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Abstract

Over the last decades, locomotion of legged robots has become a very active field of
research, because of the versatility that such robots would offer in many applications.
With very few exceptions, in general, legged robot experiments are performed in con-
trolled lab environments. One of the reasons of this limited use is that in real world
environments, legged robots have to interact with an unknown environment, and in order
to do it successfully and safely, they need to be compliant, such as humans and animals
are. In the context of this Thesis, a framework to optimize a stereotypical trotting gait
for the Hydraulic Quadruped robot HyQ using variable impedance is proposed. This
is an important step towards closing the gap between robot capabilities and nature’s

approach for animal locomotion.

Figure 0.1: Hydraulically powered Quadruped robot HyQ. Picture from IIT.

The proposed framework makes use of the reinforcement learning algorithm P12 (Policy
Improvement with Path Integrals) to optimize the parameters of a CPG-based gait
generator and the robot impedance during locomotion.

The proposed learning method is evaluated in a series of experiments on a simulation
of HyQ, where it achieves an energetically efficient and robust trotting gait at different

speeds while handling joint and torque limits.
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Introduction

1 Introduction

“My heart is on the work.”
— Andrew Carnegie, Scottish - American industrialist and
philanthropist, 1835 - 1919

This introductory chapter presents the motivation and goals behind this project and, in
general legged locomotion research. It also gives a brief overview of previous work and

state of the art in legged robotics and outlines the structure of the report.

1.1 Motivation and Objectives

Why is locomotion control an important and interesting problem? In addition to
all the fun inherent in working with robots, locomotion control of legged robots presents
an exciting problem, because of its challenges and still unresolved issues. Legged robots
need good coordination skills for many degrees of freedom, have to deal with uncer-
tainties in the model, the environment and instantaneous changes in the contact situa-
tion, need adaptation capabilities for different terrains and environment conditions, need
to handle sensory input, redundancies, under-actuation, real-time control and conflicts
among several tasks or priorities. Despite of that, progress is achieved everyday, because

legged robots are a promising technology for many applications.

Some of them include its use in unstructured and unknown environments. For example
in exploration, rescue missions, radioactive places, among others. Also important in
locomotion research, is the understanding of biological principles, helpful for the design
of devices for rehabilitation and active prostheses to compensate motor deficits. The
capabilities of legged animals, in terms of dexterity and versatility outperform any robot,
and become, therefore, a source of ideas and inspiration for the robotics community.
Biological principles and ideas can be applied in the design of new and better control

strategies for legged robots.

The goal of this project is to apply principles from nature like variable impedance control
and the use of adaptive frequency oscillators for synchronization, in order to implement
a learning and adaptation layer over a parametrized gait generator for trotting. The
learning layer is expected to optimize the trotting gait, in terms of energy efficiency,

robustness and speed tracking.
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(a) Single leg hopper (b) BigDog (c) WildCat

Figure 1.1: Robot prototypes - Mark Raibert

1.2 Previous Work on Legged Locomotion

Although a vast amount of literature exists about learning and control in legged locomo-
tion of static and dynamic gaits, this section will present only some of the most relevant
and interesting examples of legged robots.

Mark Raibert and his collaborators have, without any doubt, strongly influenced the
development and research in dynamic legged locomotion. He initiated his work in the
1980’s with experiments on single leg hoppers [51], and then on biped and quadruped
robots with pneumatic actuation. Since then, the prototypes have been improved, be-
ing able to achieve impressive performance with BigDog [49] and WildCat [52]. The
drawback is that, apart from videos, no information about control strategies and designs
have been published, so that the results cannot be validated by other groups.

Control strategies and hardware designs have evolved in the last years, from high gain
position control and robots with stiff actuators that try to follow precisely a preplanned
trajectory, to interaction / force / impedance control with compliant robots, able to
perform robustly more dynamic manoeuvres. Such a very good example is Starl[ETH
[24], which was built with inherent compliance by using series elastic actuators, uses
model-based control and a hierarchical optimization framework to handle priorities and
several tasks. StarlETH has shown several gaits like walking and trotting.

The design principles to embed intelligence in the robot have also evolved. The basic
idea of homeostasis or equilibrium inspired the well known feedback control; the devel-
opment of computational power and parallel processing allowed the use of search and
planning algorithms and, hierarchical optimization and control schemes. Now, the use
of mechanical intelligence, opens a new field of research, an example of it, can be seen
in the design of " Fast Runner a robot Ostrich” [48], characterized by its innovative and
self-stabilizing leg design.

Regarding gait optimization, there are two general ways to approach the problem: direct
and shooting methods. In shooting or learning methods, the optimization is performed
based on a finite parametrization of the control input variables. The cost of each

policy parametrization is evaluated by forward simulating the dynamics of the system
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(a) Starl[ETH [24] (b) FastRunner Ostrich [46]  (c) Bipedal creature [18]

Figure 1.2: State of the art legged robots

from an initial condition using the current policy parameters. The parameters update
is done based on the performance of the different rollouts. A state of the art example
of gait optimization through shooting methods can be seen in [18]. In this work, the
authors define the basic structure of bipedal creatures, they use muscle models including
neural delays to generate locomotion torques and forces, and optimize simultaneously
the muscle properties and control parameters and, also the muscle routing geometry
in these muscle-based bipedal creatures by using the Covariance Matrix Adaptation -
CMA Algorithm. The results they achieve are very impressive, because the synthesized
controllers generate natural looking motion, are able to withstand external perturbations
and uneven terrain up to a certain extent, and allow speed and steering control.

The other possible approach for gait optimization is the use of direct methods. In direct
methods, the optimization algorithm searches simultaneously control and state trajecto-
ries, and imposes the dynamics as a set of optimization constraints. This approach does
not require simulation. A very nice and principled example of this approach is presented
in [38, 46]. This work introduces several interesting features like fully autonomous opti-
mization of contact transitions, because it does not restrict the search to fixed orderings
of the hybrid transition modes; it makes use of time discretization, that takes into ac-
count only the integrals of contact forces over a period; and defines the problem as
a general optimization of a cost function over the control and state trajectories, the
contact forces and the length of the timesteps, subject to constraints imposed by the
dynamics of the rigid bodies, the inelastic impacts and friction forces. This work finds a
locally optimal solution for the problem using a sparse sequential quadratic programming
solver. Impressive results are shown for several tasks, including gait optimization of the
FastRunner ostrich robot.

Learning methods have been applied for learning locomotion. They have shown success-
ful results, where they outperform any previous hand-tuned controller. Several examples
of this can be found in the literature, such as the following ones. In [31, 32], the authors
present a policy gradient reinforcement learning algorithm that optimizes a quadrupedal
trotting gait on the Sony Aibo robot. It optimizes the parameters of a parametrized

gait for achieving maximum possible forward speed. The result of this machine learn-
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Introduction

ing optimization approach is that the robot achieves a locomotion gait faster than any
previously hand-coded or learned gait on Aibo.

In [65], a learning algorithm for bipedal walking is presented. It makes use of actor-critic
methods and temporal difference learning TD(0) to online optimize the control policy
for bipedal walking on the real robot. It represents the closed loop dynamics of the robot
integrated from one footstep to the next by means of a return map. With this learning
structure, the robot is able to perform learning and execution simultaneously. It learns
a walking gait in less than 20 minutes and can continuously adapt its control policy to
different terrains at every step by minimizing the eigenvalues of the return map.

In [12], reinforcement learning for locomotion of a single legged robot is presented. The
goal in this project was to improve the performance in highly dynamic tasks, such as
jumping and hopping , in terms of maximizing jump height, jump distance and energy
efficiency in periodic motion. It makes use of the reinforcement learning algorithm
Policy Improvements with Path Integrals (PI?), in a model-free approach, to optimize a
parametrized control policy of the joint velocities and the parameters of a virtual model
controller for periodic hopping. Learning is performed in a combination of simulation
and hardware experiments, being able to push, in this way, the robot capabilities to its

limits.

1.3 Thesis outline

This introduction is followed by chapter 2, that presents the theoretical background
underlying the system modelling, control and learning techniques used in this Thesis.
Chapter 3 presents the details of the implementation, how the concepts seen in chapter
2 fit together, from adaptive frequency oscillators and variable impedance control to
cost function design and reinforcement learning for gait optimization.

Chapter 4 presents the experiments performed and the results obtained in simulation.

Finally, Chapter 5 presents final conclusions and future work possibilities.
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2 Background Theory

“An approximate solution to the right problem is far better

than an exact answer to an approximate problem.”
— John Wilder Tukey, American statistician, 1915 -2000

2.1 Description of HyQ

HyQ is a hydraulically-powered quadruped robot, which has been developed at the
Istituto Italiano di Tecnologia (11T), in Genoa, as a platform to study legged locomotion
in highly dynamic motions such as running and jumping, as well as careful navigation
over rough terrain. This section summarizes the more important characteristics of this

quadruped robot and is based on the work presented in [60] and [61].

Figure 2.1: Hydraulically powered Quadruped robot HyQ. Taken from [19]

HyQ is a 1 meter tall robot, composed of 12 torque-controlled joints that use a hydraulic
actuation system. It weights approximately 70 kg when externally powered and 90 kg
with on-board hydraulic power supply.

HyQ has been designed keeping in mind the following goals:

* To design a quadruped robot, mechanically able to perform highly dynamic mo-
tions, keep balance and be able to navigate autonomously, especially in difficult
terrains. To test different actuation mechanisms to improve energy autonomy and

efficiency.
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* To serve as an open platform to study control in legged locomotion with special
focus on dynamic gaits, to test and analyse different control algorithms for gait

generation and transition.

The designers started by taking inspiration from nature and using knowledge from ex-
isting robots. Some important examples of existing quadruped robots are SCOUT [47],
KOLT [43], StarlETH [24], and the impressive BigDog [50] and WildCat, from which
there is very few information available, but motivates research and proved that techno-
logically such a project is feasible. On the other hand, animals have evolved and reached
a point of exceptional agility, from where some ideas can be drawn.

In nature, a wide variety of quadrupedal locomotion gaits can be seen, such as trotting,
bounding, galloping, among others. A study of locomotion in horses, conducted by
Hoyt and Taylor [23], has shown that these animals choose the gait and speed that is
energetically optimal and minimize the risk of injuries due to excessive musculoskeletal
forces at foot touch-down. Among these gaits, trot is energetically efficient over a wide
range of velocities [44]. For this reason a trotting gait can be chosen as a good starting

point for dynamic locomotion in HyQ.
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Figure 2.2: Oxygen consum per unit distance vs. walking or running speed at the given
gait. Taken from [23].

In [21], a biology experimental study over a large range of quadruped animals, the
authors concluded that there is a relation between trotting speeds and stride frequencies

with animal’'s body mass. The results of this study are reproduced in Table 2.1.
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Quadruped’s Mass 50kg 60kg 70kg 80kg 90kg

Minimum trotting gait 1.57m/s 1.64m/s 1.71m/s 1.77m/s 1.82m/s
1.70Hz 1.67Hz 1.64Hz 1.62Hz 1.61Hz
Preferred trotting gait  2.6m/s 2.7m/s 2.8m/s 2.88m/s 2.96m/s
2.01Hz 197Hz 1.93Hz 1.9Hz 1.87Hz
Maximum trotting gait 3.56m/s 3.73m/s 3.86m/s 3.97m/s 4.07m/s
233Hz 227Hz 226Hz 217Hz 2.13Hz

Table 2.1: Relation between trotting speeds and stride frequencies with animal’s body
mass.

These results define a base for stating the basic design specifications of HyQ. These
performance targets are the ability to walk in flat and rough terrain, locomote with
walking and flying trot up to a speed of 3 m/s, maintain stability, execute a vertical

jump with a safe landing, and power autonomy for several hours.

2.1.1 HyQ Leg Design

Each leg in HyQ is composed of three active revolute degrees of freedom (DOF), as shown
in Figure 2.3. There are two joints in the sagital plane, named Hip Flexion-Extension
(HFE) and Knee Flexion-Extension (KFE). A third joint, named Hip Abduction-Adduction
(HAA) is responsible for lateral leg motion. They allow foot positioning in the 3D
workspace. A limitation of this configuration is that it does not allow to simultaneously
choose the contact angle and the foot location. The contact angle is important, because

it determines the direction of the experimented force.
hip a/a

hip fle

knee fle

Figure 2.3: Kinematic structure of the active joints in HyQ's leg. Taken from [60].

There is also an additional passive prismatic joint, located along the axis of the lower
leg segment, that connects it to the foot with a spring, this is called the ankle joint.
This joint adds passive compliance at the foot, which is important to cope with initial
impacts due to force peaks at foot touch-down during locomotion. A 5mm layer of
visco-elastic rubber covers the foot. Its purpose it to provide additional compliance and

to improve traction by increasing friction.
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The desired total leg compliance is obtained as a combination of active and passive
components, and can be controlled by varying the leg stiffness by using the active
torque-controlled joints. HyQ belongs to the family of robots with articulated legs,
which is inpired in the kinematic structure of cursorial mammal types (like a horse),
which show in nature impressive stability during dynamic locomotion.

leg-torso |
attachment Ju

hip
assembly

hip ffe upper leg
joint axis segment
hyd. cylinder

(hip f/e joint)

hyd. cylinder
(knee f/e joint)

knee f/e
joint axis

passive prismatic = '
(ankle joint)

rubber
coated foot IS

SIS

Figure 2.4: Description of HyQ's leg main components. Pictures taken from [61]. Left:
Leg of HyQ and the names of its different components. Right: Schematic of
HyQ's leg. The Hip Abduction-Adduction (HAA) joint is represented by qo,
the Hip Flexion-Extension (HFE) joint by g1, and the Knee Flexion-Extension
(KFE) joint by g2. The prismatic passive Ankle joint is represented by gs.

All of the joints, HAA, HFE and KFE, are actuated with hydraulic cylinders, which
feature a good dynamic range, high bandwidth, excellent power-to-weight ratio, and
robustness to torque peaks due to the intrinsic compliance. The hydraulic cylinders act
directly between two leg segments. In order to select the actuator specifications, torque
estimations for a vertical jump from a crouched position were performed. Details on this

can be found in [60, 61]. Table 2.2 summarizes the specifications for the actuators.

Specification Value
Cylinder bore and rod diameter 16mm, 10 mm
Cylinder piston and annulus area (A,, A,:) 2.01 cm?, 1.23 em?
Cylinder stroke 80mm

Max. operating pressure 16MPa

Table 2.2: Specifications of hydraulic actuators
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Each active joint counts with three different sensors:

* Relative optical encoder: This high resolution sensor has 80000 counts per revo-

lution, which allows direct low noise estimation of joint position and velocity.

» Absolute magnetic encoder: Used for easy and automated joint initialization and

as a sensor redundancy safety measure.

* Force/Torque sensor: Used for force/torque feedback control of the joints. For
the hydraulic joints a strain-gauge based load cell mounted between the cylinder
rod and the rod end allows to measure the cylinder output force. The load cell
range goes up to 5 kN. The passive ankle joint counts with a linear potentiometer
that measures spring compression and is used to determine ground reaction forces,

based on Hook's law. Its maximum range is 0.035m.

2.1.2 HyQ Leg - Mechanical Considerations

The main criteria for the mechanical design are to keep the leg robust, with low inertia
and modular, so that it can easily be installed in the torso. For achieving these goals,
strength but light materials were used. For example, Ergal (a strong aluminium alloy)
is used for the torso. Stainless steel is used for heavily stressed parts, such as joint
end-stops, connection between motor and leg, cylinder attachments, among others. A
detailed summary of the leg's mass and inertia properties can be found in [60].

In [30], Jaegger studied a group of Labrador Retriever dogs and estimated statistics of
different joint angles, like minimum and maximum joint ranges. Although animals have
a complex kinematic structure, like additional degrees of freedom, the maximum and
minimum joint ranges offer a rough idea of what would be a good criteria to select the
joint ranges in HyQ, where all the ranges of revolute degrees of freedom were chosen to
be 120 degrees.

Location Parameter value
Leg lo 0.08m

I 0.35m

lg 0.35m

l3 0.02m
Hip a/a q0 range [ -90° to +30°]
Hip f/e G range [ -70° to +50°]
Knee f/e ) range [ 20° to 140°]
ankle (passive) q3 range [-0.035m to Om]

Table 2.3: Geometric parameters of HyQ robot leg

The segment lengths were chosen based mainly on two criteria: The commercial hy-

draulic actuators should provide the required force and fit into the leg, and the di-
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mensions in HyQ, ratio between front and hind Hip joints to fully stretched leg should
approximate 1, as suggested in [34], according to which it is a sign of a fast racing dog.
Table 2.3 summarizes lengths and joint ranges of the different leg segments in HyQ.

HFE Joint KFE Joint
160 160 -
140 140
120 4 1204
S g
T 100 T 100
2 L
€ 80 € 80
o) o)
el —
60 604
40 Extending cylinder 40 = Extending cylinder
Retracting cylinder Retracting cylinder
20 T T T 20 T T 1
-50 0 50 50 100 150
Joint angle q1 Joint angle g2

Figure 2.5: Maximum torque profiles in HyQ for the hydraulically powered revolute joints.
Based on [61].

Figure 2.5 shows the nonlinear relation between torque profile and joint angle for the
HFE and KFE joints with hydraulic actuators. A simple derivation of the analytical
relation between torques and joint angles for the kinematic structure of HyQ can be
found in [61].

2.1.3 Hydraulically powered Quadruped Robot HyQ

HyQ is composed of a robot torso and four identical legs, attached to the torso in the
forward /backward configuration, in which front and hind knees point to each other, as
forming an "x".

Several groups have conducted research to determine which configuration works better
for quadruped locomotion between the different combinations of forward and backward
leg positioning. In [70] for example, it was found that the forward/backward configura-
tion improves performance by decreasing slippage of the feet.

The torso has a trapezoidal-shaped cross section and was built of an Ergal sheet of 3mm
(determined based on finite element model analysis). The total weight of HyQ's legs is
24kg, which corresponds to roughly 26% of the total mass. In nature, animals of similar
weight have a ratio of leg mass to body weight between 19 and 26%, which sets HyQ

in the upper limit. Table 2.4 summarizes the main characteristic of HyQ.
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2.2 System model

Hydraulic
system

RH leg
(right hind)

RF leg
(right front)

LH leg
(left hind)

LF leg
(left front)

Figure 2.6: CAD model of HyQ explaining its main components. Picture taken from

[61]
Description Value
Dimensions Im x 0.5m x 0.98m

Leg length (hip a/a axis to ground)
Distance of left to right hip a/a axis
Distance of front to hind hip f/e axis
Weight

Number of active DOF
Joint range motion
Hydraulic actuator type

Maximum torque (hydraulic)

Onboard sensors

Onboard computer
Control frequency

(Length x Width x Height)
from 0.339m to 0.789m
0.414m
0.747m
70kg (external hydraulic system)
91kg (onboard hydraulic system)
12 hydraulic
120° (for each joint)
double-acting cylinders
(80mm stroke and 16mm bore)

145Nm (peak torque at Pmax = 16MPa)
Joint position (relative and absolute),

joint torque, cylinder pressure,

foot spring compression, IMU.

PC104 Pentium, real-time Linux
800Hz

Table 2.4: Some general specifications of HyQ

2.2 System model

HyQ and in general legged robots are not rigidly attached to an environment like a

robotic arm, but they can move freely in space and have to deal with changing contact

conditions. Indeed, they use ground as support for locomotion.

11
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ﬁSystem Modelling

q= <Qb> (2.1a)
dr

M(q)g + h(g,q) + IS Fs = STr 2.1b)
2.1¢c)
2.1d)

Tg = sq:O
Tg = sCLi+jsq:0

(
(
(
Fy = (J,M 7)) (1M (877 = R) + Jod) (

2.1e)

They can be modelled using the concept of generalized coordinates. It describes the
kinematics and dynamics of a floating base system as a n, dimensional vector ¢ composed
of ny, free floating base coordinates g, and n, = n, — ny actuated joints coordinates g,
as shown in equation 2.1a. The fixed body frame B represents the floating base and

can move arbitrarily with respect to the inertial frame I, as shown in Figure 2.7.

Bez

body frame B
| BCy

base coordinates
D

llllé‘i(A'Tll%\T(‘(l

P
VA

actuated joint coordinates

constraint contact forces

intertial frame I

Figure 2.7: Kinematic Structure of the Quadruped robot HyQ. It does not show the
passive ankle joints. Taken from [24].

The system dynamics are given by equation 2.1b as a function of the generalized coor-
dinates. M (q) represents the mass matrix, the vector h(q, §) represents the sum of the
Coriolis, centrifugal and gravitational forces. The matrix S = [0y, xn, In,] is called the
selection matrix and separates actuated from not actuated coordinates. 7 is the vector

of generalized forces.
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2.3 Locomotion Gaits

In order to define F§ and Js, we first define ng as the number of active contact points.
" The definition of active contact is that the corresponding contact is closed, which means
that the relative normal (N) distance between the contact point and the environment is
and remains closed (r)) = i) = ¥\ = 0) with a pressure force exerted between them
(FY >0)." [24].

Then, rs and F, are the vectors of stacked vectors of position g, € R3*! and force

Fy, € R3*! at the ng active contact points. Therefore, F € R3%*1 and J, = %qu €

R?ms an.

Equations 2.1c and 2.1d describe the model of a hard contact, which neglects contact
slippage. By using this contact model and the equation of motion, a closed formed

solution of the contact forces can be derived, as shown in equation 2.1e.

2.3 Locomotion Gaits

Lateral Sequence Walk Bound
LH L B
LF I LF
RF [ RF
RH I RH I
\ I I I \ \ | \ \ \
0 25 50 75 100 % 0 25 50 75 100 %
Walking Trot Rotary Gallop
LH LH
LF I LF [
RF RF ]
RH | RH| [
\ I I I \ \ | I I \
0 25 50 75 100 % 0 25 50 75 100 %

Running Trot

LH
LF [
RF
RH L

Transverse Gallop

LH

LF ]

RF I
RH|

o
N
[$)]
(&)
o
~
[&)]
N
>
o

o
=N

|
0
Canter Pace

LH I LH |
LF | LF I
RF | RF|
RH [ RH|

| l | I | | I l I |

0 25 50 75 100 % 0 25 50 75 100 %

Figure 2.8: Gait Graphs
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Legged locomotion patterns have been analysed since long time ago. In the 19th century,
the English photographer Eadweard Muybridge pioneered the study of dynamic gaits in
animal locomotion. He used multiple cameras to capture motion of quick gaits and
analysed the phases these gaits undergo. In this way, he realized for example that quick
gaits like gallop, running trot, among others, do have a flight phase, during which all
legs left the ground [66].

These ideas can be captured in what are called gait graphs. Gait graphs are graphs that
depict the timing and relative phases of flight and stance phase of all legs. Figure 2.8 is
a gait Graph showing eight different quadruped gaits. They will be useful, because the
gait phase ¢ € [0, 27] will be used to know the progress made so far within each stride
and in this way, it will be possible to synchronise and learn variable gain stiffness and
damping for control of each joint. These gait graphs are based on the works presented
in [1, 2, 8].

2.4 Reactive Controller Framework

In this Thesis, the base controller over which the parameter optimization will be per-
formed is the Reactive Controller Framework [3]. In this section, the parts of the control
framework relevant for this Thesis will be briefly presented, a detailed explanation of the

framework can be found in [3, 4].

RCF A Motion Control
Ye
Push h
l ; Recovery | X,
CP.G o, P State
Feet trajectory |w| F. ext dr[Fo P | ¥ Estimation
X} XE|X} 2
y Xb
Kinematic
Adjustment Trunk
b yb|yvb
s Biiv | + Controller

kt) qa Ga Ga PD Coiltroller

Inv. Dynamics

Motion Generation

Figure 2.9: Reactive Controller Framework. Taken from [3]

The Reactive Controller Framework has been designed for robust quadrupedal locomo-
tion. It is composed of two modules, as shown in Figure 2.9. The first one is dedicated
to the generation of elliptic trajectories for the feet, whereas the purpose of the second

one is the control of stability of the robot.
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The first module is composed of three sub-modules: an elliptic trajectory generator
for the feet (CPG based on task space intentions), a kinematic adjustment scheme
and a trajectory tracking controller. The second module is also composed of three sub-
modules: a State estimation, a Trunk controller and a Push recovery sub-modules. From
these sub-modules, the kinematic adjustment scheme and the push recovery sub-module

will not be used.

2.4.1 Workspace Central Pattern Generator - WCPG

The WCPG is composed by a network of nonlinear oscillators, one for each foot, that
generate elliptical trajectories in cartesian coordinates. The outputs of these oscillators
are filtered by a nonlinear filter, whose output during the swing phase is the normal
elliptic trajectory, and during the stance phase, once the foot has made contact with
the ground, cut the ellipses. This feature allows to adapt the trajectories to the terrain

profile for robust locomotion.

Figure 2.10 shows a reshaped elliptical trajectory. The most important parameters that
define the generation of the elliptical trajectories are: the height F,, the length L, the
stride frequency wg, and the duty cycle D. For example, in Figure 2.10, the upper half
represents the normal elliptical trajectory during the swing phase with the defined height
and length, and the lower half shows the reshaped part of the trajectory, where z4,, is
the point at which the foot touch down occurs (start of stance phase) and the ellipse is
reshaped.

Reshaped Ellipse -

\

th,' L -7 7. h AL

Figure 2.10: Workspace Central Pattern Generator - WCPG. Taken from [4]

The duty cycle D is the percentage of the gait phase ¢ € [0, 27|, during which the foot
is in stance phase, as shown in Figure 2.8. An important relation between the WCPG

parameters shown so far, and the desired forward velocity V7 is:

Lf
ws = —D 2.2
L, ( )

15
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2.4.2 Trajectory Tracking Controller

The elliptical trajectories generated in Cartesian coordinates are transformed in desired

joint space trajectories by an inverse kinematics transformation.

The trajectory tracking controller receives the desired joint space trajectories ¢4 G4 Gaq
and uses an inverse dynamics algorithm to provide feed-forward commands, and a PD
position and torque controller to provide feedback commands. This approach is ad-
vantageous because, as a model-based control method enables movement dexterity and
accuracy, and allows to reduce the PD feedback gains, improving motion compliance
and robustness [36].

7 = InvDyn(q, 4, 4a) + KpS(qqs — q) + K4S(4p — q) (2.3)

where 7 is the vector of generalized forces, S is the selection matrix, Kp and Kp are
the position and velocity feedback gains and the inverse dynamics are computed using
QR decomposition, as presented in [36].

2.4.3 State Estimation

This sub-module is in charge of the estimation of translational velocities. Angular ve-
locities and accelerations can be directly measured by the gyroscopes and inertial mea-
surement unit (IMU).

The estimation of body velocities is done by mapping joint velocities of the stance legs,
assuming there is no slip or that the friction force constraints the forward movement of

the feet in stance phase. A detailed explanation and equations can be found in [3].

2.4.4 Trunk Controller

This sub-module has as objective the correction of the robot's attitude. It accomplishes
that by providing joint feed-forward commands, that result in a force applied to the
trunk of the robot to correct the attitude. This sub-module also performs Gravity

compensation.

The forces to be applied to the trunk for attitude correction are calculated based on a PD
law for the deviations of the roll and pitch angles from their desired values. These forces
are mapped to joint torques without affecting the feet positions. Decoupling the effect
of these forces from the forces that come from the Trajectory Tracking Controller can be
done by mapping trunk correction forces into the nullspace of the Jacobian associated

with the stance legs. A detailed explanation and equations can be found in [3].
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2.5 PI? Policy Improvement with Path Integrals

PI2 is one of the state-of-the-art algorithms for reinforcement learning. It is based on
the combination of classical optimal control and dynamic programming with modern
methods from statistical learning theory.

More precisely, PI? states the problem as a stochastic optimal control problem (nonlinear-
second order PDE), and finds the exact solution of the transformed Stochastic HJB
equation (linear-second order PDE) by using the Feynman-Kac formula. Finally, the path
integral is evaluated by generating rollouts with Monte Carlo sampling of the control
system, which allows to iteratively improve the control policies. A complete derivation
can be found in [68].

Some of the advantages offered by PI? are:

« Depending on how the problem is formulated, P12 can be used as model based,

semi-model based or even model free learning algorithm.

* Control variables to be optimized, are not restricted to motor commands, but
they can be something else, like for example a parametrized policy for desired
state trajectories (to be used as input for a tracking controller), desired control
gains (gain scheduling), among others. The algorithm does not learn the value

function, but the controls directly via iterative update.

* The algorithm is numerically robust, it does not involve matrix inversions, tuning
of learning rates, computation of gradients (sensitive to noise). It can easily work

with discontinuities in the cost function.
* It has only one open parameter, namely, the exploration noise.

* PI? is very efficient, which means that it has fast convergence rate and works very

well even when using few rollouts.

* It is formulated for continuous state-action spaces, which makes it suitable for

learning in real high-dimensional robotic systems.

Algorithms 1 and 2 present the pseudocode for P12 main algorithm and the pseudocode

for reusing rollouts if desired. They are based on [11, 68].

2.5.1 Basic steps in the Derivation of PI?

This subsection summarizes the basic steps involved in the derivation of the PI? algo-
rithm, and is based on the work presented in [68]. Some extra details are provided in
the Appendix A.

As stated at the beginning of this section PI? relies in the principles of stochastic optimal

control and statistical learning theory. Therefore, the first step is to define the stochastic

17
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Algorithm 1 Policy Improvement with Path Integrals for a 1D parametrized policy

Define
control cost
Immediate cost function gt
=@ 59 RO Cost terms
Terminal cost function Dty
Control cost matrix R € RMxM
Parametrized policy ar =g (0 +¢),a € RN
Basis functions y € RMX1 g ¢ RMXN )
Initial parameter vector ZO e RMx1 ! Policy terms
Number of param. / basis functions M
Exploration zero-mean noise e~ N(0,7%,),e € RMx1
Variance of the exploratior? noise. ¥ € RM*M PI terms
Decay rate of the exploration noise y
Parameter update weighting function w = f (5915 € RIXN)
Maximum number of param. updates L
Current number of param. updates r General terms
Number of rollouts per update K
Number of time steps per rollout N
Precompute
for j=1to N do R
Projection Matrix M, = %ji%’
gth Gt;
end for
Main loop
while » < L or until convergence of the trajectory cost J do
Generate k=1...K stochastic parameters 0, = 0 + ¢.
Execute the rollouts with the parametrized policy a; = ¢;” 0.
Collect state costs g,  and terminal costs ¢ x for all rollouts.
for all rollouts k = 1...K do
Parameters with projected noise étj,k =0+ Myex,
N-1 1 N—1 .
Cumulative costs S(Tik) = Gty + Z qt; 6+ 3 Z GtTj’kRHtj,k
7=t j=i+1
exp (—18(ri4)
Probability Plrik) = %
k:El exp (—35(7ix))
1 S(Ti k) — min [S(7;)]
exp (—3S(7ik)) = exp <_hmax ()] — min [S(TJ]) ,h =10
end for
for all timestepsi = 1...N do
K
Parameter update in time 06y, = > [P(7i k) Myer]
end for =
for all parameters 6,, m = 1..M do
Weighting time updates 160],,, = w([06s,=1..N]m)
end for
Parameter update Or11 < 0, + 60
N-1
Execute one noiseless rollout to evaluate the trajectory cost J,y1 = ¢ry + >, 74,
i=1

of the updated parameters 6,41
end while
return Optimized parameters § € RM*1

18
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Algorithm 2 Reusing rollouts in PI?

Given

Number of rollouts to reuse P

Current iteration T

Current updated parametes 0,

Noisy parametes from last iteration O fork=1..K

Costs of rollouts from last iteration S(ri ) for k=1..K
Function

if P >0 then

Indices = Sort the cheapest rollouts [S(7q y=1..k)]

if Reevaluate Rollouts = TRUE then
Append 6, for k = Indicesy._p into rollouts to be executed
Update noises ¢, = 0, — 6, for k = Indices;._ p

else
Update noises ¢, = 0, — 6, for k = Indices;_ p
Reevaluate parameters with projected noise as shown in Algorithm 1.
Reevaluate cost of the trajectories as shown in Algorithm 1.

end if

end if

optimal control problem. It consists of a dynamical system represented by a stochastic
differential equation 2.4a with state vector z; € R", control vector u; € R". The
functions f; : R x R — R™ and G¢ : R™ — R™*™ are the passive dynamics function
and the state dependent control transition matrix. W; is an m-dimensional standard

Brownian motion which is given on the probability space (2, F, {F:}+>0, P).

We want to minimize the expected cost, as given in equation 2.4c, composed of a final
cost ¢, and an immediate cost 7, as given in equation 2.4b. The immediate cost

can be designed with any arbitrary state cost, but it requires a quadratic cost for the

controls.
gProblem Statement
1
dX; = (fy + Gyug)dt + (G,S2)AW (2.42)
1
= q + 5u?Rut (24b)
ty
V(zy,) = min E [qth +/ Ttdt} (2.4c)
Ut,...ta t;

The Hamilton-Jacobi-Bellman equation for a stochastic process 2.4a and cost functional
2.4c is as given in equation 2.5a. From this equation, we can derive the optimal controls,
by taking the derivative with respect to the control variables an setting it to zero, as
in equation 2.5b. If we put back this result into the HJB equation, we obtain a second

order and nonlinear partial differential equation in terms of the cost functional.

19
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4 Stochastic HJB Equation

1
P tminfr + (VeV)T (+ Go) + 5 Trace(GiB.GY Vi) (250)
u(a) = w = —RGI (VW) (2:5b)
Vi _ Lo o Ta p Gt oy Tt Trace(Gym.GT
_E_Qt—ﬂ 2Vi)" Gy t (VaVi) +(VaVt) ft+§ race(GieGy Vaa Vi)

Using the transformation 2.6a and the assumption 2.6b, the second order nonlinear PDE
2.5 can be transformed into a second order linear PDE 2.6¢c with boundary condition
Uy, = exp (—3¢ty). This equation is known as the Chapman-Kolmogorov backward
PDE.

ngransformation of the Stochastic HJB Equation

Vi = —Alog U, (2.6a)
¥ = \G:R71GT = G;2.GT (2.6b)
_ﬁ = —XQt\I’t + ft (Vx\IJt) + 5 Trace{(vqujt)Gtngt )} (26C)

Now we make use of the Feynman—Kac formula, that establishes a connection between
parabolic partial differential equations and stochastic processes. In this case, it offers
the possibility to solve the PDE by simulating random paths of a stochastic process, as

given in equations 2.7.

ngsing Feynman-Kac Formula

tN 1
\Ijti = Eq—i <\Ith exp <—/ )\Qtdt>> (273)
t;

1 1 [y
\I/ti = Eﬂ; <eXp <_)\¢tN — )\/ qtdt>> (27b)
t;

N—-1
by + > auydt | | dri (2.7¢)
Jj=t

: 1
Vi = lim [ op(rifzi)exp | =+

7; is a trajectory composed by all the states along the trajectory (z,, ..., x¢, ). In order to
compute the solution of 2.7a, we have to evaluate an expectation over the trajectories,
which means that we need to approximate the probability p(7;|x;), here is where the

statistical learning theory plays an important roll.

For doing that, we first discretize the dynamical system, as shown in equation 2.8a, and

approximate the standard Brownian motion dW with v/dt g4, where ¢; is a normally
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distributed random variable with zero mean and unit variance &, ~ N(0,1). This
equation can also be decomposed into the controlled ¢ and uncontrolled states m, which
helps us to realize that only the controlled states are affected by the Brownian motion.
Therefore, when we approximate the probability p(7;|z;), only the controlled states
contribute to it, given that the uncontrolled states are considered to have deterministic

dynamics and therefore, its probability is a Dirac delta.

ngpproximating the Path Integral
1

Te1 = 2 + (ft + Grug)dt + (GeX2)Vdt ey (2.8a)

m m m 1
xzﬂ = ztc + Ji dt + <\/dt E§£t> (2.8b)

Tt T Jf + Giug
-1 N-1
p(7ilz:) H p(xjiilzs) o< T p(a§ialz)) (2.8¢)
Jj=t Jj=t
1 13-
= &P 3 Z zer1 =z — (fe + Geug)dt][3, (2.8d)
j:
-1 1
where: o = H ( )l det ¥ ) (2.8¢)
U, = lim [ Sexp (—~8(m) ) dre (2.8f)
BT ano ) o TP TNV ) '
- N-1 c c 2

1 Ty, — T .

S(7i) = iy + Z @ dt + 5 Z e L (2.8g)
7= Jj=t tj
where: Hy, = GiR'G{" (2.8h)
EgResults and control variables
-1 1, Var, Pt
g, = Gt,(V:Vi) = ARGy, T (2.9a)
t;
U, = /P Tz UL 7—1 (29b)
AN-N-1
exp_,( (r) + 3305 og | Hy, )
fexp—% ( (1) + ’\Z log]Ht7\)dT
ur (i) = R_lG;T(G;R_lG;T> (G, — by,) (2.9d)
bti = )\Htiq)ti (296)
_ -1

(@], = Trace (Hti (awjﬂti)) (2.9f)
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When we put back this probability into 2.7c, we can rewrite the transformed functional
cost Wy, as presented in 2.8f. In equation 2.8g, the norm ||z||, equals 27 Xz, which is

known as Mahalanobis distance.

By reintroducing this result (eq. 2.8f) into the equation for the control variables (eq.
2.5b), the optimal control variables per timestep can be computed, as shown in equations
2.9.

2.6 Parametrized Policies for Function Approximation

Function approximation with parametrized policies is useful when we need a simpler
representation of another function. For example, instead of representing a trajectory
f(t) with its values indexed by time, it would be simpler to approximate this trajectory
by a linear combination of a parameter vector w and a set of basis functions ¥ (possible
nonlinear) as f(t) = >, w;¥;(t). For learning, this means that it is possible to learn in
applications with high number of degrees of freedom, such as learning in the context of

quadruped locomotion.

The main idea of function approximation is to push the nonlinearity into the basis
functions and allow easy learning of the linear parameters. Besides, good basis functions
allow to perform a good approximation of any arbitrary function with the minimum

number of parameters.

In the following, several basis functions will be presented, as well as their advantages.

2.6.1 Gaussian Basis Functions

Gaussian basis functions are a very popular choice in many fields such as system identifi-
cation and machine learning. They are local in the time domain. They are characterized
by its center ¢; and its standard deviation . The number of basis functions M to be

used in an approximation is usually chosen by the user.

Figure 2.11 shows an example of 5 Gaussian basis functions and its weights approximating

a function.

ngaussian basis functions

Wi(t) = exp <—12(t - cz»)2> (2.102)

207

M
fl@) = wil(x) (2.10b)
i=1




Background Theory 2.6 Parametrized Policies for Function Approximation

N

—_
(¢)]

—_

Policy approximation
o
o (6]

05 I Policy Parameters
' Function Approximator
= = = Basis Functions
-1 e BNLA B i s e o S e e LA e e e
-0.2 0 0.2 0.4 0.6 0.8 1 1.2

Time (s)

Figure 2.11: Function approximation using Gaussian basis functions

2.6.2 Fourier Basis Functions

Fourier basis functions are suitable for approximation of periodic functions. They have
many in applications electrical engineering, signal and image processing, among others.

They are not local in time, but they are local in the frequency domain.

-
3
|

"y

o
&

-0.5 = Function to approximate
= Approx. 1 basis function
== Approx 10 basis functions

== Approx 50 basis functions

Policy approximation

Time (s)

Figure 2.12: Function approximation using Fourier Series as basis functions
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They approximate functions using a baseline % and an infinite sequence of sines and

cosines.
Figure 2.12 show the approximation of a pulse train by using different number M of
fourier basis functions. It is clear, that by increasing the number of basis functions the

approximation is each time better, but an approximation is not perfect.

EgFourier basis functions

M
aog
=5 + ; a, cos(kQt) + by, sin(kQ) (2.11a)

2.6.3 Von Mises Basis Functions

Von Mises basis functions are used to approximate periodic signals. They are character-
ized by its center ¢; € [0,27] and its width h;.

Figure 2.13 shows a policy with 5 basis functions. As can be seen, an advantage of
these Basis functions is that the frequency of the signal can be changed, while keeping

the shape of the policy.

0.9

Amplitude

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Time (sec)

Figure 2.13: Function approximation using Von Mises Basis Functions

§Von Mises basis functions

U, () = exp (h; (cos (¢ —¢;) — 1)) (2.12a)
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2.6.4 Gaussian Process Learning

Another way to do function approximation is to learn a Gaussian Process that approxi-
mates the probability distribution of our samples, or said differently, performs a stochastic

approximation of the function.

For example, for a group of N samples, with feature vectors xi,...,xy € RM¢*1 and
output signals y1,...,ynv € R, the probability of our outputs given the input feature
vectors can be approximated with a zero-mean normal distribution with covariance matrix
K, as given in equation 2.13a. The elements of the covariance matrix can be calculated
using equation 2.13b, where a squared exponential covariance function has been used
[39, 69].

jLearning a Gaussian Process

p(yla ey yN‘xla sty XN) = N(ylv ey yN|O7 K) (2133)
1

Kij = /@(xi,xj) = Vo €XpP (—2 ng(mzk - xjk)2> + vléij (213b)
k=1

PYN+1[X15 ooy XN XN1, Y1 s UN) = N (Yn 1|1, 07) (2.13¢)

p=k(xye1) K ly (2.13d)

o’ = H(XN-i-lny—i-l) —k (XN_H)TKilk (XN—i-l) (2.136)

where: y = [y1, ..., yn] (2.13f)

where: k(xy11) = [K(X1, XN11), oo 6(XN, Xn41)]T (2.13g)

0i; is the Kronecker delta, that equals 1 when i = j, and 0 otherwise. z;, and zj;
are the k — th element of the ¢ — th and j — th input vectors. The covariance matrix
K does approximation and prediction of a function based on similarity between input

feature vectors.

Prediction of the output value for a new input vector can be done using the equation

2

2.13c, where the prediction is characterized by a mean p and a variance ¢°, as given by

equations 2.13d and 2.13e respectively.

An example can be seen in Figure 2.14, where we want to approximate a sinusoidal
signal. For that purpose, we have collected five noisy sample points and by using the
Gaussian Process Learning algorithm, we can fit a Gaussian Process. As result, we get
an approximation characterized by the mean and the variance. As can be seen, using
the measure of similarity between data points works well in practice, even for few sample
points. Indeed, the measure of the variance can be used to select new points, where we

should collect data, in order to improve the approximation and increase our certainty.

25



2.6 Parametrized Policies for Function Approximation Background Theory

26

—
3
J

-0.5

Amplitude of a Sinudoidal Signal
o
1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1

4 \~=="/ Real model
- O Datasamples
Fit Mean u
[ IFit Variancepto
L e B L B B L L B N B B B
0 1 2 3 4 5 6

Phase (0-2r)

Figure 2.14: Learning a sinusoidal signal with a Gaussian Process

2.6.5 Rhythmic Control Policy - RCP

The representation of trajectories is an important issue in robotics. Some of the de-
sirable properties for such a representation include: easy to represent, learnability and
reusability of a trajectory, and robustness against perturbations or modifications of the
environment conditions. In this context, dynamic movement primitives and rhythmic
movement primitives were developed to easily encode single go-to-goal motions and

periodic movements respectively, as presented in [26, 27, 28, 29].

A rhythmic control policy is a movement primitive for rhythmic or periodic motions
based on nonlinear oscillators. The RCP is composed of two main systems: a canonical

and a transformation system.

The canonical system is composed by equations 2.14. The main equation of this set

of differential equations is the equation 2.14a, which represents the evolution of the

phase ¢ € [0, 27| of the rhythmic motion with time constant 7 = pe;fr‘)d. The canonical

system is unique within the RCP and synchronizes the transformation systems that will
be explained later. The phase variable can be parametrized differently, for example,
instead of using a time dependent phase, the evolution of the phase could be coupled

to another state of the system.

Equations 2.14b and 2.14c are used to smoothly change the amplitude r and baseline g

of the trajectory, up to a desired value ry and gy respectively.
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thythmic canonical system

To=1 (2.14a)
T =, (ro — 1) (2.14b)
7§ = ag(90 — 9) (2.14c)

The transformation system (equations 2.15) is designed based on a globally stable
second-order linear system, which is modulated with a nonlinear term f(¢,r). The
term f(¢,r) connects the canonical and transformation systems, it is designed to be
periodic, so that the resulting trajectory oscillates with the desired shape.

As explained before, the Von Mises basis functions are characterized by its centers
¢i € [0,27] and its bandwidths h;, which are generally chosen equally spaced in the phase
range ¢. The constant parameters for the differential equations of the transformation
system are chosen such that the second order differential equation is critically damped
when the nonlinear term equals zero. Therefore, o, = 25 and 5, = «,/4 are a good

choice. The terms o, and a4 can be chosen to be o /2.

nghythmic transformation system
ri=a: (B (g—y) — )+ ] (2.152)
Ty =z (2.15b)
N

Z W,w;

flo,r) = %r (2.15¢)
> i
i=1

where: U; = exp (h; (cos (¢ — ¢;) — 1)) (2.15d)

For learning the weights w; of the rhythmic control policy, regression can be applied.
The technique suggested in [26] is locally weighted regression (LWR), as presented in
[59], because it can automatically learn the number of necessary basis functions (some
thresholds have to be set by the user though). For simplicity, we present here LWR in
batch mode.

The learning process goes as follows: First of all, the frequency of the rhythmic motion
has to be learnt (this will be shown in the next section), then locally weighted regression
can be applied to learn the weights w; for the demonstrated trajectory. By measuring
the demonstrated trajectory (Ydemo, Udemo @and Jdemo), the nonlinear term figrger can
be computed for each timestep, as shown in equation 2.16a. Then, the criteria used
for finding the weights, is to minimize the squared difference between fi4.ger and the

weight of each receptive field w; scaled by the trajectory amplitude (usually set to 1 for
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learning), as shown in equation 2.16b. As result of the optimization, the weights can be

computed as shown in equation 2.16c.

fgLocally weighted regression (LWR) - Batch mode
ftarget = 7_23./.demo - Oéz(ﬁz(g - ydemo) - T?)demo) (2-163)
N
Ji =Y Wi()(frarger (t) — wir)? (2.16b)
t=1
- bTFiftarget
w; e (2.16¢)
T
b— <r(1) r(N)) (2.16d)
T
ftav-get - (ftarget(l) T ftarget(N)> (2166)
U;(1) 0
Wi(2)
T; = . (2.16f)
0 W;(N)

Figure 2.15 shows an example of a rhythmic control policy. In the last row, first and
second plots, the canonical system is shown. Here, it is possible to see the periodic
evolution of the phase ¢ and its derivative gb In the first row, the demonstrated trajectory
Ydemor Ydemo aNd Jgemo (black) and the learned trajectories (blue) are presented. Finally,
in the last column, the basis functions for one period and the corresponding learned
weights are depicted.

2.7 Adaptive Frequency Oscillators

This section describes a way to learn the frequency of a periodic signal using nonlinear
oscillators. As seen so far, nonlinear oscillators are widely used in engineering because
of their interesting properties. In this section, we will make use of its synchronization
ability when coupled to other dynamical systems to learn the frequency of a periodic
signal.

The learning method presented in this section is based on [15, 54, 55]. The main idea
is to identify the parameter that most influences the evolution of the frequency of the
dynamical system. Then, the learning rule is constructed by making the parameter a
dynamical system. The advantage of this, is that the learning is not done as an offline
optimization process, but instead is it part of the dynamics and can be done online very
efficiently.
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Figure 2.15: Example of a Rhythmic Control Policy

fgSingle frequency learning

b =" — KFsin(¢) (2.17a)

T

& = —KFsin (¢) (2.17b)

First, we examine the method for identification of a single frequency, as presented in
equations 2.17. A periodic signal can be represented as the evolution of its magnitude

and phase; as we are interested in learning the frequency and do not want this to be
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influenced by the amplitude of its oscillations, the learning rule can be constructed based
on the phase equation of the dynamical system, as shown in 2.17a. ¢ is the phase, w
the frequency, F' represents the input signal, whose frequency we are interested in, 7 is

the relaxation time and K is a term that determines the coupling strength.
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Figure 2.16: Single frequency learning

Equation 2.17b is our learning rule for the frequency. This equation provides the adap-
tation ability and plasticity to the oscillator, by allowing the change of its frequency
parameter w. When the frequency of the oscillator is close to the frequency of the
periodic input, it will synchronize, phase-lock ( this effect is known as entrainment ); in
this way, we can learn the frequency of a signal. More details about frequency learning,

entrainment basin and proof of convergence can be found in [55].

Figure 2.16 shows an example of frequency learning, where we want to learn the frequency
of the locomotion gait of the robot by estimating the frequency of one of its periodic
variables, namely, the roll angle. The first plot shows the input signal, whose frequency,
we are willing to learn. In the second plot, the reference frequency w;.. s and the estimated
frequency west, using equations 2.17, are shown. The estimated frequency is integrated
to obtain an estimated phase ¢aro. In the last plot, this estimated phase is compared
with the reference phase, and we can see that they are close, but they have a phase

difference. This can be improved as will be seen later.
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Figure 2.17: Multiple frequency learning

When we are interested in learning multiple frequencies of a multiple frequency signal, a

similar approach can be used. The main idea is to let each oscillator learn a frequency

component of the periodic signal [15].. Equations 2.18 show the process. The difference

between this framework and the one presented before for single frequency learning, is

the introduction of a feedback loop. This feedback loop helps to stabilize the learned

frequencies as the difference e(t) between the input signal Ymeqsured(t) and the approxi-

mated signal §(t) approaches zero. The approximated signal ¢(t) is computed as a linear

combination of M adaptive frequency-phase oscillators, as shown in equation 2.18d, and

also allows amplitude adaptation by using equation 2.18e.

gMultiple frequency learning

di = =1 — Ke(t)sin (1)
w; = —Ke (t)sin (¢;)
e (t) = ymeasured(t) - @(t)

M
g(t) = Z a; cos (¢;)
i=1

aj = 108 (¢i)e (t)

(2.18a)

(2.18b)
(2.18¢c)

(2.18d)

(2.18e)
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Figure 2.17 shows an example of learning a periodic signal with M = 2 adaptive fre-
quency oscillators. The first plot shows the periodic signal, and the second one shows
the evolution of the learned frequencies as they approach the two main frequency com-
ponents of the periodic signal.

The improvement that can be done for phase estimation, comes from the [40, 54],
where a phase resetting mechanism is suggested to compensate the slightly difference
between the frequency at which the legs touch the ground and the frequency of the
control trajectories (in our case, variable impedance synchronization). This can be done
by using feet contact information to adjust the phase estimate, coupling the true body

locomotion phase and the controller.

gPhase resetting mechanism using feet contact information

Por = W+ 0(t — teontact) (Pemiiact — Ppr) (2.19a)

O = e+ K (weee — @) (2.19b)

n
pr

filtered version of the frequency estimated with AFO w,,. The effective phase velocity

The equations used for the phase resetting mechanism are equations 2.19. @7 is a
(ﬁpr comes from the filtered frequency @y, and a term that compensates for the difference
between the phase estimate ¢p, and the real phase of HyQ gbg,ﬁ?act at touch down. Figure

2.18 shows in pink the improvement in the phase estimate by using this phase resetting

mechanism.
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Figure 2.18: Phase resetting mechanism by using feet contact information.
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2.8 Impedance control

For tasks involving interaction with the environment, such as force control and locomo-
tion, high gain control approaches are not suitable, instead the tasks require the robot
to behave compliant. Impedance control is one the frameworks that offer the possibility
to introduce compliance in the robot control design.

The main idea in Impedance Control is to design the disturbance response when a
perturbation causes the system to deviate from its desired trajectory [13] . In other
words, it designs a specific impedance behaviour for the robot interaction with the
environment.

Impedance Control can define a target impedance for any point of the robot, provided
that a kinematic transformation can be defined between the actuated joints and the
point. Usually the end-effectors are selected as the points, where we want to define an
impedance. Equation 2.20a defines a common impedance behavior by using a second
order dynamical system. This equation relates the interaction forces F and position
Zee Of the end effector. Kp,, Kp, and K);, are the end effector desired stiffness,

damping and inertia matrices.

fg Impedance Control

Fs = KP,x (xeed - xee) + KD,ac (jjeed - i'ee) + KM,a:i'ee (2203)

(jd = J;f (K&%x [KP,x (xeed - xee) + KD,x (ieed - x.ee) + Fs] - qu>

Fy=Kpg (Teey — Tee) + Kp g (Teey — Tee)
Ta=J{Fs=J! [Kpy (Az) + Kp o (A)]
ra=JT | Kpa (J,80) + Kp (J,Aq + J.AG)|
T = (J{ KpoJo)Aq+ (JT Kp o Jo)Ag

In order to map this impedance from task space to joint space, we use the contact model
equation 2.1d, that relates acceleration in joint and task space. By plugging equation
2.20a in 2.1d, we obtain equation 2.20b, that specifies the joint accelerations required to
realize the desired impedance in Cartesian space (Jl is the Moore-Penrose pseudoinverse
of the Jacobian). By using these joint space accelerations and the equation of motion
of the robot (equation 2.1b), the torques that satisfy the desired dynamics at the end
effector can be computed.

In our Framework for HyQ, we do not specify a desired inertia at the end-effector and,
Coriolis and gravity forces are compensated by feed-forward commands. For this reason,

Impedance Control law simplifies to a spring-damper system between the end-effector
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Figure 2.19: Impedance Control in Task Space (left) and Joint Space (right). Taken
from [14]

and the desired trajectory, as shown in equation 2.20c. By using the Jacobian Jg, we can
map changes in Cartesian coordinates to changes in Joint space coordinates, which is
expressed in equation 2.20e. Equation 2.20f is obtained by assuming that the geometric
stiffness due to changes in the Jacobian J is negligible in comparison to the other terms
[5].

As final result, the stiffness Kp, and damping Kp , gain matrices in task space can be
mapped to stiffness Kp, and damping Kp , gain matrices in joint space by using the

following relations:

Kp,=JI'Kp,J;
Kpg,=J'Kp.Js

An important observation done in [14], states that impedance control implemented in
task space differs from impedance control implemented in joint space for HyQ standing
still in that, the ground reaction forces that result from the first one are vertical, while
the ground reaction forces for the second one are not. Vertical forces are desirable,
because they help to reduce the probability of slippage during locomotion. This suggest
that an implementation of impedance control in task space is worthy.

Another important detail, is that the damping matrix for impedance control, should be
selected such that the dynamics of the system result in a critically damped behaviour.
This is important in order not to introduce high frequency signals that could possibly
excite unwanted dynamics in HyQ. For such purpose, the damping gains can be selected
as:

KD,I = 2\/ KP,m
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3 Learning and Control

“A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P,
if its performance at tasks in T, as measured by P, improves
with experience E.”

— Definition of Machine Learning, from [37].

This chapter provides a description of the design and control architecture implemented
for gait optimization using the reinforcement learning algorithm PI2. The learning algo-
rithm is built on top of the physics and control environment SL (Simulation Laboratory)
[58], and using the Optimization engine using reinforcement learning algorithms [17].
SL is a simulation and real-time control software, that allows testing and debugging of
robot programs in simulation, and on the real robot without further modifications. It is
built in a modular way, which decouples low and high level control. Low level control is
done by the Motor Servo, which is in charge of handling input/output with the robot
or simulation, basic feedback loops and computes motor commands based on desired
quantities. The Task Servo executes high level control algorithms to obtain the desired
motor behaviour for a given task. It creates, for example, desired position and velocity,
and feed-forward commands that accomplish some goal.

The Optimization engine is a relatively new tool, that offers a general framework for
optimization using reinforcement learning algorithms. This Thesis makes use of this

framework and also collaborates by supplying the PI? implementation.

Learning with PI2

WCPG and GAIN
parameters

New test

arameters
p Evalutate

Costs

Online Frequency and
Phase Estimation for
Synchronization
+
RCF MODULES

parameters

Figure 3.1: Brief picture of the Learning Process with PI?
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A brief picture of the learning and control setup consists in the following key ideas.
First, online learning of frequency and phase is performed to synchronize the feedback
control policies (Control and Adaptation Layer). Then, by means of executing and
evaluating roll-outs, the feedback control policies for variable impedance control and
trunk stabilization are tested and improved (Learning Layer). A roll-out is a single

execution of the policy parameters.

3.1 Control and Adaptation setup

This section describes the main ideas involved in the control and synchronization of
feedback policies of a trotting gait for the hydraulic quadruped robot HyQ.

As stated earlier, the base control algorithm for this optimization is the Reactive Con-
troller Framework - RCF [3]. The variables to be optimized and controlled can be

separated in two groups:

* The first group comprises the high level variables that define the workspace CPG,
namely, the stride frequency wj, the step length Ly, the step height F¢,, the duty
cycle D and the desired forward speed of the robot V;. This group will be referred
to as WCPG-parameters group.

* The second group is composed of the feedback gains for the PD control of pitch
and roll dynamics, and the feedback gains for the PD torque control of the joints.

This group is called GAIN-parameters group.

On the one hand, the variables of the WCPG-parameters group are kept constant during
each roll-out. The variables for the pitch and roll dynamics of the GAIN-parameters
group are also constant during each roll-out. The variables mentioned above do not
require any synchronization with the gait.

On the other hand, the variables for stiffness Kp, and damping Kp , for the torque
control of the joints do require synchronization with the gait frequency. Learning is only
done for the stiffness variables of the feedback policies, the damping variables are set
appropriately to obtain a critically damped behaviour.

Impedance control in Task space, as presented in section 2.8, is used to parametrize
the feedback gains (Kp,, Kp.). Variable impedance control is used, therefore, the
parametrization is periodic and uses Von Mises basis functions (section 2.6.3). The
selection of the optimal number of basis functions used to parametrize a policy is still
an open research question. In this Thesis, to select the number of basis functions used
to parametrize the variable impedance, we take an approach based on [6, 7]. In these
works, the authors suggest a very intuitive approach. They represent the trajectories from
demonstrations with GMM. This allows to reduce the dimensionality of the trajectory by

using only a certain number of classifiers to encode it. Additionally, they use the learned
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Figure 3.2: Gaussian Mixture Model - Gaussian Mixture Regression for Roll and Pitch
trajectories. In the first row, plots of the roll (z) and pitch (x3) trajectories
are shown. The second row shows the fit of the Gaussian Mixture Model to
the roll and pitch trajectories, with 8 centroids. Finally, the last row shows
the generalization through the use of Gaussian Mixture Regression. [6, 7]

variance along the trajectory to specify the impedance. For example, in regions of high
variance, the robot can behave compliant, and in regions with low variance, the robot
increases the stiffness to closely follow the learned trajectory and reject disturbances.
Figure 3.2 shows the representation of the pitch-roll angle trajectories for HyQ using 8
basis functions in GMM. This number was optimized by using the BIC score (equation
3.4d) as shown in Figure 3.3. BIC score will be explained later in detail.

Based on this optimized number, the number of basis functions used to represent the
variable impedance in HyQ is chosen to be 10, in order to give enough expressiveness to
the policy and to keep the complexity at a reasonable level. This means, for example, that
each parameter of the stiffness matrix Kp,, namely, Pyiny(¢)r Pgainy(¢) and Pyaing(4)

is parametrized as a periodic policy of 10 parameters using Von Mises basis functions.
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Figure 3.3: BIC score for roll and pitch trajectories estimated using GMM-GMR

These parameters are parametrized as a function of the phase variable ¢, which represents
the gait phase, as explained in section 2.3. This is what makes the policy periodic.
In order to apply the policy in the simulation or the robot, the policy needs to be
synchronized with the locomotion frequency w;. One could attempt to apply the policy
by using as reference frequency, the one calculated with equation 2.2. This would indeed
be a perfect frequency guess, if the system where deterministic. As it is not, it is not the

best that can be done. Here comes into play the theory on adaptive frequency oscillators
(AFO).

As explained in section 2.7, AFO can be used to learn the frequency of a signal, in
this case, we are interested in using the frequency of the roll-angle to synchronize the
feedback policies. A phase resetting mechanism can be used for improving the phase
estimate using feet contact information as external input signals. By using the equations
on AFO and by using equation 2.2 to initialize our frequency, we can learn the frequency
of the roll-angle and use the phase variable obtained from the phase resetting mechanism

to synchronize the feedback gains. Figure 3.4 shows the approach.

The feedback policies Kp, and Kp, can now be mapped to joint space by using
equations 3.1, where Jyp.gg stands for the Jacobian between hip and end-effector.
This is defined as given in equation 3.1g, where ryp_gg is the relative position between

hip and end-effector and ¢ represents the active joints of the leg.
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Figure 3.4: Frequency and phase estimation method.

As we optimize a trotting gait, which is a symmetrical gait, we can apply our policy to
the two pairs of diagonal legs by just phase-shifting the policy. Feedback policies for the
front and hind legs are the same, but only phase shifted.

ngeedback gains for torque control of the joints of one leg
Poainx(@) 0 0
Kpa=| 0 Py 0 (3.1a)
0 0 Pyaing (9)
Dyaing(9) 0 0
KD@ = 0 Dgainy(d)) 0 (31b)
0 0 Dgainz (¢)
PgainHAA(¢)
Kpg = Phainure(9) (3.1¢)
PgainKFE(¢)
DgainHAA(@
Kpg = Dgainyee () (3.1d)
DgainKFE(¢)
Kpg = Jpee KD o Jip-ee (3.1e)
Kpq = Jip-eeKpoJuipee (3.1f)
OTHIP-EE
JuipEE = — — 3.1g
Pe (3.1g)
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3.2 Learning setup

This section describes the main ideas involved in the cost function design for optimization
of a trotting gait for the hydraulic quadruped robot HyQ.

As described in the last section, the parameters to be optimized are divided into two
groups. This fact is not arbitrary, but is done to explicitly highlight the difference between
the parameters in each group and therefore, to design an appropriately cost function.
The first group contains the WCPG-parameters. These parameters define the elliptical
trajectories used for locomotion, as explained in section 2.4.1. They are optimized by
letting the algorithm explore different combinations of WCPG-parameters. This is done

in the following way:

* The duty cycle D is kept constant at 0.55 for a walking trot and at 0.3 for a
running trot. The other parameters: forward velocity V¢, step frequency w, and
step height F., are explored, while the step length L, is implicitly defined by
equation 2.2.

* An immediate cost function ¢ycpg(t) and a final-time cost function ®yepg(tn)
are defined. The immediate cost function ¢y,cpg(t) takes care of penalizing er-
rors for tracking a desired speed Jopeed tracking(t) (equation 3.2c) and favours pa-
rameter configurations with high energy efficiency, which means a low value of
Jenergy efficiency () (equation 3.2d), while keeping the robot at a locomotion gait
within its joint limits. The term Jspeed tracking (t) optimizes the forward speed of the
robot, so that it closely follows a desired forward speed. The term Jepergy efficiency (t)
plays an important roll by helping the optimization find an energy efficient gait by
optimizing the locomotion step frequency w;. Finally, the term Jqjoseness to joint limits (%)
helps to generate exploration and optimized gaits, whose desired cartesian feet tra-
jectories lie within the robot workspace. This is important in order to avoid hitting

the joint limits, where smaller torques can be generated.

* The final-time cost ®,py(tn) highly penalizes, if the robot falls Jg,. This final-
time cost is used in simulation, when learning is performed over a wide range
of parameters. On the real-robot, learning is performed using the parameters
optimized in simulation and a lower exploration noise, so that learning is only

local and safe.

* Using the cost functions explained before, the algorithm seeks for the configuration
of parameters that locally minimize the cost. In simulation, the exploration noise is
highly enough to allow exploration over a wide range of parameters, which allows

to find a good configuration.
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gCost Function for Learning with PI?

Jspeed tracking (t)

QZ)wcpg(t) = [Cs Ce Cj} Jenergy efficiency(t) (3'23)
Jcloseness to joint Iimits(t)
¢gain(t) = CtJtorques(t) + ¢wcpg(t) (32b)
v
Jspeed tracking(t) =||1- ﬂ (32C)
Vdesired
Zie'oints |wi7—i| dt
Jenergy efficiency(t) = JUHyQ dt (32d)
Jcloseness to joint limits (t) = Ziejoints fjoint (Z) (3.26)
T S 52
(I)wcpg(tN) = Ccpg() + Jfanl (3.2g)
(I)gain (tN) = Cprvarpitch—roll + (I)wcpg (tN) (32h)

The second group contains the GAIN-parameters. These parameters define the force
interaction of the robot with the environment, as explained in section 2.8. The pitch
and roll stiffness and damping parameters are learned as constant parameters. The
stiffness parameters for torque control of the leg's joints are learned as variable gains,
to allow leg compliance while in contact with the environment, and stiffness to track
trajectories while in flight phase.

The optimization of these parameters is done in the following way:

* An immediate cost function ¢gqn(t) and a final-time cost function ® g4, (tn) are
defined. They are built on top of the cost functions for the WCPG-parameters.
This is done to take into account the cost of WCPG-parameters, but also to allow
flexibility in the selection of feedback gains based on new terms for the costs. This

is useful, because the feedback gains also help at reducing the costs coming from

Puepg (1).

* The immediate cost function ¢gq:n(t) penalizes high torques Jiorques (€quation
3.2f); this includes all feed-forward torques the ones due to trunk stabilization,

and the ones due to trajectory tracking given desired joint accelerations.

* The final-time cost function ® g, (tn) is the most important term for the opti-
mization of the gains. It penalizes the variance along the trajectory formed by
the pitch and roll angles Varpitch-roll. This term guides the learning towards dis-
covering trajectories that form a stable limit cycle. This is important because in

a stable limit cycle, trajectories in the neighbourhood of the nominal trajectory

41



3.2 Learning setup

Learning and Control

42

approach the nominal trajectory, making the locomotion gait robust. The nominal
trajectory is not specified but is discovered and can take any shape.

Canonical Irritation Function for Joint Limits

2.5

i /High penalty

0.5

0 ——
01 02 03 04 05 06 07 08 09
Range (%)

Figure 3.5: Function to penalize closeness to joint limits f;,,:. The range of each joint
is 120 degrees. In this plot the range is shown between 0 and 1, being 0
the minimum limit and 1 the maximum limit. The penalization function has
almost no cost in the middle range, which increases when approaching the
extremes.

The cost function was designed to be as simple as possible, but expressive enough to
be able to efficiently perform a multi-criterion optimization. As it is a multi-criterion
optimization, a trade-off between the different objectives is achieved as result of the
optimization (Pareto optimal value). For this reason, the weights were selected so that
the different objectives contribute to the total cost with the same order of magnitude.
In this way all objectives are optimized.

The cost function design aims also at improving the stability and robustness of the
locomotion gait. This is achieved by including the minimization of the variance of the
roll-pitch trajectories in the cost function. To evaluate this stability improvement, the
stability of the robot will be approximated by estimating the roll angle dynamics using
a rhythmic control policy (RCP).

The first step is to estimate the split frequency for splitting the roll-pitch trajectories.
It is important to mention that, to split the pitch and roll angle trajectories, in order to
compute the variance of the limit cycle Varpjtch-ro, an optimization problem to find the
optimal frequency to split has to be solved. Neither the final frequency obtained from the
AFO, nor a window average of it can be used, because experimentally they do not always

perform well at splitting the trajectory. But AFOs perform well for synchronization.
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Therefore, for finding the optimal frequency to split the trajectories, the problem, shown
in equations 3.3, has to be solved.

EgOptimal frequency for splitting pitch-roll trajectories

N

Jeptit = arg min > (Tpiseh-ron (i) — The (1)) (3.3a)
rea =1

Ty = Zj\il Wi (d)w (3.3b)

Tpitch-roll represents the pitch and/or roll trajectory composed of N data points and T
is a periodic function of IV data points, fit at a specified frequency feq. Any regression
method can be used to fit the function T§y, as for example, least squares. As the goal of
solving this problem is to extract the main frequency component, the periodic function
Tt used is a simple periodic function of Von Mises basis functions with M components,
as shown in equation 3.3b. The Nelder-Mead simplex algorithm was used for finding
the optimal frequency [33]. As initial guess for the optimization, the step frequency as
given by equation 2.2, is used.

Once the optimal frequency for splitting has been found, the roll-dynamics can be es-
timated and the robot stability can be evaluated based on that estimation. In order to
estimate the roll-dynamics, a rhythmic control policy (RCP) is fit. This is done in the
following way.

The RCP stability coefficients (o, and 3.) and the nonlinear term f(¢, ) as a parametrized

periodic function need to be estimated. Therefore, in order to simultaneously find the
best model fit for the data and to penalize model complexity of the nonlinear term, the
Bayesian Information Criterion (BIC) is used as the score for the optimization.

The nonlinear term f(¢,r) is defined as a parametrized policy using M Von Mises basis
functions, as given in equation (3.4a). Then, an stacked vector and matrix, as shown
in equation 3.4b, is formed based on the measurements of the roll angle, roll angular
velocity and roll angular acceleration trajectories. W represents the basis functions for

the nonlinear term and 7 = is a normalized period. For ease, equation 3.4b is

_1
Pz
renamed as shown in equation 3.4c, where § € RM7 represents the vector of My = M +2
optimization parameters.

As said before, the BIC score is used for the optimization. This score penalizes the
fit error of the model to the data and also the model complexity, given in this case,
by the number of basis functions M to represent the nonlinear term f(¢,r). Equation
3.4d shows the full BIC score, and equation 3.4e shows a simplification under certain
assumptions, as shown in [9]. In this case, the optimization problem can be stated as
shown in equation 3.4f. Figure 3.6 shows an example of an optimization problem, where
BIC score is used to find the optimal number of parameters for the approximation of the

roll-dynamics for HyQ.
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ﬁRoll-dynamics and robot stability estimation using BIC score

M
ftarget = Zi:l \I’Z(Qb)wz (343)
: : : : o
™| = |-Yeu 9—Yeeu U7 |0B: (3.4b)
. . . . w
b= A0 (3.4¢)

Occam factor

M 1
Inp(pata) =~ Inp(patald) + Inp(0) + TTlﬂ (2m) — §1n|EDATA| (3.4d)

My
Sgic = — IHP(DATA) ~ — IHP(DATAW) + - In N (3.46)
0* = min Sgic = IIllIl Zlnp irowt — bi|0, M) + %lnN (3.4f)
M,0 ’ 2
1
s lly—9 0
[ ] [ azgz _7@] [ o + ftarget] (34g)
T T
1
S12 = 2— -, 4azﬁz) (3.4h)
Bayesian Information Criterion
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Figure 3.6: Plot of the Bayesian Information Criterion Score (black solid line), including
Occam factor for penalization of model complexity (dashed gray line) and
negative of the log likelihood of the conditional probability of the data given
the parameters (gray dotted line).
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Now that the unknown parameters have been estimated, equations 2.15a and 2.15b can
be rewritten in matrix form, as in 3.4g and the poles of the state transition matrix can be
computed as shown in equation 3.4h. The estimated poles give an approximation of the
stability of HyQ. In the next section, the performance of this estimation at evaluating

the robot stability will be presented.
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4 Experiments and Results

"All that matters on the chessboard is good moves.”

— Bobby Fischer, World Chess Champion , 1943-2008

In this chapter, some of the experiments and results, obtained in simulation will be

presented.

4.1 An Optimization Example

In this section, an example of an optimization process for a walking trot at 1 [m/s] is
presented. Figure 4.1 shows the algorithm convergence and variance for the optimization

process, obtained from 6 learning curves.

Cost of evaluation trials

5 10 15 20 25 30 35 40 45 50
[teration Update

Figure 4.1: Algorithm convergence and variance, obtained from 6 learning curves. Each
learning curve is composed of 50 iterations, where each iteration is composed
of 8 rollouts and the best 6 rollouts are reused for the next iteration. The
total of rollouts in the optimization process is 106 rollouts.

In the following, we will examine one of the learning curves (Figure 4.2). The initial
parameters for the WCPG parameters and GAIN parameters can be seen in the following
figures (GAIN parameters: Figure 4.3, 4.5; WCPG parameters: Figure 4.4). The cost

function described in the last section (equations 3.2) is used in the following way. The
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parameters of the WCPG are explored during the first 25 iteration updates, after this
they are only very slightly changed.

Noiseless costs

14 """ L S S R P s T

. . . . . . I speed

I Energy
: : : : : : I Joint

12 ’ e Lo oo o oo S _Torque

: : : : : : [ weee

GAN |

Control |
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Cost

0.6 L
0.4

0.2
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# Updates

Figure 4.2: Example of Learning curve of Trotting Gait. This graph shows the contribu-
tions of the different objectives to the total cost. The first three areas from
the bottom, blue, green and red represent the costs due to speed tracking
error, energy efficiency and closeness to joint limits respectively. These costs,
including penalization costs for high impedance gains (pink area), are used
for the updates of the WCPG parameters. The purple area represents the
cost due to feedforward torques, and the yellow area shows the cost due the
the variance of the pitch-roll angles trajectory. The GAIN parameters are

updated based on the sum of all the costs shown, as explained in (equations
3.2).

This time window has experimentally shown to be enough time to explore and find a
set of WCPG parameters that produces a gait that accomplishes the main goals for
this phase, namely, energy efficiency, good speed tracking and minimizes the cost due
to closeness to joint limits. Figure 4.4 shows the evolution of the WCPG parameters
during 20 updates, and it can be seen in Figure 4.2, that they have converged to a set
of parameters where the energy efficiency cost (green area) and closeness to joint limits
cost (red area) have been reduced. It can also be seen, that the speed tracking error
cost has reduced (blue area), but the magnitude of the oscillations of the current from

the desired speed make the cost to still remain high, this is improved by finely tuning
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the impedance gains. Once the WCPG parameters have converged the impedance gains
can be finely optimized as shown in Figure 4.3. Figure 4.3 shows the evolution of the
impedance parameters at different number of iteration updates. For example, the purple
line shows the gains after 20 updates, where the WCPG parameters are close to converge.
It can be seen, that the impedance gains have a similar shape to the final results, but
giving the algorithm the chance to finely tune these gains helps improving the speed
tracking error cost (blue area), reduces the variance of the pitch-roll angles trajectory
(yellow area) and reduces the cost due to high impedance gains (pink area), as can be

seen in Figure 4.2.

Impedance Gains [Nm/rad]
1600 S AR e SRR P SRR g

X Impedance

Y Impedance

Z Impedance

—_— i
o | Initicl 10 20 30 40 50 1
Phase (0-1)

Figure 4.3: Impedance Gains and its evolution along the optimization

Impedance Gains are initialized at a constant value, the algorithm increases the gains
until they achieve a low variance limit cycle for the roll and pitch trajectories and then,

they are decreased, where possible, to reduce the cost due to the GAIN parameters.
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The evolution of the Trunk stabilization parameters along the optimization are shown

in Figure 4.5.
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Figure 4.4: Evolution of WCPG parameters along the optimization
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Figure 4.5: Evolution of Trunk Stabilization parameters along the optimization
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Figure 4.6 shows how the robot learns a compliant policy. It reduces the stiffness during
stance phase, so that when the leg makes a touch down, it can interact compliant enough
with the environment. The effect of the compliance given by the policy can be seen in

the trajectory tracking performance of one of the joints, as shown in Figure 4.6 (second

plot).

Take—off and Touch-Down Graph
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Figure 4.6: Graph of variable impedance at Take-off and Touch-down during an op-
timization experiment. The compliance of the robot can be seen in the
reduced tracking performance of one of the joints.

4.2 Impedance results and Cost of Transport

In the last section, results for a single locomotion speed were shown. This section
introduces more general results, for a wider range of locomotion speeds.

Figure 4.8 shows the learned variable impedance in the Z direction for different speeds.
The impedance profiles were learned in simulation for several speeds (for example: 0.1,

0.3, 0.5, ..., 1.9 [m/s]) and then, they were generalized to a continuous surface by using
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Variable impedance gains in Joint space
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Figure 4.7: Variable impedance gains in Joint space. TD (touch down) and TO (take-
off) allow to differentiate between stance and swing phases

function approximation using a Gaussian process. By observing the resulting graph, one
can realize that the impedance profile's shape is similar at different speeds. This makes
sense with the intuition that the robot softens when the leg is in contact with the ground,
and stiffens up during swing phase for good trajectory tracking. One thing to notice is
that the mean of the impedance profiles increases with the speed for speeds up to 1.5

m/s, and decreases after that for speeds up to 2 m/s.

An important concept to consider in the optimization of a locomotion gait, is the cost of
transport or specific resistance, which is a dimensionless quantity that gives information
about the energy efficiency of a mobile robot. The cost of transport allows to compare

between different animals and locomotion modes. It is calculated as:

core V. _ P
mgd — mgv

where W is the energy that a system of mass m, under standard gravity g, needs to move
a distance d; it can also be expressed in terms of power input P to move at constant
speed v.

In our experiments, the cost of transport was determined for several speeds and using a

time period of 10 seconds. Figure 4.9 shows the results. Two things to notice are that,



Experiments and Results 4.2 Impedance results and Cost of Transport

Impedance Z direction

0.4

0 o
Speed (0-2.1m/s) Normalized Phase (0-2r)

Figure 4.8: Impedance variation at different speeds.

first, for speeds between 0.5 and 1.5 m/s HyQ achieves its best performance in terms
of energy efficiency; and second, around 1.8 m/s it is better to use a running trot than
a walking trot in HyQ.

11_ ..............................................................................

Cost of Transport
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Figure 4.9: Cost of Transport for a Trotting gait.
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4.3 Stability of Trotting Gait

The stability and robustness properties of a system quantify the ability of the system to
cope with disturbances or perturbations. In simple systems, such as in linear systems,
these properties can be easily determined using linear control theory tools. In more
complex systems, such as in legged robots, estimating these properties is harder, because
it involves a nonlinear dynamical system with high number of parameters.

In this project, a rhythmic control policy is used to approximate the dynamics of the
roll angle of the robot (a periodic variable of the trotting gait), and in this way obtain
an idea of the stability and robustness of the robot based on the poles of the second
order system of the RCP. A RCP is the similar of a DMP, but used for cyclic systems.
It encodes a demonstrated trajectory in terms of differential equations with well-defined
attractor properties. By using the RCP to approximate the dynamics of the roll angle, it
is possible to analyse in simulation, the maximum perturbation that the robot can stand

before becoming unstable.
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Figure 4.10: Estimation of poles of the Roll dynamics with RCP. For each lateral force
applied to the robot, the poles estimated in several experiments are shown.

In this experiment, a trotting gait optimized for a speed of 0.2m/s at 1Hz, is analysed by
applying a lateral perturbation during 1 second. In Figure 4.10, the poles of the second
order system approximation for the roll angle are plotted for different lateral perturbation

forces. In simulation, it could be tested that the estimated stability decreases as the
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applied force increases, and the estimated stability also correlates well with the stability
state of the robot (for example, robot has fallen or not). Therefore, it is possible to use
these results as an idea of the robustness of the robot's gait and the maximum force

that the robot can stand.
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5 Conclusions

“When you see a good move, look for a better one.”
— Emanuel Lasker, German World Chess Champion ,
1868-1941

5.1 Summary

The purpose of this project was to implement a learning and adaptation layer over
a parametrized gait generator for trotting on HyQ, a fully torque-controlled hydraulic
quadruped robot designed for versatile movement. In this project, the parametrized
gait generator (subject to optimization), was the Reactive Controller Framework, which
generates elliptical trajectories for the feet based on Central Pattern Generators, and
provides trunk stabilization control for stabilizing the attitude of the robot, among other
functions.

Optimization of such a high dimensional problem cannot be performed by exhaustive
search algorithms, therefore, the reinforcement learning algorithm PI? is used, due to its
known capabilities of being able to handle high dimensional problems, fast convergence,
and foundations on solid theoretical principles.

The cost function used for guiding the learning, was designed as simple as possible, but
expressive enough in order to be able to optimize the most relevant parameters, namely
the parameters of the gait generator (WCPG parameters) and the parameters that define
the robot-environment interaction and trunk stabilization control (GAIN parameters).
An additional element of the framework is the use of adaptive frequency oscillators in
order to synchronize desired impedance commands with the locomotion phase of the
robot. This is an important element, in order to be able to vary the impedance gains of
the robot, and in this way make the robot’s trotting gait robuster.

One of the most important results is that the learning method was formulated in a
principled way and has been able to optimize in simulation a trotting gait at different
speeds, in terms of good speed tracking performance, energy efficiency, locomotion
within the feet workspace, stability and robustness.

As a by-product, an idea of how to optimally select the number of basis functions used
in a parametrized policy (for impedance gains, in our case) by means of the Bayesian
Information Criterion Score and Gaussian Mixture Models has been presented. Finally,
an idea for using Rhythmic Control Policies in a different way (characterizing stability

of a nonlinear system) has been tested. Both ideas have proven to be useful and are
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a first step in the direction of open research questions regarding optimal selection of
the number of basis functions for a parametrized policy and determining stability in

quadruped locomotion.

5.2 Conclusions

It has been shown that the optimization in simulation of a trotting gait, based on solid
theoretical principles, making use of reinforcement learning by using Policy Improvements
with Path Integrals Learning Algorithm (PI?) and adaptive frequency oscillators, is highly
effective.

The algorithm optimizes directly feedback terms by learning variable impedance sched-
ules for the robot-environment interaction, and trunk stabilization parameters. It also
learns indirectly feed-forward terms by optimizing the WCPG parameters that generate
the desired feet elliptical trajectories. It has been shown that the algorithm has scaled
very well to this very high dimensional problem, that optimizes the parameters for the
entire locomotion cycle (stance and flight phase).

The learning algorithm has generated policies for different locomotion speeds, achieving
a stable locomotion gait with limit cycle and an energy efficient locomotion frequency.
The issue of specifying a target impedance is not trivial, therefore learning is necessary.
The learning algorithm has learned a variable impedance schedule, that gives the robot
the compliance needed for the interaction with the environment. It provides enough
stiffness during swing phase and compliance during stance phase, trading off in this
way, the leg objectives of high performance trajectory tracking and robustness for the
interaction with the environment.

The algorithm has not been tested in the real robot, therefore, the next step, in order
to validate the results obtained in this project, will be to perform learning on the real
robot. This will allow to push HyQ to its performance limits, taking into account also

not modelled dynamics.

5.3 Future Work

First of all, it would be necessary to test the simulation results of this project on learning
directly on HyQ), in order to evaluate the algorithm performance on the real robot.

In a next step, the feed-forward torques could be represented as a parametrized policy
and directly optimized, such as the feedback gains were. Another possibility could be
to try direct methods for optimizing feedforward commands and learning methods for
learning feedback gains.

The energy efficiency could be better optimized by including hydraulic losses. In this

way, it might be possible to find a new cost minimum.
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A Appendix 1

“What | cannot create, | do not understand.”

— Richard Feynman, American physicist, 1918 - 1988

A.1 Brownian Motion

In 1923, the American mathematician Norbert Wiener defined a Brownian Motion as a

stochastic process W (t) that satisfies the following assumptions [16]:
* Independence: W (t+ At) — W(t) is independent of W (1) for all 7 < ¢.
* Stationarity: The distribution of W (t + At) — W (t) does not depend on ¢.

» Continuity: lima; s P<|W(t+A2t_W(t)|2§) =0 for all § > 0.

This definition implies that, if W (¢) is a Brownian motion, then W (¢)—W(0) is a normal
random variable with mean ut and variance o%t. Therefore, the density function of a

Brownian motion can be written as:

1 _ (a—pt)®
7ro‘2t eXp 20’2t

fW(t) (z) = >

A.2 Feynman-Kac Formula

The Feynman-Kac formula establishes a connection between the solution of parabolic
partial differential equation (PDE) and its representation as stochastic differential equa-
tion (SDE) [67]. Given a PDE of the form:

Gu(,1) + pla, 1) 54 (w0, 1) + 302 (@, ) 54 (@, 0) = V@, t)ulz, 1) + f(x,1) = 0

defined for all x € R and t € [0, T, with final condition u(x,T") = ¥(x). The functions
p(z,t), o(z,t), ¥(x,t), V(z,t) are known, T is the final time parameter, and u(z, 1)
is the unknown function. In this case, the Feynman-Kac formula allows us to compute

the solution of the PDE as a conditional expectation:
u(z,t) = EQ [ftT exp JE VDT £(x )y dr 4 exp 0V ST (Xp) | X = x]
under the probability measure @), and X defined by:
dX = (X, t)dt + o (X, t)dWe

with initial condition X (0) = x.
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A.2.1 Basic insights

This section provides basic intuition about the Backward Kolmogorov equation and
its solution as an expectation using the Feynman-Kac Formula [16]. For the sake of
simplicity, only the scalar case will be presented (the multidimensional case can be
derived in the same way).

First of all, in the case that the dynamics of a system are given by the stochastic
differential equation A.la: if we are interested in an expected payoff ® at the maturity

time T', such as the one given by equation A.1lb, then u(z,t) solves equation A.lc.

:5 Expected final-time payoff
dY = f(Y, t)dt + g(Y, t)dW (A.1a)
u(z,t) = By ()=, [2(Y(T))] (A.1b)
ou ou 1 4 T
for all: t < T with: u(z,T) = ®(z) (A.1d)

The proof goes as follows: for any function ®(Y,¢), Ito's lemma gives
2
A (1),0) = (5 + F30 + 36* 53 ) dt + g aw
Then by making ® = u and integrating , we get to the following equation
T 2 T
u(Y(T),T) = u(Y (), 1) = [ (52 + £5% + 302 5% ) ds + [,/ gGoaw

By taking the expectation of this equation and by using equation A.lc, the right-half

side of this equation drops to zero, and we are left with:
Ey(t)= [2(Y(T))] = u(z, 1)

which concludes the proof.
For the same dynamical system, if we are interested in an expected discounted payoff
® at the maturity time T, such as the one given by equation A.2b, then u(z,t) solves

equation A.2c.

Eg Expected discounted final-time payoff

dY = f(Y,t)dt + g(Y,t)dW (A.2a)
T

u(z,t) = By (y)—¢ [@(Y(T)) exp <—/ V(Y (s), s)ds)} (A.2b)
t

ou ou 1, O*u B

e + f(:e,t)% + 59 (x,t)@ —V(z,t)u =0 (A.2¢)

for all: t < T with: u(z,T) = ®(z) (A.2d)




Appendix 1 A.2 Feynman-Kac Formula

In this case the proof goes as follows:
d[®(Y () exp(— [/ V ,8)ds)| = d[z122] = 21dzg + z9d21 + dz1dzo
dzy = —exp (= [[V ,8)ds)V (Y (s),s)ds = =2 V(Y (s), s)ds
dzs = d(®(Y () = (%‘f +fo2 ;gQgY%) dt + g2 W
Then by making ® = u, we get to the following result

d [u(Y exp( ft ds)} = exp( ft ds) “dW

By integrating and taking the expectation of this equation, the right-half side of this
equation drops to zero, and we are left with:

Ey (4=« [CD(Y exp( ft ds)] = u(x,t)

and this concludes the proof.
Finally, if we are interested in a running payoff for a given function W, such as the one

given by equation A.3b, then u(z,t) solves equation A.3c.

ngxpected running payoff

dY = f(Y,t)dt + g(Y,t)dW (A.3a)
T

u(z,t) = By (4= [/ W(Y(s),s)ds} (A.3b)
t

ou ou 1 0u

E—I—f(x t)af—i-Qg (x, t)a + U(z,t) =0 (A.3¢)

for all: t < T with: u(z,T)=0 (A.3d)

The proof is not different from the other cases and goes as follows:

ft s)ds

d(®(Y (2), >> = (W + 792+ ;fg;;) dt + 992 AW
Then by making ® = u and using equation A.3c, we get to the following equation
du(Y (t),t) = =W (Y (t), t)dt + g ZLdW
By integrating and taking the expectation of this equation, we are left with:

Ey(o—eu(Y (s), 5)] - <x t) = [ ST WY (5), 5)ds|
u(z,t) = [ft ds}
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Now we can interpret in a simple way, how PI? assigns the payoffs. In PI?, we use the
second case, where we are interested in an expected discounted payoff, where the final-
time payoff ®(Y'(7")) is a function of the final condition of the system and its weights
are given by the integral of the immediate-time costs.

The Feynman-Kac Formula also allows to compute solutions for combinations of the

payoffs presented before.
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front

i

v

--__..:.__.J_l_&,___

®

0, =
6, =

0, =
0, =

Leg RH (4):
[-70deg .. +50deg]
[+20deg .. +140deg]

Leg RF (2):
[-50deg .. +70deg]
[-140deg .. -20deg]

Leg LEF (1):
0,= [-50deg .. +70deg]
6,= [-140deg .. -20degq]

Leg LH (3):
0,= [-70deg .. +50deg]
60,= [+20deg .. +140deg]

all legs: Hﬁ;ﬁl_. ! _;?iﬁx
6y= [-90deg .. +30deg] e/ ; <%0)
V] ' i

Example

The shown posture has
the following angles:
(with 0=[6,0,0-])

Leg LF: 0=/0, 40deg, -96deg]
Leg RF: 0=[0, 40deg, -96deg]
Leg LH: 0=/0, -53deg, 95deg]
Leg RH: 0=/0, -53deg, 95deg]

Figure B.1: Definition of the joint angles in HyQ. Taken from [60]
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a; = 0.3219 m = sqgrt(d;;"2+(dys—-dip) "2) di; = 0.32 m
b; = 0.045 m di, = 0.045 m
£ = 6.24 deg = atan((d;3—-diz) /di1) dizs = 0.08 m
(g:2 = 0 deg)

c;(6;) = sgrt(a;"2 + b;"2 - 2*a;*b;*cos (n/2+0:+¢€;;))

1:(61) = ar;*sin(acos((a:"2+cy (6:)"2=-b:"2)/ (2*a*c: (6:1))))

a, = 0.3218 m = sqrt (d,"2+d,»"2) dy; = 0.3186 m
b, = 0.045 m d;, = 0.045 m
£, = 8.04 deg = atan(d,,/ds;)

€2 = 6.0 deg

Cy(62) = sqgrt (a2 + by"2 - 2*a,*b,*cos (m-6,-€5;-€22) ) )

1,(82) = ay*sin(acos ((a;"2+c;(8;) "2-0"2) / (2%a%c;(0;))))

Figure C.1: Definition of leg geometry in HyQ. Taken from [60]
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