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Abstract

Over the last decades, locomotion of legged robots has become a very active field of

research, because of the versatility that such robots would offer in many applications.

With very few exceptions, in general, legged robot experiments are performed in con-

trolled lab environments. One of the reasons of this limited use is that in real world

environments, legged robots have to interact with an unknown environment, and in order

to do it successfully and safely, they need to be compliant, such as humans and animals

are. In the context of this Thesis, a framework to optimize a stereotypical trotting gait

for the Hydraulic Quadruped robot HyQ using variable impedance is proposed. This

is an important step towards closing the gap between robot capabilities and nature’s

approach for animal locomotion.

Figure 0.1: Hydraulically powered Quadruped robot HyQ. Picture from IIT.

The proposed framework makes use of the reinforcement learning algorithm PI2 (Policy

Improvement with Path Integrals) to optimize the parameters of a CPG-based gait

generator and the robot impedance during locomotion.

The proposed learning method is evaluated in a series of experiments on a simulation

of HyQ, where it achieves an energetically efficient and robust trotting gait at different

speeds while handling joint and torque limits.
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Zürich, March 30, 2015

III





Dedication

La presentación de la presente tesis es un paso más en mi búsqueda de crecimiento
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Introduction

1 Introduction

“My heart is on the work.”

— Andrew Carnegie, Scottish - American industrialist and

philanthropist, 1835 - 1919

This introductory chapter presents the motivation and goals behind this project and, in

general legged locomotion research. It also gives a brief overview of previous work and

state of the art in legged robotics and outlines the structure of the report.

1.1 Motivation and Objectives

Why is locomotion control an important and interesting problem? In addition to

all the fun inherent in working with robots, locomotion control of legged robots presents

an exciting problem, because of its challenges and still unresolved issues. Legged robots

need good coordination skills for many degrees of freedom, have to deal with uncer-

tainties in the model, the environment and instantaneous changes in the contact situa-

tion, need adaptation capabilities for different terrains and environment conditions, need

to handle sensory input, redundancies, under-actuation, real-time control and conflicts

among several tasks or priorities. Despite of that, progress is achieved everyday, because

legged robots are a promising technology for many applications.

Some of them include its use in unstructured and unknown environments. For example

in exploration, rescue missions, radioactive places, among others. Also important in

locomotion research, is the understanding of biological principles, helpful for the design

of devices for rehabilitation and active prostheses to compensate motor deficits. The

capabilities of legged animals, in terms of dexterity and versatility outperform any robot,

and become, therefore, a source of ideas and inspiration for the robotics community.

Biological principles and ideas can be applied in the design of new and better control

strategies for legged robots.

The goal of this project is to apply principles from nature like variable impedance control

and the use of adaptive frequency oscillators for synchronization, in order to implement

a learning and adaptation layer over a parametrized gait generator for trotting. The

learning layer is expected to optimize the trotting gait, in terms of energy efficiency,

robustness and speed tracking.

1
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(a) Single leg hopper (b) BigDog (c) WildCat

Figure 1.1: Robot prototypes - Mark Raibert

1.2 Previous Work on Legged Locomotion

Although a vast amount of literature exists about learning and control in legged locomo-

tion of static and dynamic gaits, this section will present only some of the most relevant

and interesting examples of legged robots.

Mark Raibert and his collaborators have, without any doubt, strongly influenced the

development and research in dynamic legged locomotion. He initiated his work in the

1980’s with experiments on single leg hoppers [51], and then on biped and quadruped

robots with pneumatic actuation. Since then, the prototypes have been improved, be-

ing able to achieve impressive performance with BigDog [49] and WildCat [52]. The

drawback is that, apart from videos, no information about control strategies and designs

have been published, so that the results cannot be validated by other groups.

Control strategies and hardware designs have evolved in the last years, from high gain

position control and robots with stiff actuators that try to follow precisely a preplanned

trajectory, to interaction / force / impedance control with compliant robots, able to

perform robustly more dynamic manoeuvres. Such a very good example is StarlETH

[24], which was built with inherent compliance by using series elastic actuators, uses

model-based control and a hierarchical optimization framework to handle priorities and

several tasks. StarlETH has shown several gaits like walking and trotting.

The design principles to embed intelligence in the robot have also evolved. The basic

idea of homeostasis or equilibrium inspired the well known feedback control; the devel-

opment of computational power and parallel processing allowed the use of search and

planning algorithms and, hierarchical optimization and control schemes. Now, the use

of mechanical intelligence, opens a new field of research, an example of it, can be seen

in the design of ”Fast Runner a robot Ostrich” [48], characterized by its innovative and

self-stabilizing leg design.

Regarding gait optimization, there are two general ways to approach the problem: direct

and shooting methods. In shooting or learning methods, the optimization is performed

based on a finite parametrization of the control input variables. The cost of each

policy parametrization is evaluated by forward simulating the dynamics of the system

2
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(a) StarlETH [24] (b) FastRunner Ostrich [46]
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Figure 1: Physics-based simulation of locomotion for a variety of creatures driven by 3D muscle-based control. The synthesized controllers
can locomote in real time at a range of speeds, be steered to a target heading, and can traverse variable terrain.

Abstract

We present a muscle-based control method for simulated bipeds
in which both the muscle routing and control parameters are opti-
mized. This yields a generic locomotion control method that sup-
ports a variety of bipedal creatures. All actuation forces are the
result of 3D simulated muscles, and a model of neural delay is in-
cluded for all feedback paths. As a result, our controllers gener-
ate torque patterns that incorporate biomechanical constraints. The
synthesized controllers find different gaits based on target speed,
can cope with uneven terrain and external perturbations, and can
steer to target directions.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

Keywords: physics-based animation, musculoskeletal simulation

Links: DL PDF

1 Introduction

Physics-based simulation is an established technique for the auto-
matic generation of interactive natural-looking motion. To extend
this approach to actively controlled virtual characters has been a
longstanding research goal, in which tremendous progress has been
made in recent years. Locomotion controllers have been developed
that robustly deal with changes in character morphology, external
perturbations and uneven terrain.

Unfortunately, in many cases the resulting motions are still not as
natural as we would like. One common approach that can help
improve the quality of the simulated motions is to use motion cap-
ture data as part of the control strategy. However, such methods

∗e-mail:t.geijtenbeek@uu.nl

are limited to characters and motions for which data is available.
Furthermore, the biomechanical constraints that are implicit in cap-
tured motions are not preserved during the motion editing or motion
retargeting that is often required to leverage limited motion data.
Another approach for improving the motion quality has been to use
optimization to help shape the motion, such as optimizing for min-
imal energy as well as task objectives. However, in the absence
of biomechanical constraints, optimization objectives may lead to
unnatural torque patterns or require cumbersome manual tuning.
Commonly implemented joint limits and torque limits remain a
crude approximation of the motion constraints that are implicit in
articulated figures driven by musculotendon units.

More recently, emerging from biomechanics research, researchers
have begun to develop methods that include biomechanical con-
straints into the simulation. Using such an approach, the natural
gaits of various animals can be simulated without the need for mo-
tion data. However, the principal focus to date has been on model-
ing human motion, and the solutions remain limited in their loco-
motion abilities and robustness.

In this paper, we make the following contributions:

• We develop a control method and optimization strategy for
the simulated locomotion of fully 3D bipedal characters, in-
cluding imaginary creatures, that are driven entirely by sim-
ulated muscle-based actuation. The method produces robust
locomotion at given speeds to target directions and does not
require pre-existing motion data. The characters can further
cope with modest variations in terrain.

• We introduce muscle routing optimization as an important
feature that enables and simplifies the design of muscle-based
control strategies for a variety of character morphologies. In-
stead of needing an exact musculoskeletal model, our method
requires only an approximate template of where muscles are
attached and routed. The specific geometry is then optimized
within the specified ranges allowed by the template, along
with the parameters related to the muscle control. This ap-
proach enables the discovery of efficient muscle routings for
creature models for which there exist no real-world data to
draw from.

• We make use of a muscle-based approximation to Jacobian
transpose control as a core component of our framework. This
enables a more creature-generic and motion-generic control
architecture and is applied to the majority of joints in our crea-
ture models.

ACM Transactions on Graphics, Vol. 32, No. 6, Article 206, Publication Date: November 2013

(c) Bipedal creature [18]

Figure 1.2: State of the art legged robots

from an initial condition using the current policy parameters. The parameters update

is done based on the performance of the different rollouts. A state of the art example

of gait optimization through shooting methods can be seen in [18]. In this work, the

authors define the basic structure of bipedal creatures, they use muscle models including

neural delays to generate locomotion torques and forces, and optimize simultaneously

the muscle properties and control parameters and, also the muscle routing geometry

in these muscle-based bipedal creatures by using the Covariance Matrix Adaptation -

CMA Algorithm. The results they achieve are very impressive, because the synthesized

controllers generate natural looking motion, are able to withstand external perturbations

and uneven terrain up to a certain extent, and allow speed and steering control.

The other possible approach for gait optimization is the use of direct methods. In direct

methods, the optimization algorithm searches simultaneously control and state trajecto-

ries, and imposes the dynamics as a set of optimization constraints. This approach does

not require simulation. A very nice and principled example of this approach is presented

in [38, 46]. This work introduces several interesting features like fully autonomous opti-

mization of contact transitions, because it does not restrict the search to fixed orderings

of the hybrid transition modes; it makes use of time discretization, that takes into ac-

count only the integrals of contact forces over a period; and defines the problem as

a general optimization of a cost function over the control and state trajectories, the

contact forces and the length of the timesteps, subject to constraints imposed by the

dynamics of the rigid bodies, the inelastic impacts and friction forces. This work finds a

locally optimal solution for the problem using a sparse sequential quadratic programming

solver. Impressive results are shown for several tasks, including gait optimization of the

FastRunner ostrich robot.

Learning methods have been applied for learning locomotion. They have shown success-

ful results, where they outperform any previous hand-tuned controller. Several examples

of this can be found in the literature, such as the following ones. In [31, 32], the authors

present a policy gradient reinforcement learning algorithm that optimizes a quadrupedal

trotting gait on the Sony Aibo robot. It optimizes the parameters of a parametrized

gait for achieving maximum possible forward speed. The result of this machine learn-

3
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ing optimization approach is that the robot achieves a locomotion gait faster than any

previously hand-coded or learned gait on Aibo.

In [65], a learning algorithm for bipedal walking is presented. It makes use of actor-critic

methods and temporal difference learning TD(0) to online optimize the control policy

for bipedal walking on the real robot. It represents the closed loop dynamics of the robot

integrated from one footstep to the next by means of a return map. With this learning

structure, the robot is able to perform learning and execution simultaneously. It learns

a walking gait in less than 20 minutes and can continuously adapt its control policy to

different terrains at every step by minimizing the eigenvalues of the return map.

In [12], reinforcement learning for locomotion of a single legged robot is presented. The

goal in this project was to improve the performance in highly dynamic tasks, such as

jumping and hopping , in terms of maximizing jump height, jump distance and energy

efficiency in periodic motion. It makes use of the reinforcement learning algorithm

Policy Improvements with Path Integrals (PI2), in a model-free approach, to optimize a

parametrized control policy of the joint velocities and the parameters of a virtual model

controller for periodic hopping. Learning is performed in a combination of simulation

and hardware experiments, being able to push, in this way, the robot capabilities to its

limits.

1.3 Thesis outline

This introduction is followed by chapter 2, that presents the theoretical background

underlying the system modelling, control and learning techniques used in this Thesis.

Chapter 3 presents the details of the implementation, how the concepts seen in chapter

2 fit together, from adaptive frequency oscillators and variable impedance control to

cost function design and reinforcement learning for gait optimization.

Chapter 4 presents the experiments performed and the results obtained in simulation.

Finally, Chapter 5 presents final conclusions and future work possibilities.
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Background Theory

2 Background Theory

“An approximate solution to the right problem is far better

than an exact answer to an approximate problem.”

— John Wilder Tukey, American statistician, 1915 -2000

2.1 Description of HyQ

HyQ is a hydraulically-powered quadruped robot, which has been developed at the

Istituto Italiano di Tecnologia (IIT), in Genoa, as a platform to study legged locomotion

in highly dynamic motions such as running and jumping, as well as careful navigation

over rough terrain. This section summarizes the more important characteristics of this

quadruped robot and is based on the work presented in [60] and [61].

Figure 2.1: Hydraulically powered Quadruped robot HyQ. Taken from [19]

HyQ is a 1 meter tall robot, composed of 12 torque-controlled joints that use a hydraulic

actuation system. It weights approximately 70 kg when externally powered and 90 kg

with on-board hydraulic power supply.

HyQ has been designed keeping in mind the following goals:

• To design a quadruped robot, mechanically able to perform highly dynamic mo-

tions, keep balance and be able to navigate autonomously, especially in difficult

terrains. To test different actuation mechanisms to improve energy autonomy and

efficiency.
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2.1 Description of HyQ Background Theory

• To serve as an open platform to study control in legged locomotion with special

focus on dynamic gaits, to test and analyse different control algorithms for gait

generation and transition.

The designers started by taking inspiration from nature and using knowledge from ex-

isting robots. Some important examples of existing quadruped robots are SCOUT [47],

KOLT [43], StarlETH [24], and the impressive BigDog [50] and WildCat, from which

there is very few information available, but motivates research and proved that techno-

logically such a project is feasible. On the other hand, animals have evolved and reached

a point of exceptional agility, from where some ideas can be drawn.

In nature, a wide variety of quadrupedal locomotion gaits can be seen, such as trotting,

bounding, galloping, among others. A study of locomotion in horses, conducted by

Hoyt and Taylor [23], has shown that these animals choose the gait and speed that is

energetically optimal and minimize the risk of injuries due to excessive musculoskeletal

forces at foot touch-down. Among these gaits, trot is energetically efficient over a wide

range of velocities [44]. For this reason a trotting gait can be chosen as a good starting

point for dynamic locomotion in HyQ.

Figure 2.2: Oxygen consum per unit distance vs. walking or running speed at the given
gait. Taken from [23].

In [21], a biology experimental study over a large range of quadruped animals, the

authors concluded that there is a relation between trotting speeds and stride frequencies

with animal’s body mass. The results of this study are reproduced in Table 2.1.
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Quadruped’s Mass 50kg 60kg 70kg 80kg 90kg

Minimum trotting gait 1.57m/s 1.64m/s 1.71m/s 1.77m/s 1.82m/s
1.70Hz 1.67Hz 1.64Hz 1.62Hz 1.61Hz

Preferred trotting gait 2.6m/s 2.7m/s 2.8m/s 2.88m/s 2.96m/s
2.01Hz 1.97Hz 1.93Hz 1.9Hz 1.87Hz

Maximum trotting gait 3.56m/s 3.73m/s 3.86m/s 3.97m/s 4.07m/s
2.33Hz 2.27Hz 2.26Hz 2.17Hz 2.13Hz

Table 2.1: Relation between trotting speeds and stride frequencies with animal’s body
mass.

These results define a base for stating the basic design specifications of HyQ. These

performance targets are the ability to walk in flat and rough terrain, locomote with

walking and flying trot up to a speed of 3 m/s, maintain stability, execute a vertical

jump with a safe landing, and power autonomy for several hours.

2.1.1 HyQ Leg Design

Each leg in HyQ is composed of three active revolute degrees of freedom (DOF), as shown

in Figure 2.3. There are two joints in the sagital plane, named Hip Flexion-Extension

(HFE) and Knee Flexion-Extension (KFE). A third joint, named Hip Abduction-Adduction

(HAA) is responsible for lateral leg motion. They allow foot positioning in the 3D

workspace. A limitation of this configuration is that it does not allow to simultaneously

choose the contact angle and the foot location. The contact angle is important, because

it determines the direction of the experimented force.

3. ROBOT SPECIFICATIONS AND DESIGN STUDIES

dogs feature a big range of different conformations. A square shape seems to be a good

compromise between agility, endurance and strength to carry loads.

To allow enough space for the actuators, the legs will not be fixed at the very front

or end of the robot torso, but rather shifted towards the centre of the robot. Following

above considerations, we can therefore assume that the leg should be about 0.7m-0.8m

long.

3.2.2 Number of Active Joints and Kinematic Structure

Once defined the number of legs we have to determine the number of active joints for

each leg. Similar to above mentioned reasons, the less actuated joints, the less complex

and expensive the robot. Furthermore, a crucial design criterion for the legs is low

inertia and mass (see design rule SP2.5). Each actuator adds weight to the leg (except

for a pantograph leg, see Hirose’s robots in section 2.3). However, a minimum of three

active DOF is required to place the foot in a three dimensional space.

A common design structure has two active DOF in the leg-sagittal plane 1 of the

robot and a third DOF in the vertical plane perpendicular to it. Fig. 3.1 shows

this kinematic structure. This design has been previously used in several quadruped

robots, e.g. TekkenII, KOLT and BigDog 2006 (refer to chapter 2 for descriptions of

these robots).

�������

������	


�		���	

Figure 3.1: Kinematic Structure of the active leg joints.

1the leg plane parallel to the plane that cuts the body into two halves of equal portions

50

Figure 2.3: Kinematic structure of the active joints in HyQ’s leg. Taken from [60].

There is also an additional passive prismatic joint, located along the axis of the lower

leg segment, that connects it to the foot with a spring, this is called the ankle joint.

This joint adds passive compliance at the foot, which is important to cope with initial

impacts due to force peaks at foot touch-down during locomotion. A 5mm layer of

visco-elastic rubber covers the foot. Its purpose it to provide additional compliance and

to improve traction by increasing friction.
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The desired total leg compliance is obtained as a combination of active and passive

components, and can be controlled by varying the leg stiffness by using the active

torque-controlled joints. HyQ belongs to the family of robots with articulated legs,

which is inpired in the kinematic structure of cursorial mammal types (like a horse),

which show in nature impressive stability during dynamic locomotion.IMechE Part I: J. Systems and Control Engineering   Manuscript of February 2011 
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 (a) (b) 

Fig. 1 The HyQ leg (LegV2): (a) picture with description of leg segments, actuators and joints; (b) sketch to define the 
leg segment lengths (l0, l1, l2, l3), the leg coordinate system (X-Z), joint angles (q0, q1, q2), spring compression (q3), 
joint torques (τ1, τ2) and vertical ground contact force (Fgz). 

 
 
torque peaks are smaller, but compact dimensions are crucial. Since these electric motors can be mounted onto the robot’s 
torso, their mass does not increase the leg inertia. Furthermore, the electric motor assembly (Fig. 2a) is more compact than a 
hydraulic cylinder (Fig. 2b) in its overall dimensions (thickness-to-length ratio) and therefore it permits a modular leg design 
with all actuators and components included. Moreover, each additional hydraulic DOF would add to the overall size and 
weight of the hydraulic system, as a bigger pump unit with a higher flow rate would be required. 

For a correct actuator sizing and selection, a series of simulations for different robot tasks has been performed.  Torque 
estimations have been obtained for a vertically jumping robot from a crouched position, which led to the selection of the 
hydraulic cylinder diameter and stroke. The specifications of the electric motor are based on the results of similar 
estimations. A detailed description of these simulations and the resulting selection and sizing of the actuators is presented in 
[33]. 
 Table II summarizes the main specifications of the hydraulic and electric actuators. While the two hydraulic cylinders are 
directly acting between two leg segments, the brushless DC motor needs a gear reduction to increase the joint torque output.  

 
(a) 

Figure 2.4: Description of HyQ’s leg main components. Pictures taken from [61]. Left:
Leg of HyQ and the names of its different components. Right: Schematic of
HyQ’s leg. The Hip Abduction-Adduction (HAA) joint is represented by q0,
the Hip Flexion-Extension (HFE) joint by q1, and the Knee Flexion-Extension
(KFE) joint by q2. The prismatic passive Ankle joint is represented by q3.

All of the joints, HAA, HFE and KFE, are actuated with hydraulic cylinders, which

feature a good dynamic range, high bandwidth, excellent power-to-weight ratio, and

robustness to torque peaks due to the intrinsic compliance. The hydraulic cylinders act

directly between two leg segments. In order to select the actuator specifications, torque

estimations for a vertical jump from a crouched position were performed. Details on this

can be found in [60, 61]. Table 2.2 summarizes the specifications for the actuators.

Specification Value

Cylinder bore and rod diameter 16mm, 10 mm
Cylinder piston and annulus area (Ap, Apr) 2.01 cm2, 1.23 cm2

Cylinder stroke 80mm
Max. operating pressure 16MPa

Table 2.2: Specifications of hydraulic actuators
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Background Theory 2.1 Description of HyQ

Each active joint counts with three different sensors:

• Relative optical encoder: This high resolution sensor has 80000 counts per revo-

lution, which allows direct low noise estimation of joint position and velocity.

• Absolute magnetic encoder: Used for easy and automated joint initialization and

as a sensor redundancy safety measure.

• Force/Torque sensor: Used for force/torque feedback control of the joints. For

the hydraulic joints a strain-gauge based load cell mounted between the cylinder

rod and the rod end allows to measure the cylinder output force. The load cell

range goes up to 5 kN. The passive ankle joint counts with a linear potentiometer

that measures spring compression and is used to determine ground reaction forces,

based on Hook’s law. Its maximum range is 0.035m.

2.1.2 HyQ Leg - Mechanical Considerations

The main criteria for the mechanical design are to keep the leg robust, with low inertia

and modular, so that it can easily be installed in the torso. For achieving these goals,

strength but light materials were used. For example, Ergal (a strong aluminium alloy)

is used for the torso. Stainless steel is used for heavily stressed parts, such as joint

end-stops, connection between motor and leg, cylinder attachments, among others. A

detailed summary of the leg’s mass and inertia properties can be found in [60].

In [30], Jaegger studied a group of Labrador Retriever dogs and estimated statistics of

different joint angles, like minimum and maximum joint ranges. Although animals have

a complex kinematic structure, like additional degrees of freedom, the maximum and

minimum joint ranges offer a rough idea of what would be a good criteria to select the

joint ranges in HyQ, where all the ranges of revolute degrees of freedom were chosen to

be 120 degrees.

Location Parameter value

Leg l0 0.08m
l1 0.35m
l2 0.35m
l3 0.02m

Hip a/a q0 range [ -90o to +30o]
Hip f/e q1 range [ -70o to +50o]
Knee f/e q2 range [ 20o to 140o]
ankle (passive) q3 range [-0.035m to 0m]

Table 2.3: Geometric parameters of HyQ robot leg

The segment lengths were chosen based mainly on two criteria: The commercial hy-

draulic actuators should provide the required force and fit into the leg, and the di-
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2.1 Description of HyQ Background Theory

mensions in HyQ, ratio between front and hind Hip joints to fully stretched leg should

approximate 1, as suggested in [34], according to which it is a sign of a fast racing dog.

Table 2.3 summarizes lengths and joint ranges of the different leg segments in HyQ.
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Figure 2.5: Maximum torque profiles in HyQ for the hydraulically powered revolute joints.
Based on [61].

Figure 2.5 shows the nonlinear relation between torque profile and joint angle for the

HFE and KFE joints with hydraulic actuators. A simple derivation of the analytical

relation between torques and joint angles for the kinematic structure of HyQ can be

found in [61].

2.1.3 Hydraulically powered Quadruped Robot HyQ

HyQ is composed of a robot torso and four identical legs, attached to the torso in the

forward/backward configuration, in which front and hind knees point to each other, as

forming an ”x”.

Several groups have conducted research to determine which configuration works better

for quadruped locomotion between the different combinations of forward and backward

leg positioning. In [70] for example, it was found that the forward/backward configura-

tion improves performance by decreasing slippage of the feet.

The torso has a trapezoidal-shaped cross section and was built of an Ergal sheet of 3mm

(determined based on finite element model analysis). The total weight of HyQ’s legs is

24kg, which corresponds to roughly 26% of the total mass. In nature, animals of similar

weight have a ratio of leg mass to body weight between 19 and 26%, which sets HyQ

in the upper limit. Table 2.4 summarizes the main characteristic of HyQ.
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The experiments showed that dynamic hopping with a high frequency and jump height can be achieved. Furthermore, the 
mechanical and structural design resisted the repeated impacts and was demonstrated to be robust. However, joint torque 
peaks were high in the knee joints and even exceeded the maximum actuator torque (125Nm) during leg impact. These peaks 
are well absorbed by the intrinsic overload capacity of a hydraulic system, as the oil pressure in the compressed cylinder 
chamber temporarily rises above the pump pressure and the elastic hoses expand slightly, creating a dampening effect. In 
such case, however, the control is temporarily lost and therefore the maximum joint torque output has been increased to 
145Nm. Amongst other improvements mentioned in Section 3.1.4, the load cell has been replaced by a larger measurement 
range model, since they reached saturation during these experiments. 

Scaling up the mean flow rate by a factor of four leads to an approximate value of the total flow of 6.7 l/min (0.112·10-3 
m3/s) for a full robot pronking. A direct comparison with the results in Section 3.2 however, would not be accurate because 
the COM of a trotting robot with a 50% duty factor experiences a much smaller vertical travel with respect to single leg 
hopping, which has longer parabolic flight phases [12]. 

 
 

4 HYDRAULIC QUADRUPED ROBOT HyQ 
 
4.1  Design Overview and Specifications 
 

The Hydraulic Quadruped robot HyQ is built up of a robot torso and four identical legs. Fig. 8a shows a CAD model 
rendering of the full robot with a description of key parts and components. The kinematic structure of the robot with its 12 
active and 4 passive DOF is shown in Fig. 8b.  

 

      
 (a) (b) 

Fig. 8 Hydraulic quadruped robot HyQ: (a) CAD model of the robot body with the onboard hydraulic system including 
the explanation of the key robot parts and components; (b) kinematic structure of the 16-DOF robot. 

 
 

The four legs are arranged on the torso in the forward/backward configuration, where the front and hind knees point to 
each other. Zhang et al. [41] conducted both simulation and experimental studies with their electric quadruped robot BiosBot 
and concluded that the forward/backward configuration is most suitable, since it reduces slippage between the feet and the 
ground and that it improves the overall motion performance. 

Table V provides a summary of technical specifications of the robot, its actuators, sensors and control hardware. 
The total mass of HyQ with onboard hydraulic system is 91kg. The mass of all four legs (hip assembly, upper and lower 

leg, and foot) is around 24kg, which is approximately 26% of the total robot mass. This corresponds to the upper limit of 
animals with a comparable body weight such as large dogs and small horses, which have a relative leg mass of 19-26% [42]. 

Fig. 9 shows a picture of HyQ standing on a custom-made laboratory treadmill. The robot torso has a trapezoidal-shaped 
cross section and its structure is based on a folded Ergal sheet of 3mm thickness with internal ribs to increase torsional 
robustness. This design yields the following advantages: simplicity, rigidity, low weight (10kg), easy manufacturability and 
great ability to mount and accommodate components.  

Finite Element Model (FEM) analyses for the torso have been performed to obtain the minimum sheet thickness that 
provides enough torsional robustness. The worst case scenario, in which the robot falls from 0.15m with only a diagonal foot 
pair onto a hard surface, has been simulated. A range of sheet thicknesses from 1 to 4mm was tested for three foot designs 
with different levels of compliance: with spring and rubber coating (case A), with rubber only (case B) and without spring 

Figure 2.6: CAD model of HyQ explaining its main components. Picture taken from
[61]

Description Value

Dimensions 1m x 0.5m x 0.98m
(Length x Width x Height)

Leg length (hip a/a axis to ground) from 0.339m to 0.789m
Distance of left to right hip a/a axis 0.414m
Distance of front to hind hip f/e axis 0.747m
Weight 70kg (external hydraulic system)

91kg (onboard hydraulic system)
Number of active DOF 12 hydraulic
Joint range motion 120o (for each joint)
Hydraulic actuator type double-acting cylinders

(80mm stroke and 16mm bore)
Maximum torque (hydraulic) 145Nm (peak torque at Pmax = 16MPa)
Onboard sensors Joint position (relative and absolute),

joint torque, cylinder pressure,
foot spring compression, IMU.

Onboard computer PC104 Pentium, real-time Linux
Control frequency 800Hz

Table 2.4: Some general specifications of HyQ

2.2 System model

HyQ and in general legged robots are not rigidly attached to an environment like a

robotic arm, but they can move freely in space and have to deal with changing contact

conditions. Indeed, they use ground as support for locomotion.

11



2.2 System model Background Theory

System Modelling

q =

(
qb

qr

)
(2.1a)

M(q)q̈ + h(q, q̇) + JTs Fs = ST τ (2.1b)

ṙs = Jsq̇ = 0 (2.1c)

r̈s = Jsq̈ + J̇sq̇ = 0 (2.1d)

Fs =
(
JsM

−1JTs
)−1

(
JsM

−1
(
ST τ − h

)
+ J̇sq̇

)
(2.1e)

They can be modelled using the concept of generalized coordinates. It describes the

kinematics and dynamics of a floating base system as a nq dimensional vector q composed

of nb free floating base coordinates qb and nr = nq − nb actuated joints coordinates qr,

as shown in equation 2.1a. The fixed body frame B represents the floating base and

can move arbitrarily with respect to the inertial frame I, as shown in Figure 2.7.16 2. SYSTEM MODELING
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Figure 2.1: The kinematic structure of a floating base system is described by
actuated joint coordinates qr and unactuated base coordinates qb. The contact
forces Fs occur due to the contact constraints.

2.1 Floating Base Multi-Body Dynamics
To represent the motion of floating base systems, we use the concept of
generalized coordinates. To this end, system kinematics and dynamics are
described as a function of the nq-dimensional vector

q =
(

qb
qr

)
, (2.1)

which is composed of the nb-dimensional vector qb describing the unactuated
floating base coordinates and the nr = nq − nb dimensional actuated joint
coordinates qr. As depicted in Figure 2.1, one of the robot’s links is dedicated
as the base with the body fixed frame B which can be arbitrarily displaced
with respect to the inertial frame I. The position (∈ R3) and orientation
(∈ SO (3)) of this link in space are measured with respect to the inertial frame
I using the unactuated floating base coordinates qb. For simplicity, we keep
the formalism in this report on Euler respectively Tait-Bryan angles (nb = 6,
qb = (x, y, z, α, β, γ)T ). If necessary, this is transformed to quaternions and
vice versa without explicit mention.

Figure 2.7: Kinematic Structure of the Quadruped robot HyQ. It does not show the
passive ankle joints. Taken from [24].

The system dynamics are given by equation 2.1b as a function of the generalized coor-

dinates. M(q) represents the mass matrix, the vector h(q, q̇) represents the sum of the

Coriolis, centrifugal and gravitational forces. The matrix S = [0nr×nb Inr ] is called the

selection matrix and separates actuated from not actuated coordinates. τ is the vector

of generalized forces.
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In order to define Fs and Js, we first define ns as the number of active contact points.

”The definition of active contact is that the corresponding contact is closed, which means

that the relative normal (N) distance between the contact point and the environment is

and remains closed (rNsi = ṙNsi = r̈Nsi = 0) with a pressure force exerted between them

(FNsi ≥ 0).” [24].

Then, rs and Fs are the vectors of stacked vectors of position rsi ∈ R3×1 and force

Fsi ∈ R3×1 at the ns active contact points. Therefore, Fs ∈ R3ns×1 and Js = ∂rs
∂q ∈

R3ns×nq .

Equations 2.1c and 2.1d describe the model of a hard contact, which neglects contact

slippage. By using this contact model and the equation of motion, a closed formed

solution of the contact forces can be derived, as shown in equation 2.1e.

2.3 Locomotion Gaits Sheet1

Page 1

Lateral Sequence Walk Bound

LH LH

LF LF

RF RF

RH RH

0 25 50 75 100 % 0 25 50 75 100 %

Walking Trot Rotary Gallop

LH LH

LF LF

RF RF

RH RH

0 25 50 75 100 % 0 25 50 75 100 %

Running Trot Transverse Gallop

LH LH

LF LF

RF RF

RH RH

0 25 50 75 100 % 0 25 50 75 100 %

Canter Pace

LH LH

LF LF

RF RF

RH RH

0 25 50 75 100 % 0 25 50 75 100 %

Figure 2.8: Gait Graphs
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Legged locomotion patterns have been analysed since long time ago. In the 19th century,

the English photographer Eadweard Muybridge pioneered the study of dynamic gaits in

animal locomotion. He used multiple cameras to capture motion of quick gaits and

analysed the phases these gaits undergo. In this way, he realized for example that quick

gaits like gallop, running trot, among others, do have a flight phase, during which all

legs left the ground [66].

These ideas can be captured in what are called gait graphs. Gait graphs are graphs that

depict the timing and relative phases of flight and stance phase of all legs. Figure 2.8 is

a gait Graph showing eight different quadruped gaits. They will be useful, because the

gait phase φ ∈ [0, 2π] will be used to know the progress made so far within each stride

and in this way, it will be possible to synchronise and learn variable gain stiffness and

damping for control of each joint. These gait graphs are based on the works presented

in [1, 2, 8].

2.4 Reactive Controller Framework

In this Thesis, the base controller over which the parameter optimization will be per-

formed is the Reactive Controller Framework [3]. In this section, the parts of the control

framework relevant for this Thesis will be briefly presented, a detailed explanation of the

framework can be found in [3, 4].

our approach partially builds on this work. However, in our
work, we specifically address the reactive generation of the
locomotion pattern rather than the underlying whole body and
floating base control problems.

Boston Dynamics’ quadruped robots BigDog [9] and LS3
have shown impressive locomotion performance in several
online videos in the past years. However, no details on the
hardware design and control methods have been published to
date. The performances of the underlying control algorithms
are therefore hard to verify and compare to other approaches.

Autonomous Locomotion through rough terrain has recently
been the focus of the DARPA Learning Locomotion Challenge
(cf. IJRR special issue [10]). In [11] a rigid body model based
controller has been shown to allow to lower the error feedback
controller gains improving the robustness for walking over
rough terrain. However, the therein presented approaches make
use of a high precision terrain map, extensive foothold search
and kinematic motion planning and mostly focus on statically
stable locomotion, while we focus on reactive footstep plan-
ning in absence of a terrain map.

In this paper, we propose a push recovery algorithm based
on the concept of N-step capturability, described in [12]. This
concept has been used by some authors for push recovery
and generation of trajectories in bipeds, by modeling the
robots with simple linear models. For example, the 3D Linear
Inverted Pendulum [13], the Linear Inverted Pendulum plus
Flywheel [14], the Linear Inverted Pendulum with finite-size
foot and reactive mass [15]. However, all these models do
not consider the effect of rotational motion, which is relevant
for the long trunk of a quadruped. Moreover, an analysis for
balance recovery in quadrupeds based on N-step capturability
is still missing in the literature.

Central pattern generators observed in animals have been a
major source of inspiration for trajectory generation in legged
robots [16], [17]. In robotics, the majority of CPG-inspired
methods for trajectory generation is applied in joint space [18].
However, feet trajectories mapped into joint space are complex
signals that cannot be modeled well by few harmonics. In ad-
dition, the relationship between the parameters of the generator
in joint space and the gait features (e.g. step height and length)
are very non-intuitive. To overcome such drawbacks of CPG-
inspired methods in joint space, some authors proposed to use
a Cartesian space CPG [19]. In that work the authors used a
neural network model in which the parameters are still non-
intuitive, have no independent effect on the feet trajectory and
require a mapping analysis to be tuned.
Our contribution is a CPG-inspired foot task space trajectory
generator with a very simple structure where all the parameters
have intuitive meaning and can be adjusted with independent
effect on the feet trajectories.

II. REACTIVE CONTROLLER FRAMEWORK

The Reactive Controller Framework (RCF) presented in this
work consists of two main parts: the Motion Generation and
the Motion Control. Both of them comprise three functional

blocks which will be detailed in Section III and IV, respec-
tively. Fig. 2 illustrates the layout of the various control blocks
along with the main information flows between such blocks
and the robot/environment.

Robot
+

Environment

CPG
Feet trajectory

Kinematic 
Adjustment

PD Controller
+

Inv. Dynamics

+

Push
Recovery

State
Estimation

Trunk
Controller

RCF

Fig. 2. Overview diagram of the Reactive Controller Framework (RCF),
highlighting the main functional blocks and the information flows. The small
block with k−1 represents the inverse kinematics routine. All the other
variables and the blocks are explained in Section III and IV.

An important element of our framework is the horizontal
frame, which we will use throughout the whole paper. A
horizontal frame is a reference frame whose xy plane is always
horizontal (i.e. orthogonal to the gravity vector ~g), such that
the projection of its x axis on the horizontal plane is parallel
to the same projection of the x axis of the robot (that is, the
horizontal frame has the same yaw angle as the robot, with
respect to the world frame). A horizontal frame can be attached
to the robot (it is then said to be floating), or fixed somewhere
in the environment, as illustrated in Fig. 3.

x y

z

x y

z

x y

z

x

y

z

Fig. 3. Horizontal reference frames (in green) and the robot frame (in blue
– the parallelepiped represents the robot trunk; see also Fig. 5); horizontal
frames share the same yaw angle with respect to the world reference frame
(in black).

Choosing such a horizontal frame as the coordinate frame
for motion generation and control provides several advantages.
In general, it makes the trajectory generation of the CPG block
independent from the trunk attitude, therefore the influence of
the trunk attitude controller on the feet trajectories is mini-
mized. This feature is very important for improved locomotion
stability and for push recovery, as we will show in Section V.

Figure 2.9: Reactive Controller Framework. Taken from [3]

The Reactive Controller Framework has been designed for robust quadrupedal locomo-

tion. It is composed of two modules, as shown in Figure 2.9. The first one is dedicated

to the generation of elliptic trajectories for the feet, whereas the purpose of the second

one is the control of stability of the robot.

14



Background Theory 2.4 Reactive Controller Framework

The first module is composed of three sub-modules: an elliptic trajectory generator

for the feet (CPG based on task space intentions), a kinematic adjustment scheme

and a trajectory tracking controller. The second module is also composed of three sub-

modules: a State estimation, a Trunk controller and a Push recovery sub-modules. From

these sub-modules, the kinematic adjustment scheme and the push recovery sub-module

will not be used.

2.4.1 Workspace Central Pattern Generator - WCPG

The WCPG is composed by a network of nonlinear oscillators, one for each foot, that

generate elliptical trajectories in cartesian coordinates. The outputs of these oscillators

are filtered by a nonlinear filter, whose output during the swing phase is the normal

elliptic trajectory, and during the stance phase, once the foot has made contact with

the ground, cut the ellipses. This feature allows to adapt the trajectories to the terrain

profile for robust locomotion.

Figure 2.10 shows a reshaped elliptical trajectory. The most important parameters that

define the generation of the elliptical trajectories are: the height Fci , the length Ls, the

stride frequency ωs, and the duty cycle D. For example, in Figure 2.10, the upper half

represents the normal elliptical trajectory during the swing phase with the defined height

and length, and the lower half shows the reshaped part of the trajectory, where ztdi , is

the point at which the foot touch down occurs (start of stance phase) and the ellipse is

reshaped.

The last workspace intention to be added to the walking

modulation is the locomotion direction or orientation. These in-

tentions are introduced by applying a rotation matrix R(φ,θ,ψ)
to the trajectory generated by the nonlinear oscillators, e.g.:

Xri
= XiR(φi,θi,ψi), Xi = [xi,yi,zi]

T (10)

where Xi is the vector of WCPG outputs and Xri
is the vector of

references in the robot workspace. The rotation matrix R(φ,θ,ψ)
is given by:

R(φ,θ,ψ) =





cψcθ −sψcθ+ cψ sθsφ sψsφ+ cψcφsθ
sψcθ cψcφ+ sφsθsψ −cψsφ+ sθsψcφ
−sθ cθsφ cθcφ



(11)

with s = sin(.) and c = cos(.). The angles φ, θ and ψ are related

to the movements of roll, pitch and yaw, respectively.

For a given modulated ellipse, the possible trajectories after

rotation can be seen as a surface of references, as shown in Fig.

3 and 4.
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Figure 3. SURFACE OF REFERENCE TRAJECTORIES GENERATED
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Figure 4. WCPG TRAJECTORY MODULATION AND ORIENTATION.

Another advantage of the proposed approach, as shown in

Fig. 5, is that even though the reference generator and the con-

trol have different functions in the locomotion, the WCPG can

give support to the control action by adapting the trajectory ac-

cording to the tracking errors at the touchdown moment. This is

made by modulating the parameters of the nonlinear oscillators

to drive the reference trajectory (desired position) of a foot to its

real position at the touchdown moment. Thus, since the tracking

error tends to zero at this moment, this action can avoid loco-

motion problems caused by control strategies with high gains in

unknown environments. Currently, this modulation process has

been the major focus of the author’s research.

From the perspective of high level tasks, the WCPG struc-

ture simplify the attitudes. The high level task is required to mod-

ulate few parameters that, depending on the terrain, are mostly

constant.

There are a lot of strategies in the literature to control and

maintain the stability of a quadruped robot. Since the WCPG

parameters have physical meaning, the high level task program-

ming becomes intuitive as it involves a situation that is also nat-

ural for humans.
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3D Trajectory Generation

Inverse Kinematics
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Robot-Env. System
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X , Ẋ , Ẍ

X , Ẋ , Ẍ

Xr , Ẋr , Ẍr

Ls,Fc,Vf ,Φ,ztd

Joint Space

Reference

Legend

Figure 5. BLOCK DIAGRAM FOR ROBOT CONTROL.

It is important to observe that the inverse kinematics in the

trajectory generation is used to preserve the biological concept

of a CPG, which provides joint space references. However, it is

only necessary if the controller acts in the joint space. If the con-

troller is formulated in the operacional space [8], the WCPG can

provide all the required references, including Ẍri
= [ẍri

, ÿri
, z̈ri

]T ,

since the WCPG are made of continuous functions and then can

be differentiated.

SIMULATION RESULTS FOR A SIMPLIFIED

QUADRUPED ROBOT MODEL

To demonstrate the application of the proposed CPG, it is

considered a simplified model for the quadruped robot that does

not consider roll and yaw movements. The robot has two degrees

of freedom per leg such that it is able to perform movements gen-

erated by the proposed CPG. The equations of motion were ob-

tained by considering the robot as a floating-base system, with its

base attached at the center of the torso [9]. The foot-ground in-

teraction was modeled through a linear stiffness and a nonlinear

damping [10].

3 Copyright © 2011 by ASME

Downloaded From: http://asmedigitalcollection.asme.org/ on 09/27/2013 Terms of Use: http://asme.org/terms

Figure 2.10: Workspace Central Pattern Generator - WCPG. Taken from [4]

The duty cycle D is the percentage of the gait phase φ ∈ [0, 2π], during which the foot

is in stance phase, as shown in Figure 2.8. An important relation between the WCPG

parameters shown so far, and the desired forward velocity Vf is:

ωs =
Vf
Ls
D (2.2)
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2.4 Reactive Controller Framework Background Theory

2.4.2 Trajectory Tracking Controller

The elliptical trajectories generated in Cartesian coordinates are transformed in desired

joint space trajectories by an inverse kinematics transformation.

The trajectory tracking controller receives the desired joint space trajectories qd q̇d q̈d

and uses an inverse dynamics algorithm to provide feed-forward commands, and a PD

position and torque controller to provide feedback commands. This approach is ad-

vantageous because, as a model-based control method enables movement dexterity and

accuracy, and allows to reduce the PD feedback gains, improving motion compliance

and robustness [36].

τ = InvDyn(q, q̇, q̈d) +KPS(qd − q) +KdS(q̇D − q̇) (2.3)

where τ is the vector of generalized forces, S is the selection matrix, KP and KD are

the position and velocity feedback gains and the inverse dynamics are computed using

QR decomposition, as presented in [36].

2.4.3 State Estimation

This sub-module is in charge of the estimation of translational velocities. Angular ve-

locities and accelerations can be directly measured by the gyroscopes and inertial mea-

surement unit (IMU).

The estimation of body velocities is done by mapping joint velocities of the stance legs,

assuming there is no slip or that the friction force constraints the forward movement of

the feet in stance phase. A detailed explanation and equations can be found in [3].

2.4.4 Trunk Controller

This sub-module has as objective the correction of the robot’s attitude. It accomplishes

that by providing joint feed-forward commands, that result in a force applied to the

trunk of the robot to correct the attitude. This sub-module also performs Gravity

compensation.

The forces to be applied to the trunk for attitude correction are calculated based on a PD

law for the deviations of the roll and pitch angles from their desired values. These forces

are mapped to joint torques without affecting the feet positions. Decoupling the effect

of these forces from the forces that come from the Trajectory Tracking Controller can be

done by mapping trunk correction forces into the nullspace of the Jacobian associated

with the stance legs. A detailed explanation and equations can be found in [3].
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Background Theory 2.5 PI2 Policy Improvement with Path Integrals

2.5 PI2 Policy Improvement with Path Integrals

PI2 is one of the state-of-the-art algorithms for reinforcement learning. It is based on

the combination of classical optimal control and dynamic programming with modern

methods from statistical learning theory.

More precisely, PI2 states the problem as a stochastic optimal control problem (nonlinear-

second order PDE), and finds the exact solution of the transformed Stochastic HJB

equation (linear-second order PDE) by using the Feynman-Kac formula. Finally, the path

integral is evaluated by generating rollouts with Monte Carlo sampling of the control

system, which allows to iteratively improve the control policies. A complete derivation

can be found in [68].

Some of the advantages offered by PI2 are:

• Depending on how the problem is formulated, PI2 can be used as model based,

semi-model based or even model free learning algorithm.

• Control variables to be optimized, are not restricted to motor commands, but

they can be something else, like for example a parametrized policy for desired

state trajectories (to be used as input for a tracking controller), desired control

gains (gain scheduling), among others. The algorithm does not learn the value

function, but the controls directly via iterative update.

• The algorithm is numerically robust, it does not involve matrix inversions, tuning

of learning rates, computation of gradients (sensitive to noise). It can easily work

with discontinuities in the cost function.

• It has only one open parameter, namely, the exploration noise.

• PI2 is very efficient, which means that it has fast convergence rate and works very

well even when using few rollouts.

• It is formulated for continuous state-action spaces, which makes it suitable for

learning in real high-dimensional robotic systems.

Algorithms 1 and 2 present the pseudocode for PI2 main algorithm and the pseudocode

for reusing rollouts if desired. They are based on [11, 68].

2.5.1 Basic steps in the Derivation of PI2

This subsection summarizes the basic steps involved in the derivation of the PI2 algo-

rithm, and is based on the work presented in [68]. Some extra details are provided in

the Appendix A.

As stated at the beginning of this section PI2 relies in the principles of stochastic optimal

control and statistical learning theory. Therefore, the first step is to define the stochastic
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2.5 PI2 Policy Improvement with Path Integrals Background Theory

Algorithm 1 Policy Improvement with Path Integrals for a 1D parametrized policy

Define

Immediate cost function
rt =

state cost︷︸︸︷
qt +

control cost︷ ︸︸ ︷
1

2
θTRθ

Cost terms
Terminal cost function φtN
Control cost matrix R ∈ RM×M
Parametrized policy at = gt

T (θ + ε) , a ∈ R1×N Policy terms
Basis functions gt ∈ RM×1, g ∈ RM×N
Initial parameter vector θ0 ∈ RM×1

Number of param. / basis functions M
Exploration zero-mean noise ε ∼ N (0, γrΣε) , ε ∈ RM×1

PI2 terms
Variance of the exploration noise Σε ∈ RM×M
Decay rate of the exploration noise γ
Parameter update weighting function ω = f

(
δθt ∈ R1×N)

Maximum number of param. updates L
General terms

Current number of param. updates r
Number of rollouts per update K

Number of time steps per rollout N

Precompute
for j = 1 to N do

Projection Matrix Mtj =
R−1gtjg

T
tj

gTtjR
−1gtj

end for
Main loop

while r ≤ L or until convergence of the trajectory cost J do
Generate k=1...K stochastic parameters θk = θ + εk.
Execute the rollouts with the parametrized policy at = gt

T θk.
Collect state costs qtj ,k and terminal costs φtN ,k for all rollouts.
for all rollouts k = 1...K do

Parameters with projected noise θ̂tj ,k = θ +Mtjεk

Cumulative costs S(τi,k) = φtN ,k +
N−1∑
j=i

qtj ,k +
1

2

N−1∑
j=i+1

θ̂Ttj ,kRθ̂tj ,k

Probability
P (τi,k) =

exp
(
− 1
λS(τi,k)

)
K∑
k=1

exp
(
− 1
λS(τi,k)

)
exp

(
− 1
λS(τi,k)

)
= exp

(
−h

S(τi,k)−min [S(τi)]

max [S(τi)]−min [S(τi)]

)
, h = 10

end for
for all timesteps i = 1...N do

Parameter update in time δθti =
K∑
k=1

[P (τi,k)Mtiεk]

end for
for all parameters θm m = 1..M do

Weighting time updates [δθ]m = ω([δθti=1...N ]m)
end for

Parameter update θr+1 ← θr + δθ

Execute one noiseless rollout to evaluate the trajectory cost Jr+1 = φtN +
N−1∑
i=1

rti

of the updated parameters θr+1

end while
return Optimized parameters θ ∈ RM×1
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Algorithm 2 Reusing rollouts in PI2

Given
Number of rollouts to reuse P
Current iteration r
Current updated parametes θr
Noisy parametes from last iteration θk for k = 1...K
Costs of rollouts from last iteration S(τ1,k) for k = 1...K

Function
if P > 0 then

Indices = Sort the cheapest rollouts [S(τ1,k=1...K)]
if Reevaluate Rollouts = TRUE then

Append θk for k = Indices1...P into rollouts to be executed
Update noises εk = θk − θr for k = Indices1...P

else
Update noises εk = θk − θr for k = Indices1...P

Reevaluate parameters with projected noise as shown in Algorithm 1.
Reevaluate cost of the trajectories as shown in Algorithm 1.

end if
end if

optimal control problem. It consists of a dynamical system represented by a stochastic

differential equation 2.4a with state vector xt ∈ Rn, control vector ut ∈ Rm. The

functions ft : Rn × R → Rn and Gt : Rn → Rn×m are the passive dynamics function

and the state dependent control transition matrix. Wt is an m-dimensional standard

Brownian motion which is given on the probability space (Ω,F , {Ft}t≥0,P).

We want to minimize the expected cost, as given in equation 2.4c, composed of a final

cost φtN and an immediate cost rt, as given in equation 2.4b. The immediate cost

can be designed with any arbitrary state cost, but it requires a quadratic cost for the

controls.

Problem Statement

dXt = (ft +Gtut)dt+ (GtΣ
1
2
ε )dW (2.4a)

rt = qt +
1

2
uTt Rut (2.4b)

V (xti) = min
uti...tN

Eτi
[
φtN +

∫ tN

ti

rtdt

]
(2.4c)

The Hamilton-Jacobi-Bellman equation for a stochastic process 2.4a and cost functional

2.4c is as given in equation 2.5a. From this equation, we can derive the optimal controls,

by taking the derivative with respect to the control variables an setting it to zero, as

in equation 2.5b. If we put back this result into the HJB equation, we obtain a second

order and nonlinear partial differential equation in terms of the cost functional.
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2.5 PI2 Policy Improvement with Path Integrals Background Theory

Stochastic HJB Equation

−∂Vt
∂t

= min
u
{rt + (∇xVt)T (ft +Gtut) +

1

2
Trace(GtΣεG

T
t ∇xxVt)} (2.5a)

u(xt) = ut = −R−1GTt (∇xVt) (2.5b)

−∂Vt
∂t

= qt−
1

2
(∇xVt)TGtR−1GTt (∇xVt)+(∇xVt)T ft+

1

2
Trace(GtΣεG

T
t ∇xxVt)

Using the transformation 2.6a and the assumption 2.6b, the second order nonlinear PDE

2.5 can be transformed into a second order linear PDE 2.6c with boundary condition

ΨtN = exp
(
− 1
λφtN

)
. This equation is known as the Chapman-Kolmogorov backward

PDE.

Transformation of the Stochastic HJB Equation

Vt = −λ log Ψt (2.6a)

Σt = λGtR
−1GTt = GtΣεG

T
t (2.6b)

−∂Ψt

∂t
= − 1

λ
qtΨt + fTt (∇xΨt) +

1

2
Trace{(∇xxΨt)GtΣεG

T
t )} (2.6c)

Now we make use of the Feynman–Kac formula, that establishes a connection between

parabolic partial differential equations and stochastic processes. In this case, it offers

the possibility to solve the PDE by simulating random paths of a stochastic process, as

given in equations 2.7.

Using Feynman-Kac Formula

Ψti = Eτi
(

ΨtN exp

(
−
∫ tN

ti

1

λ
qtdt

))
(2.7a)

Ψti = Eτi
(

exp

(
− 1

λ
φtN −

1

λ

∫ tN

ti

qtdt

))
(2.7b)

Ψti = lim
dt→0

∫
p(τi|xi)exp

− 1

λ

φtN +

N−1∑
j=i

qtjdt

dτi (2.7c)

τi is a trajectory composed by all the states along the trajectory (xti , ..., xtN ). In order to

compute the solution of 2.7a, we have to evaluate an expectation over the trajectories,

which means that we need to approximate the probability p(τi|xi), here is where the

statistical learning theory plays an important roll.

For doing that, we first discretize the dynamical system, as shown in equation 2.8a, and

approximate the standard Brownian motion dW with
√
dt εt, where εt is a normally
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distributed random variable with zero mean and unit variance εt ∼ N (0, 1). This

equation can also be decomposed into the controlled c and uncontrolled states m, which

helps us to realize that only the controlled states are affected by the Brownian motion.

Therefore, when we approximate the probability p(τi|xi), only the controlled states

contribute to it, given that the uncontrolled states are considered to have deterministic

dynamics and therefore, its probability is a Dirac delta.

Approximating the Path Integral

xt+1 = xt + (ft +Gtut)dt+ (GtΣ
1
2
ε )
√
dt εt (2.8a)[

xmt+1

xct+1

]
=

[
xmt

xct

]
+

[
fmt

f ct +Gctut

]
dt+

[
0

Gct

](√
dtΣ

1
2
ε εt

)
(2.8b)

p(τi|xi) =
N−1∏
j=i

p(xj+1|xj) ∝
N−1∏
j=i

p(xcj+1|xj) (2.8c)

=
1

α
exp

−1

2

N−1∑
j=i

‖xt+1 − xt − (ft +Gtut)dt‖2Σt−1

 (2.8d)

where: α =

N−1∏
j=i

(
(2π)l det Σε

) 1
2

(2.8e)

Ψti = lim
dt→0

∫
1

α
exp

(
− 1

λ
S(τi)

)
dτ ci (2.8f)

S(τi) = φtN +
N−1∑
j=i

qtjdt+
1

2

N−1∑
j=i

∥∥∥∥xctj+1
− xctj
dt

− f ctj

∥∥∥∥2

H−1
tj

dt (2.8g)

where: Htj = GctR
−1Gct

T (2.8h)

Results and control variables

uti = R−1Gti(∇xVt) = λR−1Gti
∇xtiΨti

Ψti

(2.9a)

uti =

∫
P (τi)uL(τi)dτ

c
i (2.9b)

P (τi) =
exp− 1

λ

(
S(τi) + λ

2

∑N−1
j=i log |Htj |

)
∫

exp− 1
λ

(
S(τi) + λ

2

∑N−1
j=i log |Htj |

)
dτ ci

(2.9c)

uL(τi) = R−1Gcti
T
(
GctiR

−1Gcti
T
)−1(

Gctiεti − bti
)

(2.9d)

bti = λHtiΦti (2.9e)

[Φti ]j = Trace
(
H−1
ti

(
∂|xcti |j

Hti

))
(2.9f)
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When we put back this probability into 2.7c, we can rewrite the transformed functional

cost Ψti as presented in 2.8f. In equation 2.8g, the norm ‖x‖Σ equals xTΣx, which is

known as Mahalanobis distance.

By reintroducing this result (eq. 2.8f) into the equation for the control variables (eq.

2.5b), the optimal control variables per timestep can be computed, as shown in equations

2.9.

2.6 Parametrized Policies for Function Approximation

Function approximation with parametrized policies is useful when we need a simpler

representation of another function. For example, instead of representing a trajectory

f(t) with its values indexed by time, it would be simpler to approximate this trajectory

by a linear combination of a parameter vector ω and a set of basis functions Ψ (possible

nonlinear) as f(t) =
∑

i ωiΨi(t). For learning, this means that it is possible to learn in

applications with high number of degrees of freedom, such as learning in the context of

quadruped locomotion.

The main idea of function approximation is to push the nonlinearity into the basis

functions and allow easy learning of the linear parameters. Besides, good basis functions

allow to perform a good approximation of any arbitrary function with the minimum

number of parameters.

In the following, several basis functions will be presented, as well as their advantages.

2.6.1 Gaussian Basis Functions

Gaussian basis functions are a very popular choice in many fields such as system identifi-

cation and machine learning. They are local in the time domain. They are characterized

by its center ci and its standard deviation σ. The number of basis functions M to be

used in an approximation is usually chosen by the user.

Figure 2.11 shows an example of 5 Gaussian basis functions and its weights approximating

a function.

Gaussian basis functions

Ψi(t) = exp

(
− 1

2σ2
i

(t− ci)2

)
(2.10a)

f(x) =
M∑
i=1

ωiΨi(x) (2.10b)
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Figure 2.11: Function approximation using Gaussian basis functions

2.6.2 Fourier Basis Functions

Fourier basis functions are suitable for approximation of periodic functions. They have

many in applications electrical engineering, signal and image processing, among others.

They are not local in time, but they are local in the frequency domain.
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Figure 2.12: Function approximation using Fourier Series as basis functions
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2.6 Parametrized Policies for Function Approximation Background Theory

They approximate functions using a baseline a0
2 and an infinite sequence of sines and

cosines.

Figure 2.12 show the approximation of a pulse train by using different number M of

fourier basis functions. It is clear, that by increasing the number of basis functions the

approximation is each time better, but an approximation is not perfect.

Fourier basis functions

f(t) =
a0

2
+

M∑
k=1

ak cos(kΩt) + bk sin(kΩt) (2.11a)

2.6.3 Von Mises Basis Functions

Von Mises basis functions are used to approximate periodic signals. They are character-

ized by its center ci ∈ [0, 2π] and its width hi.

Figure 2.13 shows a policy with 5 basis functions. As can be seen, an advantage of

these Basis functions is that the frequency of the signal can be changed, while keeping

the shape of the policy.
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Figure 2.13: Function approximation using Von Mises Basis Functions

Von Mises basis functions

Ψi(φ) = exp (hi (cos (φ− ci)− 1)) (2.12a)
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2.6.4 Gaussian Process Learning

Another way to do function approximation is to learn a Gaussian Process that approxi-

mates the probability distribution of our samples, or said differently, performs a stochastic

approximation of the function.

For example, for a group of N samples, with feature vectors x1, ..., xN ∈ RNd×1 and

output signals y1, ..., yN ∈ R, the probability of our outputs given the input feature

vectors can be approximated with a zero-mean normal distribution with covariance matrix

K, as given in equation 2.13a. The elements of the covariance matrix can be calculated

using equation 2.13b, where a squared exponential covariance function has been used

[39, 69].

Learning a Gaussian Process

p(y1, ..., yN |x1, ..., xN ) = N (y1, ..., yN |0,K) (2.13a)

Kij = κ(xi, xj) = v0 exp

(
−1

2

Nd∑
k=1

vdk(xik − xjk)2

)
+ v1δij (2.13b)

p(yN+1|x1, ..., xN , xN+1, y1, ..., yN ) = N (yN+1|µ, σ2) (2.13c)

µ = k(xN+1)T K−1y (2.13d)

σ2 = κ(xN+1, xN+1)− k (xN+1)TK−1k (xN+1) (2.13e)

where: y = [y1, ..., yN ] (2.13f)

where: k(xN+1) = [κ(x1, xN+1), ..., κ(xN , xN+1)]T (2.13g)

δij is the Kronecker delta, that equals 1 when i = j, and 0 otherwise. xik and xjk

are the k − th element of the i − th and j − th input vectors. The covariance matrix

K does approximation and prediction of a function based on similarity between input

feature vectors.

Prediction of the output value for a new input vector can be done using the equation

2.13c, where the prediction is characterized by a mean µ and a variance σ2, as given by

equations 2.13d and 2.13e respectively.

An example can be seen in Figure 2.14, where we want to approximate a sinusoidal

signal. For that purpose, we have collected five noisy sample points and by using the

Gaussian Process Learning algorithm, we can fit a Gaussian Process. As result, we get

an approximation characterized by the mean and the variance. As can be seen, using

the measure of similarity between data points works well in practice, even for few sample

points. Indeed, the measure of the variance can be used to select new points, where we

should collect data, in order to improve the approximation and increase our certainty.
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Figure 2.14: Learning a sinusoidal signal with a Gaussian Process

2.6.5 Rhythmic Control Policy - RCP

The representation of trajectories is an important issue in robotics. Some of the de-

sirable properties for such a representation include: easy to represent, learnability and

reusability of a trajectory, and robustness against perturbations or modifications of the

environment conditions. In this context, dynamic movement primitives and rhythmic

movement primitives were developed to easily encode single go-to-goal motions and

periodic movements respectively, as presented in [26, 27, 28, 29].

A rhythmic control policy is a movement primitive for rhythmic or periodic motions

based on nonlinear oscillators. The RCP is composed of two main systems: a canonical

and a transformation system.

The canonical system is composed by equations 2.14. The main equation of this set

of differential equations is the equation 2.14a, which represents the evolution of the

phase φ ∈ [0, 2π] of the rhythmic motion with time constant τ = period
2π . The canonical

system is unique within the RCP and synchronizes the transformation systems that will

be explained later. The phase variable can be parametrized differently, for example,

instead of using a time dependent phase, the evolution of the phase could be coupled

to another state of the system.

Equations 2.14b and 2.14c are used to smoothly change the amplitude r and baseline g

of the trajectory, up to a desired value r0 and g0 respectively.
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Rhythmic canonical system

τ φ̇ = 1 (2.14a)

τ ṙ = αr (r0 − r) (2.14b)

τ ġ = αg (g0 − g) (2.14c)

The transformation system (equations 2.15) is designed based on a globally stable

second-order linear system, which is modulated with a nonlinear term f(φ, r). The

term f(φ, r) connects the canonical and transformation systems, it is designed to be

periodic, so that the resulting trajectory oscillates with the desired shape.

As explained before, the Von Mises basis functions are characterized by its centers

ci ∈ [0, 2π] and its bandwidths hi, which are generally chosen equally spaced in the phase

range φ. The constant parameters for the differential equations of the transformation

system are chosen such that the second order differential equation is critically damped

when the nonlinear term equals zero. Therefore, αz = 25 and βz = αz/4 are a good

choice. The terms αr and αg can be chosen to be αz/2.

Rhythmic transformation system

τ ż = αz (βz (g − y)− z) + f (2.15a)

τ ẏ = z (2.15b)

f(φ, r) =

N∑
i=1

Ψiωi

N∑
i=1

Ψi

r (2.15c)

where: Ψi = exp (hi (cos (φ− ci)− 1)) (2.15d)

For learning the weights ωi of the rhythmic control policy, regression can be applied.

The technique suggested in [26] is locally weighted regression (LWR), as presented in

[59], because it can automatically learn the number of necessary basis functions (some

thresholds have to be set by the user though). For simplicity, we present here LWR in

batch mode.

The learning process goes as follows: First of all, the frequency of the rhythmic motion

has to be learnt (this will be shown in the next section), then locally weighted regression

can be applied to learn the weights ωi for the demonstrated trajectory. By measuring

the demonstrated trajectory (ydemo, ẏdemo and ÿdemo), the nonlinear term ftarget can

be computed for each timestep, as shown in equation 2.16a. Then, the criteria used

for finding the weights, is to minimize the squared difference between ftarget and the

weight of each receptive field ωi scaled by the trajectory amplitude (usually set to 1 for
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learning), as shown in equation 2.16b. As result of the optimization, the weights can be

computed as shown in equation 2.16c.

Locally weighted regression (LWR) - Batch mode

ftarget = τ2ÿdemo − αz(βz(g − ydemo)− τ ẏdemo) (2.16a)

Ji =
N∑
t=1

Ψi(t)(ftarget(t)− ωir)2 (2.16b)

ωi =
bTΓiftarget
bTΓib

(2.16c)

b =
(
r(1) · · · r(N)

)T
(2.16d)

ftarget =
(
ftarget(1) · · · ftarget(N)

)T
(2.16e)

Γi =


Ψi(1) 0

Ψi(2)
. . .

0 Ψi(N)

 (2.16f)

Figure 2.15 shows an example of a rhythmic control policy. In the last row, first and

second plots, the canonical system is shown. Here, it is possible to see the periodic

evolution of the phase φ and its derivative φ̇. In the first row, the demonstrated trajectory

ydemo, ẏdemo and ÿdemo (black) and the learned trajectories (blue) are presented. Finally,

in the last column, the basis functions for one period and the corresponding learned

weights are depicted.

2.7 Adaptive Frequency Oscillators

This section describes a way to learn the frequency of a periodic signal using nonlinear

oscillators. As seen so far, nonlinear oscillators are widely used in engineering because

of their interesting properties. In this section, we will make use of its synchronization

ability when coupled to other dynamical systems to learn the frequency of a periodic

signal.

The learning method presented in this section is based on [15, 54, 55]. The main idea

is to identify the parameter that most influences the evolution of the frequency of the

dynamical system. Then, the learning rule is constructed by making the parameter a

dynamical system. The advantage of this, is that the learning is not done as an offline

optimization process, but instead is it part of the dynamics and can be done online very

efficiently.
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Figure 2.15: Example of a Rhythmic Control Policy

Single frequency learning

φ̇ =
ω

τ
−KF sin (φ) (2.17a)

ω̇ = −KF sin (φ) (2.17b)

First, we examine the method for identification of a single frequency, as presented in

equations 2.17. A periodic signal can be represented as the evolution of its magnitude

and phase; as we are interested in learning the frequency and do not want this to be
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influenced by the amplitude of its oscillations, the learning rule can be constructed based

on the phase equation of the dynamical system, as shown in 2.17a. φ is the phase, ω

the frequency, F represents the input signal, whose frequency we are interested in, τ is

the relaxation time and K is a term that determines the coupling strength.
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Figure 2.16: Single frequency learning

Equation 2.17b is our learning rule for the frequency. This equation provides the adap-

tation ability and plasticity to the oscillator, by allowing the change of its frequency

parameter ω. When the frequency of the oscillator is close to the frequency of the

periodic input, it will synchronize, phase-lock ( this effect is known as entrainment ); in

this way, we can learn the frequency of a signal. More details about frequency learning,

entrainment basin and proof of convergence can be found in [55].

Figure 2.16 shows an example of frequency learning, where we want to learn the frequency

of the locomotion gait of the robot by estimating the frequency of one of its periodic

variables, namely, the roll angle. The first plot shows the input signal, whose frequency,

we are willing to learn. In the second plot, the reference frequency ωref and the estimated

frequency ωest, using equations 2.17, are shown. The estimated frequency is integrated

to obtain an estimated phase φAFO. In the last plot, this estimated phase is compared

with the reference phase, and we can see that they are close, but they have a phase

difference. This can be improved as will be seen later.
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Figure 2.17: Multiple frequency learning

When we are interested in learning multiple frequencies of a multiple frequency signal, a

similar approach can be used. The main idea is to let each oscillator learn a frequency

component of the periodic signal [15].. Equations 2.18 show the process. The difference

between this framework and the one presented before for single frequency learning, is

the introduction of a feedback loop. This feedback loop helps to stabilize the learned

frequencies as the difference e(t) between the input signal ymeasured(t) and the approxi-

mated signal ŷ(t) approaches zero. The approximated signal ŷ(t) is computed as a linear

combination of M adaptive frequency-phase oscillators, as shown in equation 2.18d, and

also allows amplitude adaptation by using equation 2.18e.

Multiple frequency learning

φ̇i =
ωi
τ
−Ke (t) sin (φi) (2.18a)

ω̇i = −Ke (t) sin (φi) (2.18b)

e (t) = ymeasured(t)− ŷ(t) (2.18c)

ŷ(t) =

M∑
i=1

αi cos (φi) (2.18d)

α̇i = η cos (φi)e (t) (2.18e)

31



2.7 Adaptive Frequency Oscillators Background Theory

Figure 2.17 shows an example of learning a periodic signal with M = 2 adaptive fre-

quency oscillators. The first plot shows the periodic signal, and the second one shows

the evolution of the learned frequencies as they approach the two main frequency com-

ponents of the periodic signal.

The improvement that can be done for phase estimation, comes from the [40, 54],

where a phase resetting mechanism is suggested to compensate the slightly difference

between the frequency at which the legs touch the ground and the frequency of the

control trajectories (in our case, variable impedance synchronization). This can be done

by using feet contact information to adjust the phase estimate, coupling the true body

locomotion phase and the controller.

Phase resetting mechanism using feet contact information

φ̇pr = ω̂npr + δ(t− tcontact)(φ
HyQ
contact − φpr) (2.19a)

ω̂n+1
pr = ω̂npr +K(ωnest − ω̂npr) (2.19b)

The equations used for the phase resetting mechanism are equations 2.19. ω̂npr is a

filtered version of the frequency estimated with AFO ωnest. The effective phase velocity

φ̇pr comes from the filtered frequency ω̂npr and a term that compensates for the difference

between the phase estimate φnpr and the real phase of HyQ φHyQcontact at touch down. Figure

2.18 shows in pink the improvement in the phase estimate by using this phase resetting

mechanism.
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Figure 2.18: Phase resetting mechanism by using feet contact information.
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2.8 Impedance control

For tasks involving interaction with the environment, such as force control and locomo-

tion, high gain control approaches are not suitable, instead the tasks require the robot

to behave compliant. Impedance control is one the frameworks that offer the possibility

to introduce compliance in the robot control design.

The main idea in Impedance Control is to design the disturbance response when a

perturbation causes the system to deviate from its desired trajectory [13] . In other

words, it designs a specific impedance behaviour for the robot interaction with the

environment.

Impedance Control can define a target impedance for any point of the robot, provided

that a kinematic transformation can be defined between the actuated joints and the

point. Usually the end-effectors are selected as the points, where we want to define an

impedance. Equation 2.20a defines a common impedance behavior by using a second

order dynamical system. This equation relates the interaction forces Fs and position

xee of the end effector. KP,x, KD,x and KM,x are the end effector desired stiffness,

damping and inertia matrices.

Impedance Control

Fs = KP,x (xeed − xee) +KD,x (ẋeed − ẋee) +KM,xẍee (2.20a)

q̈d = J†s

(
K−1
M,x [KP,x (xeed − xee) +KD,x (ẋeed − ẋee) + Fs]− J̇sq̇

)
(2.20b)

Fs = KP,x (xeed − xee) +KD,x (ẋeed − ẋee) (2.20c)

τd = JTs Fs = JTs [KP,x (∆x) +KD,x (∆ẋ)] (2.20d)

τd = JTs

[
KP,x (Js∆q) +KD,x

(
J̇s∆q + Js∆q̇

)]
(2.20e)

τd = (JTs KP,xJs)∆q + (JTs KD,xJs)∆q̇ (2.20f)

In order to map this impedance from task space to joint space, we use the contact model

equation 2.1d, that relates acceleration in joint and task space. By plugging equation

2.20a in 2.1d, we obtain equation 2.20b, that specifies the joint accelerations required to

realize the desired impedance in Cartesian space (J†s is the Moore-Penrose pseudoinverse

of the Jacobian). By using these joint space accelerations and the equation of motion

of the robot (equation 2.1b), the torques that satisfy the desired dynamics at the end

effector can be computed.

In our Framework for HyQ, we do not specify a desired inertia at the end-effector and,

Coriolis and gravity forces are compensated by feed-forward commands. For this reason,

Impedance Control law simplifies to a spring-damper system between the end-effector
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4.2. Impedance control for the whole leg

Figure 4.13: Comparison of ground reaction forces with the robot standing still on the ground
in case of impedance controller implemented at the end-effector (task) space (left) and at the
joint space (right). In the latter case these force are not vertical.

cause it enables to reduce the chance of slippage during locomotion. This becomes crucial

when the robot is negotiating very slippery surfaces. However, this holds if the Z direction of

the base of the robot it is aligned with gravity. During normal locomotion the orientation of

the base changes due to roll and pitch motions. Therefore, if the angular posture measurements

of the body are available (e.g. by an IMU sensor), it is possible to define the stiffness matrix

in an inertial frame. This allows to have always a similar body dynamics when the robot is

negotiating the ground independently by the body orientation.

4.2.2.2 Implementation

The fundamental philosophy of implementing the impedance controller at the end-effector is

to define a dynamic relationship ZZZ(z) (impedance) between the end-effector Cartesian position

xxx (i.e. the foot of the robot) and the Cartesian interaction forces FintFintFint applied on the robot by the

environment [Hogan, 1985].

FFF int

xxx
= ZZZ(z) (4.4)

In particular if the environment is applying a certain interaction force FFF int to the end-effector,

this will map as interaction torques τττ int = JJJ(qqq)TFFF int on the robot joints. Where JJJ(qqq) is the leg

Jacobian. These interaction torque will generate joint accelerations and displacements accord-

ing to the robot leg dynamics:

MθMθMθ q̈̈q̈q+hhh(qqq, q̇̇q̇q) = τττ +JJJ(qqq)TFintFintFint (4.5)

73

Figure 2.19: Impedance Control in Task Space (left) and Joint Space (right). Taken
from [14]

and the desired trajectory, as shown in equation 2.20c. By using the Jacobian Js, we can

map changes in Cartesian coordinates to changes in Joint space coordinates, which is

expressed in equation 2.20e. Equation 2.20f is obtained by assuming that the geometric

stiffness due to changes in the Jacobian J̇s is negligible in comparison to the other terms

[5].

As final result, the stiffness KP,x and damping KD,x gain matrices in task space can be

mapped to stiffness KP,q and damping KD,q gain matrices in joint space by using the

following relations:

KP,q = JTs KP,xJs

KD,q = JTs KD,xJs

An important observation done in [14], states that impedance control implemented in

task space differs from impedance control implemented in joint space for HyQ standing

still in that, the ground reaction forces that result from the first one are vertical, while

the ground reaction forces for the second one are not. Vertical forces are desirable,

because they help to reduce the probability of slippage during locomotion. This suggest

that an implementation of impedance control in task space is worthy.

Another important detail, is that the damping matrix for impedance control, should be

selected such that the dynamics of the system result in a critically damped behaviour.

This is important in order not to introduce high frequency signals that could possibly

excite unwanted dynamics in HyQ. For such purpose, the damping gains can be selected

as:

KD,x = 2
√
KP,x
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3 Learning and Control

“A computer program is said to learn from experience E with

respect to some class of tasks T and performance measure P,

if its performance at tasks in T, as measured by P, improves

with experience E.”

— Definition of Machine Learning, from [37].

This chapter provides a description of the design and control architecture implemented

for gait optimization using the reinforcement learning algorithm PI2. The learning algo-

rithm is built on top of the physics and control environment SL (Simulation Laboratory)

[58], and using the Optimization engine using reinforcement learning algorithms [17].

SL is a simulation and real-time control software, that allows testing and debugging of

robot programs in simulation, and on the real robot without further modifications. It is

built in a modular way, which decouples low and high level control. Low level control is

done by the Motor Servo, which is in charge of handling input/output with the robot

or simulation, basic feedback loops and computes motor commands based on desired

quantities. The Task Servo executes high level control algorithms to obtain the desired

motor behaviour for a given task. It creates, for example, desired position and velocity,

and feed-forward commands that accomplish some goal.

The Optimization engine is a relatively new tool, that offers a general framework for

optimization using reinforcement learning algorithms. This Thesis makes use of this

framework and also collaborates by supplying the PI2 implementation.

Collect Sensor
Information

Update
parameters

Online Frequency and
Phase Estimation for
Synchronization

+
RCF MODULES

Learning with PI2

WCPG and GAIN
parameters

New test
parameters

Evalutate
Costs

Figure 3.1: Brief picture of the Learning Process with PI2
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A brief picture of the learning and control setup consists in the following key ideas.

First, online learning of frequency and phase is performed to synchronize the feedback

control policies (Control and Adaptation Layer). Then, by means of executing and

evaluating roll-outs, the feedback control policies for variable impedance control and

trunk stabilization are tested and improved (Learning Layer). A roll-out is a single

execution of the policy parameters.

3.1 Control and Adaptation setup

This section describes the main ideas involved in the control and synchronization of

feedback policies of a trotting gait for the hydraulic quadruped robot HyQ.

As stated earlier, the base control algorithm for this optimization is the Reactive Con-

troller Framework - RCF [3]. The variables to be optimized and controlled can be

separated in two groups:

• The first group comprises the high level variables that define the workspace CPG,

namely, the stride frequency ωs, the step length Ls, the step height Fci , the duty

cycle D and the desired forward speed of the robot Vf . This group will be referred

to as WCPG-parameters group.

• The second group is composed of the feedback gains for the PD control of pitch

and roll dynamics, and the feedback gains for the PD torque control of the joints.

This group is called GAIN-parameters group.

On the one hand, the variables of the WCPG-parameters group are kept constant during

each roll-out. The variables for the pitch and roll dynamics of the GAIN-parameters

group are also constant during each roll-out. The variables mentioned above do not

require any synchronization with the gait.

On the other hand, the variables for stiffness KP,x and damping KD,x for the torque

control of the joints do require synchronization with the gait frequency. Learning is only

done for the stiffness variables of the feedback policies, the damping variables are set

appropriately to obtain a critically damped behaviour.

Impedance control in Task space, as presented in section 2.8, is used to parametrize

the feedback gains (KP,x, KD,x). Variable impedance control is used, therefore, the

parametrization is periodic and uses Von Mises basis functions (section 2.6.3). The

selection of the optimal number of basis functions used to parametrize a policy is still

an open research question. In this Thesis, to select the number of basis functions used

to parametrize the variable impedance, we take an approach based on [6, 7]. In these

works, the authors suggest a very intuitive approach. They represent the trajectories from

demonstrations with GMM. This allows to reduce the dimensionality of the trajectory by

using only a certain number of classifiers to encode it. Additionally, they use the learned
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Figure 3.2: Gaussian Mixture Model - Gaussian Mixture Regression for Roll and Pitch
trajectories. In the first row, plots of the roll (x1) and pitch (x2) trajectories
are shown. The second row shows the fit of the Gaussian Mixture Model to
the roll and pitch trajectories, with 8 centroids. Finally, the last row shows
the generalization through the use of Gaussian Mixture Regression. [6, 7]

variance along the trajectory to specify the impedance. For example, in regions of high

variance, the robot can behave compliant, and in regions with low variance, the robot

increases the stiffness to closely follow the learned trajectory and reject disturbances.

Figure 3.2 shows the representation of the pitch-roll angle trajectories for HyQ using 8

basis functions in GMM. This number was optimized by using the BIC score (equation

3.4d) as shown in Figure 3.3. BIC score will be explained later in detail.

Based on this optimized number, the number of basis functions used to represent the

variable impedance in HyQ is chosen to be 10, in order to give enough expressiveness to

the policy and to keep the complexity at a reasonable level. This means, for example, that

each parameter of the stiffness matrix KP,x, namely, PgainX(φ), PgainY(φ) and PgainZ(φ)

is parametrized as a periodic policy of 10 parameters using Von Mises basis functions.
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Figure 3.3: BIC score for roll and pitch trajectories estimated using GMM-GMR

These parameters are parametrized as a function of the phase variable φ, which represents

the gait phase, as explained in section 2.3. This is what makes the policy periodic.

In order to apply the policy in the simulation or the robot, the policy needs to be

synchronized with the locomotion frequency ωs. One could attempt to apply the policy

by using as reference frequency, the one calculated with equation 2.2. This would indeed

be a perfect frequency guess, if the system where deterministic. As it is not, it is not the

best that can be done. Here comes into play the theory on adaptive frequency oscillators

(AFO).

As explained in section 2.7, AFO can be used to learn the frequency of a signal, in

this case, we are interested in using the frequency of the roll-angle to synchronize the

feedback policies. A phase resetting mechanism can be used for improving the phase

estimate using feet contact information as external input signals. By using the equations

on AFO and by using equation 2.2 to initialize our frequency, we can learn the frequency

of the roll-angle and use the phase variable obtained from the phase resetting mechanism

to synchronize the feedback gains. Figure 3.4 shows the approach.

The feedback policies KP,x and KD,x can now be mapped to joint space by using

equations 3.1, where JHIP-EE stands for the Jacobian between hip and end-effector.

This is defined as given in equation 3.1g, where rHIP-EE is the relative position between

hip and end-effector and q represents the active joints of the leg.
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Figure 3.4: Frequency and phase estimation method.

As we optimize a trotting gait, which is a symmetrical gait, we can apply our policy to

the two pairs of diagonal legs by just phase-shifting the policy. Feedback policies for the

front and hind legs are the same, but only phase shifted.

Feedback gains for torque control of the joints of one leg

KP,x =

PgainX(φ) 0 0

0 PgainY(φ) 0

0 0 PgainZ(φ)

 (3.1a)

KD,x =

DgainX(φ) 0 0

0 DgainY(φ) 0

0 0 DgainZ(φ)

 (3.1b)

KP,q =

PgainHAA(φ)

PgainHFE(φ)

PgainKFE(φ)

 (3.1c)

KD,q =

DgainHAA(φ)

DgainHFE(φ)

DgainKFE(φ)

 (3.1d)

KD,q = JTHIP-EEKD,xJHIP-EE (3.1e)

KD,q = JTHIP-EEKD,xJHIP-EE (3.1f)

JHIP-EE =
∂rHIP-EE

∂q
(3.1g)
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3.2 Learning setup

This section describes the main ideas involved in the cost function design for optimization

of a trotting gait for the hydraulic quadruped robot HyQ.

As described in the last section, the parameters to be optimized are divided into two

groups. This fact is not arbitrary, but is done to explicitly highlight the difference between

the parameters in each group and therefore, to design an appropriately cost function.

The first group contains the WCPG-parameters. These parameters define the elliptical

trajectories used for locomotion, as explained in section 2.4.1. They are optimized by

letting the algorithm explore different combinations of WCPG-parameters. This is done

in the following way:

• The duty cycle D is kept constant at 0.55 for a walking trot and at 0.3 for a

running trot. The other parameters: forward velocity Vf , step frequency ωs and

step height Fci are explored, while the step length Ls is implicitly defined by

equation 2.2.

• An immediate cost function φwcpg(t) and a final-time cost function Φwcpg(tN )

are defined. The immediate cost function φwcpg(t) takes care of penalizing er-

rors for tracking a desired speed Jspeed tracking(t) (equation 3.2c) and favours pa-

rameter configurations with high energy efficiency, which means a low value of

Jenergy efficiency(t) (equation 3.2d), while keeping the robot at a locomotion gait

within its joint limits. The term Jspeed tracking(t) optimizes the forward speed of the

robot, so that it closely follows a desired forward speed. The term Jenergy efficiency(t)

plays an important roll by helping the optimization find an energy efficient gait by

optimizing the locomotion step frequency ωs. Finally, the term Jcloseness to joint limits(t)

helps to generate exploration and optimized gaits, whose desired cartesian feet tra-

jectories lie within the robot workspace. This is important in order to avoid hitting

the joint limits, where smaller torques can be generated.

• The final-time cost Φwcpg(tN ) highly penalizes, if the robot falls Jfall. This final-

time cost is used in simulation, when learning is performed over a wide range

of parameters. On the real-robot, learning is performed using the parameters

optimized in simulation and a lower exploration noise, so that learning is only

local and safe.

• Using the cost functions explained before, the algorithm seeks for the configuration

of parameters that locally minimize the cost. In simulation, the exploration noise is

highly enough to allow exploration over a wide range of parameters, which allows

to find a good configuration.
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Cost Function for Learning with PI2

φwcpg(t) =
[
cs ce cj

] Jspeed tracking(t)

Jenergy efficiency(t)

Jcloseness to joint limits(t)

 (3.2a)

φgain(t) = ctJtorques(t) + φwcpg(t) (3.2b)

Jspeed tracking(t) =

∥∥∥∥1−
vHyQ

vdesired

∥∥∥∥ (3.2c)

Jenergy efficiency(t) =

∑
i∈joints |ωiτi| dt
vHyQ dt

(3.2d)

Jcloseness to joint limits(t) =
∑

i∈joints
fjoint(i) (3.2e)

Jtorques(t) =
∑

i∈joints
τ2
i (3.2f)

Φwcpg(tN ) = ccpg0 + Jfall (3.2g)

Φgain(tN ) = cprVarpitch-roll + Φwcpg(tN ) (3.2h)

The second group contains the GAIN-parameters. These parameters define the force

interaction of the robot with the environment, as explained in section 2.8. The pitch

and roll stiffness and damping parameters are learned as constant parameters. The

stiffness parameters for torque control of the leg’s joints are learned as variable gains,

to allow leg compliance while in contact with the environment, and stiffness to track

trajectories while in flight phase.

The optimization of these parameters is done in the following way:

• An immediate cost function φgain(t) and a final-time cost function Φgain(tN ) are

defined. They are built on top of the cost functions for the WCPG-parameters.

This is done to take into account the cost of WCPG-parameters, but also to allow

flexibility in the selection of feedback gains based on new terms for the costs. This

is useful, because the feedback gains also help at reducing the costs coming from

φwcpg(t).

• The immediate cost function φgain(t) penalizes high torques Jtorques (equation

3.2f); this includes all feed-forward torques the ones due to trunk stabilization,

and the ones due to trajectory tracking given desired joint accelerations.

• The final-time cost function Φgain(tN ) is the most important term for the opti-

mization of the gains. It penalizes the variance along the trajectory formed by

the pitch and roll angles Varpitch-roll. This term guides the learning towards dis-

covering trajectories that form a stable limit cycle. This is important because in

a stable limit cycle, trajectories in the neighbourhood of the nominal trajectory
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approach the nominal trajectory, making the locomotion gait robust. The nominal

trajectory is not specified but is discovered and can take any shape.
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Figure 3.5: Function to penalize closeness to joint limits fjoint. The range of each joint
is 120 degrees. In this plot the range is shown between 0 and 1, being 0
the minimum limit and 1 the maximum limit. The penalization function has
almost no cost in the middle range, which increases when approaching the
extremes.

The cost function was designed to be as simple as possible, but expressive enough to

be able to efficiently perform a multi-criterion optimization. As it is a multi-criterion

optimization, a trade-off between the different objectives is achieved as result of the

optimization (Pareto optimal value). For this reason, the weights were selected so that

the different objectives contribute to the total cost with the same order of magnitude.

In this way all objectives are optimized.

The cost function design aims also at improving the stability and robustness of the

locomotion gait. This is achieved by including the minimization of the variance of the

roll-pitch trajectories in the cost function. To evaluate this stability improvement, the

stability of the robot will be approximated by estimating the roll angle dynamics using

a rhythmic control policy (RCP).

The first step is to estimate the split frequency for splitting the roll-pitch trajectories.

It is important to mention that, to split the pitch and roll angle trajectories, in order to

compute the variance of the limit cycle Varpitch-roll, an optimization problem to find the

optimal frequency to split has to be solved. Neither the final frequency obtained from the

AFO, nor a window average of it can be used, because experimentally they do not always

perform well at splitting the trajectory. But AFOs perform well for synchronization.
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Therefore, for finding the optimal frequency to split the trajectories, the problem, shown

in equations 3.3, has to be solved.

Optimal frequency for splitting pitch-roll trajectories

f∗split = arg min
freq

N∑
i=1

(Tpitch-roll(i)− Tfit(i))
2 (3.3a)

Tfit =
∑M

i=1
Ψi(φ)ωi (3.3b)

Tpitch-roll represents the pitch and/or roll trajectory composed of N data points and Tfit

is a periodic function of N data points, fit at a specified frequency freq. Any regression

method can be used to fit the function Tfit, as for example, least squares. As the goal of

solving this problem is to extract the main frequency component, the periodic function

Tfit used is a simple periodic function of Von Mises basis functions with M components,

as shown in equation 3.3b. The Nelder-Mead simplex algorithm was used for finding

the optimal frequency [33]. As initial guess for the optimization, the step frequency as

given by equation 2.2, is used.

Once the optimal frequency for splitting has been found, the roll-dynamics can be es-

timated and the robot stability can be evaluated based on that estimation. In order to

estimate the roll-dynamics, a rhythmic control policy (RCP) is fit. This is done in the

following way.

The RCP stability coefficients (αz and βz) and the nonlinear term f(φ, r) as a parametrized

periodic function need to be estimated. Therefore, in order to simultaneously find the

best model fit for the data and to penalize model complexity of the nonlinear term, the

Bayesian Information Criterion (BIC) is used as the score for the optimization.

The nonlinear term f(φ, r) is defined as a parametrized policy using M Von Mises basis

functions, as given in equation (3.4a). Then, an stacked vector and matrix, as shown

in equation 3.4b, is formed based on the measurements of the roll angle, roll angular

velocity and roll angular acceleration trajectories. Ψ represents the basis functions for

the nonlinear term and τ = 1
2πf∗split

is a normalized period. For ease, equation 3.4b is

renamed as shown in equation 3.4c, where θ ∈ RMT represents the vector of MT = M+2

optimization parameters.

As said before, the BIC score is used for the optimization. This score penalizes the

fit error of the model to the data and also the model complexity, given in this case,

by the number of basis functions M to represent the nonlinear term f(φ, r). Equation

3.4d shows the full BIC score, and equation 3.4e shows a simplification under certain

assumptions, as shown in [9]. In this case, the optimization problem can be stated as

shown in equation 3.4f. Figure 3.6 shows an example of an optimization problem, where

BIC score is used to find the optimal number of parameters for the approximation of the

roll-dynamics for HyQ.
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Roll-dynamics and robot stability estimation using BIC score

ftarget =
∑M

i=1
Ψi(φ)ωi (3.4a)

...

τ2Ÿroll
...

 =


...

...
...

−τ Ẏroll g − Yroll ΨT

...
...

...


 αz

αzβz

ω

 (3.4b)

b = Aθ (3.4c)

ln p(DATA) ' ln p(DATA|θ) +

Occam factor︷ ︸︸ ︷
ln p(θ) +

MT

2
ln (2π)− 1

2
ln |ΣDATA| (3.4d)

SBIC = − ln p(DATA) ≈ − ln p(DATA|θ) +
MT

2
lnN (3.4e)

θ∗ = min
M,θ

SBIC = min
M,θ

(
−

N∑
i=1

ln p(Ai-rowθ − bi|θ,M) +
MT

2
lnN

)
(3.4f)[

ẏ

ż

]
=

[
0 1

τ

−αzβz
τ −αz

τ

][
y − g
z

]
+

[
0

ftarget
τ

]
(3.4g)

s1,2 =
1

2τ

(
−αz ±

√
α2
z − 4αzβz

)
(3.4h)
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Figure 3.6: Plot of the Bayesian Information Criterion Score (black solid line), including
Occam factor for penalization of model complexity (dashed gray line) and
negative of the log likelihood of the conditional probability of the data given
the parameters (gray dotted line).
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Now that the unknown parameters have been estimated, equations 2.15a and 2.15b can

be rewritten in matrix form, as in 3.4g and the poles of the state transition matrix can be

computed as shown in equation 3.4h. The estimated poles give an approximation of the

stability of HyQ. In the next section, the performance of this estimation at evaluating

the robot stability will be presented.
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4 Experiments and Results

“All that matters on the chessboard is good moves.”

— Bobby Fischer, World Chess Champion , 1943-2008

In this chapter, some of the experiments and results, obtained in simulation will be

presented.

4.1 An Optimization Example

In this section, an example of an optimization process for a walking trot at 1 [m/s] is

presented. Figure 4.1 shows the algorithm convergence and variance for the optimization

process, obtained from 6 learning curves.
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Figure 4.1: Algorithm convergence and variance, obtained from 6 learning curves. Each
learning curve is composed of 50 iterations, where each iteration is composed
of 8 rollouts and the best 6 rollouts are reused for the next iteration. The
total of rollouts in the optimization process is 106 rollouts.

In the following, we will examine one of the learning curves (Figure 4.2). The initial

parameters for the WCPG parameters and GAIN parameters can be seen in the following

figures (GAIN parameters: Figure 4.3, 4.5; WCPG parameters: Figure 4.4). The cost

function described in the last section (equations 3.2) is used in the following way. The
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parameters of the WCPG are explored during the first 25 iteration updates, after this

they are only very slightly changed.

5 10 15 20 25 30 35 40 45 50

0

0.2

0.4

0.6

0.8

1

1.2

1.4

# Updates

C
o

st

Noiseless costs

 

 

Speed

Energy

Joint

Torque

WCPG

GAIN

Control

Total

Figure 4.2: Example of Learning curve of Trotting Gait. This graph shows the contribu-
tions of the different objectives to the total cost. The first three areas from
the bottom, blue, green and red represent the costs due to speed tracking
error, energy efficiency and closeness to joint limits respectively. These costs,
including penalization costs for high impedance gains (pink area), are used
for the updates of the WCPG parameters. The purple area represents the
cost due to feedforward torques, and the yellow area shows the cost due the
the variance of the pitch-roll angles trajectory. The GAIN parameters are
updated based on the sum of all the costs shown, as explained in (equations
3.2).

This time window has experimentally shown to be enough time to explore and find a

set of WCPG parameters that produces a gait that accomplishes the main goals for

this phase, namely, energy efficiency, good speed tracking and minimizes the cost due

to closeness to joint limits. Figure 4.4 shows the evolution of the WCPG parameters

during 20 updates, and it can be seen in Figure 4.2, that they have converged to a set

of parameters where the energy efficiency cost (green area) and closeness to joint limits

cost (red area) have been reduced. It can also be seen, that the speed tracking error

cost has reduced (blue area), but the magnitude of the oscillations of the current from

the desired speed make the cost to still remain high, this is improved by finely tuning
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the impedance gains. Once the WCPG parameters have converged the impedance gains

can be finely optimized as shown in Figure 4.3. Figure 4.3 shows the evolution of the

impedance parameters at different number of iteration updates. For example, the purple

line shows the gains after 20 updates, where the WCPG parameters are close to converge.

It can be seen, that the impedance gains have a similar shape to the final results, but

giving the algorithm the chance to finely tune these gains helps improving the speed

tracking error cost (blue area), reduces the variance of the pitch-roll angles trajectory

(yellow area) and reduces the cost due to high impedance gains (pink area), as can be

seen in Figure 4.2.
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Figure 4.3: Impedance Gains and its evolution along the optimization

Impedance Gains are initialized at a constant value, the algorithm increases the gains

until they achieve a low variance limit cycle for the roll and pitch trajectories and then,

they are decreased, where possible, to reduce the cost due to the GAIN parameters.
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The evolution of the Trunk stabilization parameters along the optimization are shown

in Figure 4.5.
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Figure 4.4: Evolution of WCPG parameters along the optimization
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Figure 4.5: Evolution of Trunk Stabilization parameters along the optimization
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Figure 4.6 shows how the robot learns a compliant policy. It reduces the stiffness during

stance phase, so that when the leg makes a touch down, it can interact compliant enough

with the environment. The effect of the compliance given by the policy can be seen in

the trajectory tracking performance of one of the joints, as shown in Figure 4.6 (second

plot).
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Figure 4.6: Graph of variable impedance at Take-off and Touch-down during an op-
timization experiment. The compliance of the robot can be seen in the
reduced tracking performance of one of the joints.

4.2 Impedance results and Cost of Transport

In the last section, results for a single locomotion speed were shown. This section

introduces more general results, for a wider range of locomotion speeds.

Figure 4.8 shows the learned variable impedance in the Z direction for different speeds.

The impedance profiles were learned in simulation for several speeds (for example: 0.1,

0.3, 0.5, ..., 1.9 [m/s]) and then, they were generalized to a continuous surface by using
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Figure 4.7: Variable impedance gains in Joint space. TD (touch down) and TO (take-
off) allow to differentiate between stance and swing phases

function approximation using a Gaussian process. By observing the resulting graph, one

can realize that the impedance profile’s shape is similar at different speeds. This makes

sense with the intuition that the robot softens when the leg is in contact with the ground,

and stiffens up during swing phase for good trajectory tracking. One thing to notice is

that the mean of the impedance profiles increases with the speed for speeds up to 1.5

m/s, and decreases after that for speeds up to 2 m/s.

An important concept to consider in the optimization of a locomotion gait, is the cost of

transport or specific resistance, which is a dimensionless quantity that gives information

about the energy efficiency of a mobile robot. The cost of transport allows to compare

between different animals and locomotion modes. It is calculated as:

COT ,
W

mgd
=

P

mgv

where W is the energy that a system of mass m, under standard gravity g, needs to move

a distance d; it can also be expressed in terms of power input P to move at constant

speed v.

In our experiments, the cost of transport was determined for several speeds and using a

time period of 10 seconds. Figure 4.9 shows the results. Two things to notice are that,
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Figure 4.8: Impedance variation at different speeds.

first, for speeds between 0.5 and 1.5 m/s HyQ achieves its best performance in terms

of energy efficiency; and second, around 1.8 m/s it is better to use a running trot than

a walking trot in HyQ.
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Figure 4.9: Cost of Transport for a Trotting gait.
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4.3 Stability of Trotting Gait

The stability and robustness properties of a system quantify the ability of the system to

cope with disturbances or perturbations. In simple systems, such as in linear systems,

these properties can be easily determined using linear control theory tools. In more

complex systems, such as in legged robots, estimating these properties is harder, because

it involves a nonlinear dynamical system with high number of parameters.

In this project, a rhythmic control policy is used to approximate the dynamics of the

roll angle of the robot (a periodic variable of the trotting gait), and in this way obtain

an idea of the stability and robustness of the robot based on the poles of the second

order system of the RCP. A RCP is the similar of a DMP, but used for cyclic systems.

It encodes a demonstrated trajectory in terms of differential equations with well-defined

attractor properties. By using the RCP to approximate the dynamics of the roll angle, it

is possible to analyse in simulation, the maximum perturbation that the robot can stand

before becoming unstable.
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Figure 4.10: Estimation of poles of the Roll dynamics with RCP. For each lateral force
applied to the robot, the poles estimated in several experiments are shown.

In this experiment, a trotting gait optimized for a speed of 0.2m/s at 1Hz, is analysed by

applying a lateral perturbation during 1 second. In Figure 4.10, the poles of the second

order system approximation for the roll angle are plotted for different lateral perturbation

forces. In simulation, it could be tested that the estimated stability decreases as the
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applied force increases, and the estimated stability also correlates well with the stability

state of the robot (for example, robot has fallen or not). Therefore, it is possible to use

these results as an idea of the robustness of the robot’s gait and the maximum force

that the robot can stand.
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5 Conclusions

“When you see a good move, look for a better one.”

— Emanuel Lasker, German World Chess Champion ,

1868-1941

5.1 Summary

The purpose of this project was to implement a learning and adaptation layer over

a parametrized gait generator for trotting on HyQ, a fully torque-controlled hydraulic

quadruped robot designed for versatile movement. In this project, the parametrized

gait generator (subject to optimization), was the Reactive Controller Framework, which

generates elliptical trajectories for the feet based on Central Pattern Generators, and

provides trunk stabilization control for stabilizing the attitude of the robot, among other

functions.

Optimization of such a high dimensional problem cannot be performed by exhaustive

search algorithms, therefore, the reinforcement learning algorithm PI2 is used, due to its

known capabilities of being able to handle high dimensional problems, fast convergence,

and foundations on solid theoretical principles.

The cost function used for guiding the learning, was designed as simple as possible, but

expressive enough in order to be able to optimize the most relevant parameters, namely

the parameters of the gait generator (WCPG parameters) and the parameters that define

the robot-environment interaction and trunk stabilization control (GAIN parameters).

An additional element of the framework is the use of adaptive frequency oscillators in

order to synchronize desired impedance commands with the locomotion phase of the

robot. This is an important element, in order to be able to vary the impedance gains of

the robot, and in this way make the robot’s trotting gait robuster.

One of the most important results is that the learning method was formulated in a

principled way and has been able to optimize in simulation a trotting gait at different

speeds, in terms of good speed tracking performance, energy efficiency, locomotion

within the feet workspace, stability and robustness.

As a by-product, an idea of how to optimally select the number of basis functions used

in a parametrized policy (for impedance gains, in our case) by means of the Bayesian

Information Criterion Score and Gaussian Mixture Models has been presented. Finally,

an idea for using Rhythmic Control Policies in a different way (characterizing stability

of a nonlinear system) has been tested. Both ideas have proven to be useful and are
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a first step in the direction of open research questions regarding optimal selection of

the number of basis functions for a parametrized policy and determining stability in

quadruped locomotion.

5.2 Conclusions

It has been shown that the optimization in simulation of a trotting gait, based on solid

theoretical principles, making use of reinforcement learning by using Policy Improvements

with Path Integrals Learning Algorithm (PI2) and adaptive frequency oscillators, is highly

effective.

The algorithm optimizes directly feedback terms by learning variable impedance sched-

ules for the robot-environment interaction, and trunk stabilization parameters. It also

learns indirectly feed-forward terms by optimizing the WCPG parameters that generate

the desired feet elliptical trajectories. It has been shown that the algorithm has scaled

very well to this very high dimensional problem, that optimizes the parameters for the

entire locomotion cycle (stance and flight phase).

The learning algorithm has generated policies for different locomotion speeds, achieving

a stable locomotion gait with limit cycle and an energy efficient locomotion frequency.

The issue of specifying a target impedance is not trivial, therefore learning is necessary.

The learning algorithm has learned a variable impedance schedule, that gives the robot

the compliance needed for the interaction with the environment. It provides enough

stiffness during swing phase and compliance during stance phase, trading off in this

way, the leg objectives of high performance trajectory tracking and robustness for the

interaction with the environment.

The algorithm has not been tested in the real robot, therefore, the next step, in order

to validate the results obtained in this project, will be to perform learning on the real

robot. This will allow to push HyQ to its performance limits, taking into account also

not modelled dynamics.

5.3 Future Work

First of all, it would be necessary to test the simulation results of this project on learning

directly on HyQ, in order to evaluate the algorithm performance on the real robot.

In a next step, the feed-forward torques could be represented as a parametrized policy

and directly optimized, such as the feedback gains were. Another possibility could be

to try direct methods for optimizing feedforward commands and learning methods for

learning feedback gains.

The energy efficiency could be better optimized by including hydraulic losses. In this

way, it might be possible to find a new cost minimum.
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A Appendix 1

“What I cannot create, I do not understand.”

— Richard Feynman, American physicist, 1918 - 1988

A.1 Brownian Motion

In 1923, the American mathematician Norbert Wiener defined a Brownian Motion as a

stochastic process W (t) that satisfies the following assumptions [16]:

• Independence: W (t+ ∆t)−W (t) is independent of W (τ) for all τ ≤ t.

• Stationarity: The distribution of W (t+ ∆t)−W (t) does not depend on t.

• Continuity: lim∆t→0
P (|W (t+∆t)−W (t)|≥δ)

∆t = 0 for all δ > 0.

This definition implies that, if W (t) is a Brownian motion, then W (t)−W (0) is a normal

random variable with mean µt and variance σ2t. Therefore, the density function of a

Brownian motion can be written as:

fW (t)(x) = 1√
2πσ2t

exp− (x−µt)2
2σ2t

A.2 Feynman-Kac Formula

The Feynman-Kac formula establishes a connection between the solution of parabolic

partial differential equation (PDE) and its representation as stochastic differential equa-

tion (SDE) [67]. Given a PDE of the form:

∂u
∂t (x, t) + µ(x, t)∂u∂x(x, t) + 1

2σ
2(x, t)∂

2u
∂x2

(x, t)− V (x, t)u(x, t) + f(x, t) = 0

defined for all x ∈ R and t ∈ [0, T ], with final condition u(x, T ) = Ψ(x). The functions

µ(x, t), σ(x, t), Ψ(x, t), V (x, t) are known, T is the final time parameter, and u(x, t)

is the unknown function. In this case, the Feynman-Kac formula allows us to compute

the solution of the PDE as a conditional expectation:

u(x, t) = EQ
[∫ T
t exp−

∫ τ
t V (Xτ ,τ)dτ f(Xr, r)dr + exp−

∫ τ
t V (Xτ ,τ)dτ Ψ(XT )|Xt = x

]
under the probability measure Q, and X defined by:

dX = µ(X, t)dt+ σ(X, t)dWQ

with initial condition X(0) = x.
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A.2.1 Basic insights

This section provides basic intuition about the Backward Kolmogorov equation and

its solution as an expectation using the Feynman-Kac Formula [16]. For the sake of

simplicity, only the scalar case will be presented (the multidimensional case can be

derived in the same way).

First of all, in the case that the dynamics of a system are given by the stochastic

differential equation A.1a: if we are interested in an expected payoff Φ at the maturity

time T , such as the one given by equation A.1b, then u(x, t) solves equation A.1c.

Expected final-time payoff

dY = f(Y, t)dt+ g(Y, t)dW (A.1a)

u(x, t) = EY (t)=x [Φ(Y (T ))] (A.1b)

∂u

∂t
+ f(x, t)

∂u

∂x
+

1

2
g2(x, t)

∂2u

∂x2
= 0 (A.1c)

for all: t < T with: u(x, T ) = Φ(x) (A.1d)

The proof goes as follows: for any function Φ(Y, t), Ito’s lemma gives

d(Φ(Y (t), t)) =
(
∂Φ
∂t + f ∂Φ

∂Y + 1
2g

2 ∂2Φ
∂Y 2

)
dt+ g ∂Φ

∂Y dW

Then by making Φ = u and integrating , we get to the following equation

u(Y (T ), T )− u(Y (t), t) =
∫ T
t

(
∂Φ
∂t + f ∂Φ

∂Y + 1
2g

2 ∂2Φ
∂Y 2

)
ds+

∫ T
t g ∂Φ

∂Y dW

By taking the expectation of this equation and by using equation A.1c, the right-half

side of this equation drops to zero, and we are left with:

EY (t)=x [Φ(Y (T ))] = u(x, t)

which concludes the proof.

For the same dynamical system, if we are interested in an expected discounted payoff

Φ at the maturity time T , such as the one given by equation A.2b, then u(x, t) solves

equation A.2c.

Expected discounted final-time payoff

dY = f(Y, t)dt+ g(Y, t)dW (A.2a)

u(x, t) = EY (t)=x

[
Φ(Y (T )) exp

(
−
∫ T

t
V (Y (s), s)ds

)]
(A.2b)

∂u

∂t
+ f(x, t)

∂u

∂x
+

1

2
g2(x, t)

∂2u

∂x2
− V (x, t)u = 0 (A.2c)

for all: t < T with: u(x, T ) = Φ(x) (A.2d)
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In this case the proof goes as follows:

d
[
Φ(Y (t)) exp

(
−
∫ r
t V (Y (s), s)ds

)]
= d [z1z2] = z1dz2 + z2dz1 + dz1dz2

dz1 = − exp
(
−
∫ r
t V (Y (s), s)ds

)
V (Y (s), s)ds = −z1V (Y (s), s)ds

dz2 = d(Φ(Y (t)) =
(
∂Φ
∂t + f ∂Φ

∂Y + 1
2g

2 ∂2Φ
∂Y 2

)
dt+ g ∂Φ

∂Y dW

Then by making Φ = u, we get to the following result

d
[
u(Y (t), t) exp

(
−
∫ r
t V (Y (s), s)ds

)]
= exp

(
−
∫ r
t V (Y (s), s)ds

)
g ∂u∂Y dW

By integrating and taking the expectation of this equation, the right-half side of this

equation drops to zero, and we are left with:

EY (t)=x

[
Φ(Y (T )) exp

(
−
∫ T
t V (Y (s), s)ds

)]
= u(x, t)

and this concludes the proof.

Finally, if we are interested in a running payoff for a given function Ψ, such as the one

given by equation A.3b, then u(x, t) solves equation A.3c.

Expected running payoff

dY = f(Y, t)dt+ g(Y, t)dW (A.3a)

u(x, t) = EY (t)=x

[∫ T

t
Ψ(Y (s), s)ds

]
(A.3b)

∂u

∂t
+ f(x, t)

∂u

∂x
+

1

2
g2(x, t)

∂2u

∂x2
+ Ψ(x, t) = 0 (A.3c)

for all: t < T with: u(x, T ) = 0 (A.3d)

The proof is not different from the other cases and goes as follows:

Φ(Y (t), t) =
∫ T
t Ψ(Y (s), s)ds

d(Φ(Y (t), t)) =
(
∂Φ
∂t + f ∂Φ

∂Y + 1
2g

2 ∂2Φ
∂Y 2

)
dt+ g ∂Φ

∂Y dW

Then by making Φ = u and using equation A.3c, we get to the following equation

du(Y (t), t) = −Ψ(Y (t), t)dt+ g ∂u∂Y dW

By integrating and taking the expectation of this equation, we are left with:

EY (t)=x[u(Y (s), s)]− u(x, t) = EY (t)=x

[
−
∫ T
t Ψ(Y (s), s)ds

]
u(x, t) = EY (t)=x

[∫ T
t Ψ(Y (s), s)ds

]
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Now we can interpret in a simple way, how PI2 assigns the payoffs. In PI2, we use the

second case, where we are interested in an expected discounted payoff, where the final-

time payoff Φ(Y (T )) is a function of the final condition of the system and its weights

are given by the integral of the immediate-time costs.

The Feynman-Kac Formula also allows to compute solutions for combinations of the

payoffs presented before.
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B. DEFINITION OF JOINT ANGLES AND CYLINDER
ATTACHMENT GEOMETRY

 
 

 

+
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+
_

�0 

Leg RH (4): 
�1  = [–70deg .. +50deg] 

�2  = [+20deg .. +140deg] 
 

Leg RF (2): 
�1  = [–50deg .. +70deg] 

�2  = [-140deg .. -20deg] 

all legs: 
�0  = [–90deg .. +30deg] 

�0 

Leg LF (1): 
�1  = [–50deg .. +70deg] 

�2  = [-140deg .. -20deg] 
 

Leg LH (3): 
�1  = [–70deg .. +50deg] 

�2  = [+20deg .. +140deg] 

front 

Leg RH (4) Leg RF (2) 

+ 
_ 

+ 
+

_

_

�1 

�2 

front 

Leg LH (3) Leg LF (1) 

+
_ 

+
_

+
_

+

_ 

+

_

Example
The shown posture has 
the following angles: 
(with �=[�0,�1,�2]) 
 

Leg LF: �=[0, 40deg, -96deg] 
Leg RF: �=[0, 40deg, -96deg] 
Leg LH: �=[0, -53deg, 95deg] 
Leg RH: �=[0, -53deg, 95deg] 

Figure B.1: Definition of joint angles of HyQ. The following abbreviations identify

the four legs of the robot: Right Hind (RH), Right Front (RF), Left Front (LF) and

Left Hind (LH).
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Figure B.1: Definition of the joint angles in HyQ. Taken from [60]
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b1 

a1 = 0.3219 m = sqrt(d11^2+(d13-d12)^2) 
b1 = 0.045 m 
�11 = 6.24 deg = atan((d13-d12)/d11) 
(�12 = 0 deg) 
c1(�1) = sqrt(a1^2 + b1^2 - 2*a1*b1*cos(�/2+�1+�11)) 
l1(�1) = a1*sin(acos((a1^2+c1(�1)^2-b1^2)/(2*a1*c1(�1))))

a2 = 0.3218 m = sqrt(d21^2+d22^2) 
b2 = 0.045 m 
�21 = 8.04 deg = atan(d22/d21) 
�22 = 6.0 deg 
c2(�2) = sqrt(a2^2 + b2^2 - 2*a2*b2*cos(�-�2-�21-�22))) 
l2(�2) = a2*sin(acos((a2^2+c2(�2)^2-b2^2)/(2*a2*c2(�2)))) 

d11 

d13 
d12

d22 

d21 

�2  

+ 
_ 

+

d11 = 0.32 m 
d12 = 0.045 m 
d13 = 0.08 m 

d21 = 0.3186 m 
d22 = 0.045 m 

_

Figure B.2: Definition of joint angles and cylinder attachment geometry for a single

leg (according to the definition of Leg RH).
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Figure C.1: Definition of leg geometry in HyQ. Taken from [60]
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