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Abstract— Robotic learning on real hardware requires an
efficient algorithm which minimizes the number of trials needed
to learn an optimal policy. Prolonged use of hardware causes
wear and tear on the system and demands more attention
from an operator. To this end, we present a novel black-box
optimization algorithm, Reward Optimization with Compact
Kernels and fast natural gradient regression (ROCK?). Our
algorithm immediately updates knowledge after a single trial
and is able to extrapolate in a controlled manner. These features
make fast and safe learning on real hardware possible. We have
evaluated our algorithm on two simulated reaching tasks of a
50 degree-of-freedom robot arm and on a hopping task of a
real articulated legged system. ROCK? outperformed current
state-of-the-art algorithms in all tasks by a factor of three or
more.

I. INTRODUCTION

The control of robots, in particular humanoid robots,
presents grand challenges for control. Finding optimal or
even feasible control policies is difficult, as modern robots
are generally nonlinear and non-smooth dynamical systems
with high-dimensional state and action spaces. A possible
approach to this kind of control problem is reinforcement
learning, which has become widely used in robotics [1]. In
reinforcement learning, either a reward is maximized or a
cost is minimized by exploring different control strategies.
The execution of a policy in a task, a so-called rollout, is safe
and cheap in simulation, but costly in experiments because
of wear and tear on the robot. For this reason fast-converging
algorithms are highly desirable for learning new motor skills.

Our goal is to learn variable impedance control for articu-
lated robots, such as robots with arms and legs. To overcome
some of the shortcomings of existing algorithms we derived a
novel algorithm that allows us to optimize control policies on
real hardware with a minimum number of rollouts. We take
a black-box optimization approach to reinforcement learning
and demonstrate the resulting performance of the novel
algorithm on reaching-tasks of a simulated 50 degree of
freedom robotic arm and the optimized variable impedance
policy of the real robotic leg.

Classic reinforcement learning algorithms such as Q-
Learning [2] require to learn action-value function for all
discretized states, which is intractable for continuous-time
and high-dimensional systems. To avoid having to discretize
the high-dimensional state and action spaces, parameterized
policies, employing Fourier series or splines, are commonly
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used to reduce the number of optimization variables. Some of
the state-of-the-art reinforcement learning algorithms, such
as PI2 [3], its variant PI2-CMA [4], and eNAC [5], utilize
this strategy. Discrete reward task learning [6] and optimizing
jumping tasks for a single robotic leg in experiments [7] was
demonstrated using PI2. The disadvantage of these so-called
gray-box optimization algorithms is that they generally use
a fixed-policy representation and do not generalize well to
other problems. In addition, a recent study [8] has shown
that they do not necessarily outperform the state-of-the-art
black-box optimization algorithm CMA-ES [9]. CMA-ES
was successfully used in realistic scenarios such as tuning
the control parameters for a quadrupedal locomotion con-
troller to enable various dynamic gaits [10] and optimizing
reference trajectories to manipulate a heavy object with a
robot arm mounted on a quadruped [11].

Existing black-box optimization methods which imple-
ment local gradient search such as FDSA [12], SPSA [13],
IW-PGPE [14] and REINFORCE [15] explicitly approximate
the gradient of the objective. They however require many
rollouts, especially in presence of system noise [16], and
often show convergence problems when the objective, the
cost function, is non-differentiable.

Some black-box optimization algorithms such as CMA-
ES, AMalGaM [17] and CEM [18], based on random Gaus-
sian sampling of the policy parameters and the subsequent
reward weighted averaging (RWA) of the sampled policy
parameter sets, avoid the latter problem by following an
implicit gradient. Nevertheless, these algorithms follow a
local gradient and can thus get trapped at a local optimum.
An approach to find the global optimum is GP-UCB [19],
which maximizes the combination of expected reward and
information gain. This method is however not well suited
for robotic applications since the algorithm does not scale
well for high dimensions and starts searching for policies on
the boundaries of the action space, which may be harmful for
the robot or at least sophisticated safety and sanity checks
have to be put in place.

To the best of our knowledge, local optimization al-
gorithms are best suited for optimizing high dimensional
control policies, but current RWA-based algorithms have
three shortcomings that lead to a unnecessarily high number
of rollouts until convergence. First, the algorithms update
their knowledge only after a ‘batch’ of rollouts instead of
updating immediately after each rollout. Second, only the
best seen information (elitism) is considered. Third, only a
convex combination of these best policies (reward weighted
averaging) are picked to generate new rollouts. Our new
black-box optimization algorithm, named ROCK? (Reward



Optimization with Compact Kernels and fast natural gradi-
ent regression), does not suffer from these drawbacks. The
approach is based on Gaussian kernel regression of the cost
function and the subsequent minimization of the regressed
function using natural gradient descent.

The following Sect. II introduces the ROCK? algorithm.
Section III presents the results of the optimization of very
high dimensional simulation tasks. Section IV shows how
useful the algorithm is to find variable impedance control
policies for hopping with a robotic leg and briefly discusses
the resulting strategies. The paper concludes with a short
discussion in Sect. V.

II. ROCK? ALGORITHM

Our objective is to find a control policy parameter vector
that minimizes the expected cost,

J = E[h(x(te)) +

∫ te

0

g(x(t),u(t,θ))dt︸ ︷︷ ︸
R

], (1)

where h is a terminal cost, g is an immediate cost, x is the
system state, u is a control input and θ is a policy parameter
vector. In a black-box optimization setting, we only have
access to the previously executed policy parameter vectors
θi and their corresponding cost values ri. To find the next
policy to try, ROCK? performs kernel regression on J using
θi and ri and subsequently finds the minimum using natural
gradient descent.

A. Kernel Regression

Regression is used in ROCK? not only to estimate the
underlying function shape, but also to penalize unvisited
regions such that too high exploration is prohibited. To cope
with our needs, we designed the following regression form:

E[R|θ] u
1

L̃(θ)

[
N∑
i=1

rie
− 1

2 (θi−θ)
T (2Σε)

−1(θi−θ) + C

]
,

L̃(θ) =

N∑
i=1

e−
1
2 (θi−θ)

T (2Σε)
−1(θi−θ) + 1.

(2)

where Σε is the covariance of a kernel function, and C is
an auxiliary cost. C is calculated as,

C =
1

|I|
∑
i∈I

ri, I := {i|(θ∗ − θi)TΣε
−1(θ∗ − θi) < λ2MD}.

(3)
where λMD is a threshold that defines the search ra-

dius and θ∗ is the previously estimated optimum policy
vector. This equation is very similar to a linear smoother
with Gaussian kernels, commonly called as Nadarya-Watson
regression. However, the auxiliary cost C and its probability
density gives this regression form a unique extrapolation
characteristic. Note that Gaussian smoothing guarantees that
the algorithm does not get trapped in artificial minima which
is not present in the underlying function. The auxiliary cost C
generates an artificial minimum but accumulation of samples

eventually leads to exploration since the effect of C dimin-
ishes as the samples accumulate. This minimum is usually
formed outside of the convex hull of the sampled parameter
vectors in the direction of the parameter vectors with the
lower costs. This is always true in a two point case given
that the two samples have different costs. When the samples
are scarce locally, it behaves similarly. If there are many
samples in a small region, the algorithm behaves similar to
Gaussian smoothing and the behavior is dependent on the
underlying function. The resulting algorithm is illustrated in
Fig. 1. Fig. 1a) shows an original function J and a function
J̃ regressed with samples from J . With many samples
concentrated in a small region, Eq. 2 behaves like a linear
smoother. This smoothing behavior is very effective near an
optimum, where good convergence behavior is essential. Fig.
1c) shows an example of learning progress of ROCK?. When
there are first two samples, which are marked with red dotted
circles, the minimum is formed at the red dot. It shows the
extrapolation property of ROCK?. It is clearly different from
batch-based update strategy illustrated in Fig. 1b). The rate
of extrapolation can be controlled by adjusting the kernel
size as,

Σε = − 1

2 ln(λ)
P (0.95, n)Σ, (4)

where P is the inverse of the Chi-squared cumulative
distribution, and λ ∈ (0, 1) is a tuning parameter. Σ is
a exploration covariance which is used to sample the next
policy parameter to try, as it is done in many other black-
box optimization algorithms such as CMA-ES. Equation 4
defines a hyperellipsoid that contains 95% of the exploration
possibilities and then selects the noise covariance, such
that the probability density of the noise distribution at the
boundary of this hyperellipsoid is equal to λ. The resulting
extrapolation rate becomes independent of the number of
dimensions of the policy parameter vector and, therefore,
removes the need for an operator to hand tune it for different
dimensions. The extrapolation rate increases with λ and we
recommend to adjust it to a value between 0.4 and 0.6, which
gives a moderate extrapolation rate.

B. Natural Gradient Descent

The next step in the algorithm is to find a minimum
of Eq. 2 using natural gradient descent. Natural gradient
descent [20] ensures fast convergence to a minimum given
an appropriate metric. Assuming that our function is locally
in a shape of the Gaussian kernel used in the regression, we
choose Σ−1ε as our metric tensor. Then the gradient descent
equation can be written as,

θk+1 = θk − γΣ−1ε (∇θJ̃)T , where

∇θJ̃(θ) =

∑N
i=1 rie

− 1
2 MD2
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∑N
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− 1
2 MD2

iΓΛ

L̃2
,

Γ =
1

2
(θi − θ)Σ−1ε , Λ =

N∑
i=1

rie
− 1

2 MD2
i + C,

MD2
i = (θi − θ)T (2Σε)

−1(θi − θ).

(5)
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Fig. 1: a) shows an artificially designed cost function J and the estimated cost J̃ . b-c) shows the advantage of the extrapolation property of the ROCK?

(c) algorithm compared to a typical reward-weighted averaging algorithm (b).

where γ is a step size. γ is not task-specific and can be
tuned automatically. From our locally approximated function
Ae−

1
2θ
TΣ−1

ε θ, we aim to cover half of the distance to the
optimum in every update. The height of the Gaussian is
approximated by the height of the highest kernel, rmin−C,
where rmin is the lowest cost observed in rollouts. This
gives: γ = 1

2(C−rmin) .
Euclidean distance is not a sufficient termination criteria

since no scale is given to the algorithm. We chose to use
Mahalanobis distance of the of the update vector, ∆θ :=

γΣ−1ε (∇θJ̃)T , which is
√

∆θTΣ−1ε ∆θ instead.

Algorithm 1 ROCK?

Strategic Parameters
cc, ccov , ξ, κ, ζ and λ
Given
initial θ∗, exploration covariance Σ,
ϑ← − 1

2 ln(λ)P (0.95, n), Σε ← ϑΣ, P c ← 0

Σu ← Σ, σ ← 1, ψ ← det(Σ)
repeat

Sample a policy parameter vector, θN ∼ N (θ∗,Σ)
Create a rollout θN and evaluate rN = R(θN ,w)
Update C (cf. Eq. 3)
∆θ ← arg minθ J̃(θ)− θ∗ (cf. Eq. 2, Eq. 5)
θ∗ ← arg minθ J̃(θ)

if
√

∆θTΣ−1∆θ < κχ̂n then
P c ← (1− cc)P c + cc∆θ/σ
Σu ← (1− ccov)Σu + ccovP cP

T
c

Σu ← (ψ/det(Σu))1/nΣu

end if
if rN > rN−1 then
σ ← 1

ζξ
σ

else
σ ← ζσ

end if
Σ← σ2Σu, Σε ← ϑΣ

until convergence of J̃(θ∗)

C. Algorithm

Combining these regression and natural gradient descent
techniques, we have designed a new black-box optimization
algorithm, ROCK?. Algorithm 1 shows the pseudocode of
the algorithm.

The algorithm starts by sampling two policy parameter
sets from a given distribution. Then we use the proposed
regression method to build an expected cost map and find a
corresponding minimum. The minimum becomes the mean
of the next distribution and exploration covariance and the
kernel covariance are adjusted. To keep the same extrapola-
tion rate, the two covariances need to be adjusted with the
same factor. We have chosen a CMA-ES style covariance
update method since it is known to be robust and efficient.
The details on the adaptation method can be found in [9]. The
details of implementation of ROCK? and its default strategic
parameters can be found in our MATLAB code [21].

In the following sections, we present the testing results of
ROCK? on various optimization tasks including a hopping
task with a real robot.

III. OPTIMIZATION IN SIMULATION

In this section, we compare the solution and convergence
rate of ROCK? with CMA-ES [9], PI2 [3], and PIBB [8]
using the simulation of a 50 degrees-of-freedom robot arm
from [3]. All tuning parameters of the individual algorithms
were hand-tuned for every task individually to give optimal
performance. The exploration covariance was found to be a
very critical parameter while the other parameters have very
small impact on the learning speed.

The first task investigated is the high-dimensional via-
point task [3]. The robot’s arm is initially lying on the x-
axis and should reach the y-axis within 0.5 s while crossing
the via-point G at time t = 0.3 s, as drawn in gray using a
stroboscopic effect in Fig. 2a). The objective is to find the
desired joint angles which minimizes the cost function J1, as
defined in Fig. 2c) and motivated by [3] and [8]. The desired
joint angle trajectories are parameterized using Dynamical
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Fig. 2: Two tasks using a 50 DOF robot arm are presented. a) and b) show the learned end-effector trajectories and learning curves of the reaching task,
respectively. e)-f) show those of the rhythmic task. The learning curves are averaged over 10 trials. The cost functions penalize the actuation cost and the
distance to the via-points G at predefined time as shown in c).

Movement Primitives (DMP) [22] with 10 basis functions,
resulting in a total of 500 policy parameters.

Fig. 2a) illustrates the end-effector trajectories of the best
results of the different algorithms of 10 independent learning
sessions each having 3,000 rollouts. The trajectories of the
other algorithms conform to the motions published in [3].

TABLE I: The lowest costs for simulated arm tasks

Task ROCK? CMA-ES PIBB PI2

Reaching 21,765 34,892 42,834 68,419
Rhythmic 16,667 27,345 21,566 32,551

The lowest costs after 3,000 rollouts averaged over 10
trials are listed in Tab. I. After 20,000 rollouts, ROCK?

finds the dashed solution shown in Fig. 2a), which has
an even lower cost of 13,428. Fig. 2b) shows the learning
curves of the algorithms averaged over 10 trials. While the
other algorithms perform very similar to each other, ROCK?

converges much faster.
The second task is a new rhythmic via-point task motivated

by the challenges in legged locomotion. The goal is to drive
the end-effector rhythmically through the two via-points G1

and G2 with a period of T = 1 s as depicted in Fig. 2d).
We modify the cost function as shown by J2 in Fig. 2c),
and use a Rhythmic Movement Primitive (RMP) [22] for
each joint trajectory. The RMP is essentially a mixture of
Gaussian kernels that are repeated with the predefined period
T . Choosing 8 kernels per joint results in a total of 400 policy
parameters.

Fig. 2e) visualizes the end-effector movements after 6,000
rollouts. Tab. I summarizes the final costs obtained by each

algorithm. We found a near-optimal solution using ROCK?

algorithm after 60,000 rollouts that leads to a minimal motion
of the end-effector with a corresponding cost of only 3,110,
visualized by the dashed black curves in Fig. 2e). The
learning curves averaged over 10 learning sessions depicted
in Fig. 2f) demonstrate that ROCK? also converges much
faster than the other algorithms for this task.

The solid magenta curve in Fig. 2f) was generated using
CMA-ES with a standard deviation 10 times bigger than that
of the previous setup. This result shows the fundamental
difference between large variance and smart extrapolation
strategies. With a large variance strategy, the initial learning
is as fast as ROCK? but fails to converge near the optimum.
In high dimension, the chance of sampling a policy parameter
vector which results in a low cost severely diminishes if the
exploration covariance is increased, whereas the benefit of
using an increased step size is only linear to the standard
deviation. CMA-ES can auto-tune the size of the covari-
ance but such adjustment in high dimension requires many
rollouts. In addition, large standard deviation can initially
generate many dangerous and impractical policies, whereas
ROCK? only extrapolates in the region favored by the low
cost samples.

IV. OPTIMIZATION ON HARDWARE

To evaluate the algorithm on real hardware, we used
ROCK? to learn a variable impedance policy for robotic
leg, ScarlETH [23]. The objective is to reject unperceived
ground height perturbations. ScarlETH is a single legged
planar hopping system with torque control capability, which
allows impedance control at the joints. The main body has
two degrees of freedom (x, z) but the horizontal degree
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Fig. 3: Robotic leg learns variable impedance as it hops over unperceived objects. a) shows the part of the trajectories from initial and learned policy,
b) shows the learning curves, c) shows the learned policy, i.e. control gains, knee trajectory and touch down (TD) and take off (TO) time and d) shows
maximum and minimum apex height from the initial policy (left) and the learned policy (right) e) shows the impedance projected to the task space.

(x) was constrained mechanically for this experiment. The
system is composed of three links, the main body, the thigh
and the shank, and the two rotational joints located at the hip
and the knee. Therefore ScarlETH has a total of 3 degrees
of freedom for this experiment.

The controller used in the experiment is a PD-controller:

τ = kp(xd − x) + kd(ẋd − ẋ) (6)

where kp and kd represent scalar proportional/differential
gains, x represents the joint angles (i.e. knee and hip angles)
and xd represents reference trajectory. We used periodic
policies for knee reference trajectory xd1 and for the two
gains kp and kd, which were all parameterized with 10
periodically recurring Gaussian kernels. Since we are per-
forming stationary hopping, the hip reference trajectory xd2
is constrained by the leg configuration given xd1 and is not
part of control parameterization. We include the period of
hopping in the parameter vector and the parameter vector
becomes 31-dimensional.

The objective of the task is to reject the effect of unan-
ticipated varying ground height during periodic hopping
without explicitly perceiving the perturbation at the leg nor
the position (height) of the main body. The ground height is

varied from 0 cm to 1.5 cm and 5.5 cm by randomly sliding
two different wooden blocks underneath the foot during the
flight phase. The cost function penalizes deviations from
the predefined apex height (0.6 m) and the number of hops,
energy consumption and any command over the torque and
joint limits. The initial policy was found from optimization
in simulation with constant control gains.

Fig. 3a) illustrates the performance of the learned variable
impedance policy with the body trajectory. While the apex
height from initial policy fluctuates by about 5 cm in the
presence of 5.5 cm block, the learned policy successfully
minimizes this fluctuation to about 1 cm. The apex height
stability is also shown in Fig. 3d), where two still shots at
maximum and minimum apex heights are overlapping each
other. Again, the learned policy shows significantly less vari-
ation in apex height. The source of this intrinsic disturbance
rejection property can be found in Fig. 3c), which shows
optimized time-varying gains and knee reference/measured
trajectories. During the contact phase, marked by horizontal
gray bars, the impedance of knee drops quickly. If the touch
down is too early, the leg becomes more compliant during
thrust phase and the impulse on the foot is reduced. Con-
sequently, the hopping height is lowered which counteracts



the height gained from the wooden block. The impedance
change is more dramatic when it is projected to the foot
as shown in Fig. 3e). It becomes the lowest at the bottom
phase and increases steeply thereafter. The articulation of the
knee joint clearly amplifies the reduction in impedance. We
can also interpret it that the articulated joint already has an
intrinsic perturbation rejection property. As the knee bends,
the foot impedance is lowered which can counteract ground
perturbations and increase the stability of the system.

ROCK? successfully learned these dynamics of hopping
only from cost feedback. CMA-ES was able to learn suf-
ficient policy for stable hopping as shown in Fig. 3b) but
with significantly more rollouts. Video which illustrates the
performance of the learned impedance controller can be
found at: http://y2u.be/23YaSzVDxJo

V. CONCLUSIONS

To achieve fast and safe learning in high dimensional,
nonlinear, nonsmooth stochastic systems we developed a new
parameterized policy optimization algorithm, ROCK?. Like
other black-box optimization algorithms, ROCK? does not
use any knowledge of the system dynamics or the tasks.
It only explores and analyzes the relationship between the
input parameters and their corresponding costs to find an
optimal policy. This makes it simple for the algorithm to
be implemented on complex systems. ROCK? operates on
the following principles: immediate update of the current
optimal estimate, controlled extrapolation and incorporation
of all samples to average out the stochastic disturbances.
These principles led us to a safe and efficient regression-
style algorithm that performs well on real hardware tasks.

We have tested our algorithm in complex systems such as
the 50 degree of freedom robot arm simulation and the real
single legged hopping system, ScarlETH. For the two robot
arm tasks, ROCK? successfully learned 500-dimensional and
400-dimensional policies to obtain very natural trajectories.
The convergence speed of ROCK? was nearly an order
of magnitude faster than the current algorithms and the
learned policy manifested much lower costs than those from
other algorithms. We also have validated that our algorithm
can be used for optimizing rhythmic tasks by using it to
optimize the hopping controller on our single legged robotic
system. We parameterized the impedance and the trajectories
with recurring Gaussian functions and optimized the policy
with ROCK?. ROCK? successfully found that using a low
impedance during the contact phase is the key in rejecting
the effect of ground height disturbance. ROCK? was able to
do this in significantly fewer rollouts than CMA-ES.

We plan to further investigate the performance ROCK? on
quadruped robots such as HyQ[24] and StarlETH[25].
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