oscillations
stemming from attachment dynamics.

6.2.2 O✏ine Kalman Filter

As a first evaluation of our Kalman filter, we ran the data from the force control experiment

through an o✏ine Kalman filter in MATLAB. We used the exact filter algorithm described in

Section 2.2.5 instead of MATLAB’s own ’kalman’ function to ascertain its functionality for

later implementation on the microcontroller. The results that we obtained can be seen in

Figure 6.2.

6.2.3 Kalman Filter

We performed four di↵erent experiments on our Kalman filter. For technical reasons we could

only perform these experiments on a setup with the masses detached and position and force

measurements only. We thus decided to adjust the Kalman filter to a simpler version estimating

robot force with the available measurements to prove that our system was working as expected.

This simpler filter is also the one shown in the code in Appendix A since the other version is

untested on the experimental setup.

For this filter we use robot position, velocity, acceleration and force as our four states. We

performed two di↵erent types of experiments, one with only position and one with both position

and force as measurements. For both of these cases we examined both the case where we

moved the mass by hand and the case where the mass was moved by the electric motor. The

54

Experiments 6.2 Results

0 1 2 3 4 5 6 7 8 9 10
−50

−40

−30

−20

−10

0

10

20

30

40

50
Real interaction force vs. Kalman filter estimate, RMSE = 8.1885N

Time [s]

F
o
rc

e
 [
N

]

real interaction force
estimated interaction force

Figure 6.2: O✏ine Kalman filter experiment. The estimate follows the real force closely in
both shape and phase. Only the amplitude is slightly o↵.

adjusted Kalman matrices, which vary from the ones shown in Section 2.2.5, are listed in

Appendix B.

The results of these four experiments are shown in Figures 6.3 to 6.6, where the first two

correspond to the case with one measurement and the second two use both measurements. A

detailed discussion of the results can be found in the Section 6.3.

55

6.2 Results Experiments

0 1 2 3 4 5 6 7 8 9 10
0

50

100

Time [s]

P
o
si

tio
n
 [
m

m
]

Manual movement

0 1 2 3 4 5 6 7 8 9 10
−100

−50

0

50

100

Time [s]

F
o
rc

e
 [
N

]

Real vs. estimated force for manual movement without force measurement

Real Force
Estimated Force, RMSE = 38.5228N

Figure 6.3: Kalman filter experiment with manual movement and one measurement. The mass
was moved back and forth by hand while measuring position. From this, applied
force was estimated. Top: Actual versus estimated force applied onto the mass.
Bottom: Position of the mass. The estimate is accurate regarding frequency and
phase. The estimated amplitude is slightly too large.

0 1 2 3 4 5 6 7 8 9 10

40

60

80

Time [s]

P
o

si
tio

n
 [

m
m

]

LinMot movement

0 1 2 3 4 5 6 7 8 9 10

−50

0

50

Time [s]

F
o

rc
e

 [
N

]

Real vs. estimated force for automatic movement without force measurement

Real Force
Estimated Force, RMSE = 54.4915N

Figure 6.4: Kalman filter experiment with automatic movement and one measurement. The
mass was moved back and forth by the electric motor while measuring position.
From this, applied force was estimated. Top: Actual versus estimated force applied
onto the mass. Bottom: Position of the mass. The estimate is accurate in phase
and amplitude but shifted by 30-40% of a period.

56

Experiments 6.2 Results

0 1 2 3 4 5 6 7 8 9 10
0

50

100

Time [s]

P
o
si

tio
n
 [
m

m
]

Manual movement

0 1 2 3 4 5 6 7 8 9 10
−100

−50

0

50

Time [s]

F
o
rc

e
 [
N

]
Real vs. estimated force for manual movement with force measurement

Real Force
Estimated Force, RMSE = 6.1555N

Figure 6.5: Kalman filter experiment with manual movement and two measurements. The
mass was moved back and forth by hand while measuring position and force. From
this, applied force was estimated. Top: Actual versus estimated force applied onto
the mass. Bottom: Position of the mass. The estimate is very accurate in all
regards.

0 1 2 3 4 5 6 7 8 9 10

40

60

80

Time [s]

P
o

si
tio

n
 [

m
m

]

LinMot movement

0 1 2 3 4 5 6 7 8 9 10

−50

0

50

100

Time [s]

F
o

rc
e

 [
N

]

Real vs. estimated force for automatic movement with force measurement

Real Force
Estimated Force, RMSE = 13.2641N

Figure 6.6: Kalman filter experiment with automatic movement and two measurements. The
mass was moved back and forth by the electric motor while measuring position
and force. From this, applied force was estimated. Top: Actual versus estimated
force applied onto the mass. Bottom: Position of the mass. The estimate is very
accurate in all regards, additionally filtering out some of the measurement noise in
the interaction force.

57

6.3 Discussion Experiments

6.3 Discussion

The controller experiment shows us that, even when using feedforward only, the controller can

reduce interaction force significantly. As expected , some oscillations remain in the system.

We experienced the same phenomenon in simulation as seen in Figure 3.21. This might be

due to nonzero initial forces or unmodelled nonlinearities in the system or actuator dynamics.

Looking at reference force tracking, we see that the desired force is being tracked very closely

apart from minor noise issues.

If we were aiming at controlling a sinusoidally moving system such as this one, the feedforward

controller might even be enough to achieve a transparent feeling for the user, assuming that

the residual oscillations are small enough. We do however see a gradient decrease in inter-

action force when the controller is switched on. This leads us to the assumption that, if the

motion was more complicated than a simple sine, we would see this transient behaviour for

every change, forcing us to add the feedback controllers. This will have to be investigated

further in future experiments with and without feedback control.

The o✏ine Kalman filter shows us that our results from simulation are reproducible on hard-

ware. The estimate follows the real force closely, especially regarding phase, which according

to simulation is one of the most critical factors. The inaccuracies in amplitude are most likely

due to insu�cient tuning of the filter or inaccurate initial conditions. This might be improved

in future versions or even neglected since amplitude variations in this degree might not influ-

ence controller performance in a significant way.

The first two Kalman experiments are the closest that we could get to imitate the real esti-

mation task without actually being able to investigate the interaction force. Both experiments

aim at estimating a state which is not being directly measured. The first experiment shows

us that , especially regarding phase, we can estimate our robot force very accurately. There

seems to be some constant error in the estimation amplitude which might be due to unsu�-

cient tuning of the filter. This o↵set explains the large RMSE value. Comparing these results

to the second experiment, we see that the Kalman filter performed better in the first case.

While the RMSE is large in both values, there is a significant phase shift of the estimate with

respect to the measured force in the second case. However, we are unsure as of now if this

is an actual decrease in estimation quality since the Kalman filter is the exact same for both

cases. The force measurement on the other hand seems to be significantly more noisy when

the mass is moved by the actuator. This is probably caused by vibrations of the motor itself

or the cooling fan. Future investigations will have to show if this issue persists when more

measurements are available, making an estimation fault less likely.

The second two Kalman experiments are less related to our final goal since, for now, we as-

sume that we cannot measure the estimated parameter. Still, these experiments can give us

information on our system behaviour combined with a Kalman filter and thus are included

58

Experiments 6.3 Discussion

nonetheless. Again, in the first experiment, the estimate is close to the actual force. In this

case the RMSE is small as well, which is to be expected considering that we are using the

measured force for estimation. Comparing the result to the second experiment we can see a

decrease in performance just like previously, yet the decrease is not as major this time. This

conforms to visual inspection showing us significantly less phase shift in the estimate. As

previously mentioned, this improvement has to be taken with caution however since we are

not certain if there is an issue with the force measurement when the motor is active. In any

case, these last two experiments show us that the inherent sensor fusion of the Kalman filter

improves the estimation quality the more sensors are available.

59

Conclusion and Outlook

7 Conclusion and Outlook

We began this project with the aim to get one step closer to implementing a new transparency

control paradigm on an exoskeleton for balance support. The main goal was to simulate and

experiment on the linear case as a simpler model for the articulated robot.

In the course of this work we achieved a fully working linear experimental setup with signifi-

cantly better controller performance than the previous version. We also implemented a Kalman

filter for interaction force estimation and showed its functionality in a simpler case. In addition

to this we showed that our full Kalman filter works in an o✏ine implementation. Furthermore,

we extensively simulated the linear case and evaluated it in terms of control and Kalman filter

performance.

Overall, our simulation results show that the proposed control paradigm is a good approach

for achieving transparency under many di↵erent conditions. We tried to design our simulated

cases as general and versatile as possible to obtain results which would hold in linear experi-

ments and be translatable to the articulated case. With our separate investigation of possible

performance influencing factors we are confident that we achieved this goal.

Our evaluation of the simulated Kalman filter revealed precise knowledge of the attachment

between human and robot to be the crucial factor in interaction force estimation. This has

to be kept in mind for future experiments to see how much uncertainty we can tolerate. This

result is significant to us since the final exoskeleton will have an elastic band fixation whose

force dynamics we will only be able to model approximately. Other factors seemed to have a

smaller or even insignificant influence on Kalman filter performance which leaves us optimistic

that we will be able to achieve high estimation accuracy.

Controller simulation showed timing issues like low actuator bandwidth or measurement delays

to be the highest contributing factor to control issues. We were able to reduce those problems

in the experimental setup by installing the much faster electric motors in place of the previous

hydraulic actuators. Thus, and because of the high sampling rate of our microcontroller, we

believe that we can achieve robust and stable transparency control as seen in simulation on

our setup.

The hardware adjustments performed in the course of this project enable us to conduct detailed

experiments to validate the results obtained in simulation. As opposed to the previous setup,

the force controller can now perform in a stable manner even when we use a pure feedforward

command. This reassures us in our conclusions from simulation, since the setup behaves ex-

actly as expected. Similarly, we have shown in experiments that we are able to use a Kalman

61

Conclusion and Outlook

filter in real time to estimate parameters for which no measurement is available. While we

have not performed this experiment with the spring interaction yet, we see no reason why this

would change since the principle is the same with the only di↵erence being other system and

Kalman matrices.

Future work on this project first and foremost relates to more extensive experiments. While the

general concept of both the controller and Kalman filter has been proven to work in practice

as well as simulation, more detailed experimental analysis has to be performed relating to all

of the simulated cases.

First of all, the controller up until now only consists of a feedforward command. While, as

shown in Section 6.2.1, this works well for specific cases, simulation has shown us that to

cover arbitrary initial conditions and motions we need both feedback controllers. Thus, these

controllers need to be implemented and tested similarly to the feedforward controller.

Furthermore, the Kalman filter experiments have to be extended to the real interaction force

estimation. Notwithstanding our promising experimental results so far, we can only make valid

statements on Kalman filter performance when we have tested it in its real application. Ad-

ditionally, the Kalman filter also has an influence on controller performance, which has to be

investigated in a separate experiment.

Subsequently, the results from linear analysis have to be translated to the articulated case

before they can be tested on the exoskeleton. We expect a simple articulated joint with two

links to behave very similar to the linear spring-mass model we examined here. Verifying this

assumption in simulation is the next step after conclusion of the linear case experiments. If

the results hold true for the articulated case, the successive step is then to implement the

complete control paradigm on the exoskeleton and test it.

Finally, the last step will be to combine the transparency with the balance controller to achieve

the full desired exoskeleton functionality.

62

Code

A Code

A.1 Structures

// system matrices (constant)

typedef struct {

// state space matrices A & B (C & D are not needed since we only care

about states , not output)

arm_matrix_instance_f32 A;

arm_matrix_instance_f32 B;

// measurement noise matrix

arm_matrix_instance_f32 H;

// transposed measurement noise matrix

arm_matrix_instance_f32 HT;

} system_mat;

// covariance matrices (constant)

typedef struct {

// error covariance matrices accounting for disturbance and noise

arm_matrix_instance_f32 Q;

arm_matrix_instance_f32 R;

} kalman_mat;

// states etc (variable)

typedef struct {

arm_matrix_instance_f32 currstate;

arm_matrix_instance_f32 currmeas;

arm_matrix_instance_f32 currcontrolin;

arm_matrix_instance_f32 Pprev;

arm_matrix_instance_f32 Kprev;

} kalman_in;

// complete matrices needed for kalman

typedef struct {

kalman_in in;

system_mat system;

kalman_mat co;

} kalman;

63

A.2 Initialization Code

A.2 Initialization

void initKalman(kalman* KF) // initialize Kalman matrices , input , output etc.

{

/* ******************** */

/*** const matrices ***/

/* ******************** */

// system matrix

arm_mat_init_f32 (&KF->system.A, nstates , nstates , (float32_t *) A_matrix);

// input matrix

arm_mat_init_f32 (&KF->system.B, nstates , ncontrols , (float32_t *) B_matrix);

// measurement matrix

arm_mat_init_f32 (&KF->system.H, nmeasures , nstates , (float32_t *) H_matrix);

// transposed measurement matrix

arm_mat_init_f32 (&KF->system.HT, nstates , nmeasures , (float32_t *) HT_matrix);

// process noise covariance matrix

arm_mat_init_f32 (&KF->co.Q, nstates , nstates , (float32_t *) Qinit);

// measurement noise covariance matrix

arm_mat_init_f32 (&KF->co.R, nmeasures , nmeasures , (float32_t *) Rinit);

// identity matrix

arm_mat_init_f32 (&In, nstates , nstates ,(float32_t *)I);

/* *********************** */

/*** variable matrices ***/

/* *********************** */

// state covariance matrix

arm_mat_init_f32 (&KF->in.Pprev , nstates , nstates , Pinit);

// Kalman gain

arm_mat_init_f32 (&KF->in.Kprev , nstates , nmeasures , Kinit);

// initial state

arm_mat_init_f32 (&KF->in.currstate , nstates , 1, init_state);

// initial measurement

arm_mat_init_f32 (&KF->in.currmeas , nmeasures , 1, init_meas);

// initial control input

arm_mat_init_f32 (&KF->in.currcontrolin , ncontrols , 1, init_control);

// auxiliary matrices

arm_mat_init_f32 (& temp_mat_n1a , nstates , 1,n1a_init);

arm_mat_init_f32 (& temp_mat_n1b , nstates , 1,n1b_init);

arm_mat_init_f32 (& temp_mat_nna , nstates , nstates ,nna_init);

arm_mat_init_f32 (& temp_mat_nnb , nstates , nstates ,nnb_init);

arm_mat_init_f32 (& temp_mat_nm ,nstates ,nmeasures ,nm_init);

arm_mat_init_f32 (& temp_mat_mma ,nmeasures ,nmeasures ,mma_init);

arm_mat_init_f32 (& temp_mat_mmb ,nmeasures ,nmeasures ,mmb_init);

arm_mat_init_f32 (& temp_mat_m1a ,nmeasures ,1,m1a_init);

arm_mat_init_f32 (& temp_mat_m1b ,nmeasures ,1,m1b_init);

}

64

Code A.3 Kalman Filter

A.3 Kalman Filter

void KalmanFilter(kalman* KF)

{

/* ********************* */

/*** prediction step ***/

/* ********************* */

// x_k+1 = A * x_k + B * u_k

// x_k+1 = A * x_k

arm_mat_mult_f32 (&KF->system.A, &KF ->in.currstate , &KF ->in.currstate);

if(ncontrols >0)

{

// B * u_k

arm_mat_mult_f32 (&KF->system.B, &KF ->in.currcontrolin , &temp_mat_n1b);

// x_k+1 = x_k+1 + ans

arm_mat_add_f32 (&KF ->in.currstate , &temp_mat_n1b , &KF ->in.currstate);

}

// P_k+1 = A * P_k * A^T +Q

// A^T

arm_mat_trans_f32 (&KF->system.A,& temp_mat_nna);

// P_k * A^T

arm_mat_mult_f32 (&KF->in.Pprev , &temp_mat_nna , &temp_mat_nnb);

// A * ans

arm_mat_mult_f32 (&KF->system.A, &temp_mat_nnb , &temp_mat_nna);

// P_k+1 = ans + Q

arm_mat_add_f32 (& temp_mat_nna , &KF ->co.Q, &KF ->in.Pprev);

/* ********************* */

/*** correction step ***/

/* ********************* */

// K_k = P_k * H^T * (H * P_k * H^T + R)^-1

// P_k * H^T

arm_mat_mult_f32 (&KF->in.Pprev ,&KF ->system.HT ,& temp_mat_nm);

// H * ans

arm_mat_mult_f32 (&KF->system.H, &temp_mat_nm , &temp_mat_mma);

// ans + R

arm_mat_add_f32 (& temp_mat_mma , &KF ->co.R, &temp_mat_mmb);

// ans^-1

arm_mat_inverse_f32 (& temp_mat_mmb ,& temp_mat_mma);

// H^T * ans

arm_mat_mult_f32 (&KF->system.HT ,& temp_mat_mma ,& temp_mat_nm);

// K_k = P_k * ans

arm_mat_mult_f32 (&KF->in.Pprev ,& temp_mat_nm ,&KF ->in.Kprev);

// x_k = x_k + K_k * (z_k - H * x_k)

// H * x_k

arm_mat_mult_f32 (&KF->system.H,&KF ->in.currstate ,& temp_mat_m1a);

// z_k - ans

arm_mat_sub_f32 (&KF ->in.currmeas ,& temp_mat_m1a ,& temp_mat_m1b);

65

A.3 Kalman Filter Code

// K_k * ans

arm_mat_mult_f32 (&KF->in.Kprev , &temp_mat_m1b , &temp_mat_n1a);

// x_k = x_k + ans

arm_mat_add_f32 (&KF ->in.currstate , &temp_mat_n1a , &KF ->in.currstate);

// P_k = (I - K_k * H) * P_k

// K_k * H

arm_mat_mult_f32 (&KF->in.Kprev , &KF ->system.H, &temp_mat_nna);

// I - ans

arm_mat_sub_f32 (&In , &temp_mat_nna , &temp_mat_nnb);

// P_k = ans * P_k

arm_mat_mult_f32 (& temp_mat_nnb , &KF ->in.Pprev , &KF ->in.Pprev);

}

66

Adjusted Kalman Matrices

B Adjusted Kalman Matrices

The following matrices describe the Kalman filter with position and force measurement. For

the pure position measurement filter the second measurement is simply left out and the y, H

and R matrices are cut down accordingly.

x =
⇣
x
r

ẋ
r

ẍ
r

f
r

⌘
(state) (B.1)

y =
⇣
x
r

f
r

⌘
(measurement) (B.2)

A =

0

BBBB@

1 dt 0 0

0 1 dt 0

0 0 0 � 1
mr

0 0 0 1

1

CCCCA
(system matrix) (B.3)

H =

1 0 0 0

0 0 0 1

!
(measurement matrix) (B.4)

Q =

0

BBBB@

0.1 0 0 0

0 0.1 0 0

0 0 0.1 0

0 0 0 0.1

1

CCCCA
(process noise covariance matrix) (B.5)

R =

0.001 0

0 10

!
(measurement noise covariance matrix) (B.6)

67

Bibliography Bibliography

Bibliography

[1] ARMin - Arm Rehabilitation. http://www.sms.hest.ethz.ch/research/arm_rehab.

[2] Balance Project - Objectives. http://balance-fp7.eu/objectives.php.

[3] EU BALANCE Project. http://balance-fp7.eu/index.php.

[4] Festo ExoHand. https://www.festo.com/group/de/cms/10233.htm.

[5] HAL - Hybrid Assistive Limb. http://www.cyberdyne.jp/english/products/HAL/

index.html.

[6] Lokomat - Functional Robotic Gait Therapy. https://www.hocoma.com/world/en/

products/lokomat/.

[7] Thiago Boaventura; Jonas Buchli. Acceleration-based Transparency Control Framework

for Exoskeletons.

[8] Gene F. Franklin, David J. Powell, and Abbas Emami-Naeini. Feedback Control of Dynamic

Systems. Prentice Hall PTR, Upper Saddle River, NJ, USA, 4th edition, 2001.

[9] David A. Winter. Biomechanics and Motor Control of Human Movement, 4th Edition.

John Wiley & Sons, Inc., 2009.

69

	Glossary
	Acronyms
	Introduction
	System Model
	Mechanical Model
	Controller Concept
	Schematic
	Feedforward
	Feedback
	Lyapunov Stability
	Kalman Filter

	Simulation
	Simulink Model
	Simulation Results
	Kalman Filter Performance
	Controller Performance

	Discussion

	Mechanical Setup
	Original Setup
	LinMot Adjustments
	Components and wiring
	Configuring the motors

	Electronics
	Motivation
	Valve Signal Conversion
	Load Cell Amplification
	Pressure Sensor Signal Conversion
	Auxiliary parts
	Evaluation

	Experiments
	Code Adjustments
	Results
	Controller
	Offline Kalman Filter
	Kalman Filter

	Discussion

	Conclusion and Outlook
	Code
	Structures
	Initialization
	Kalman Filter

	Adjusted Kalman Matrices
	Bibliography

