

		President and the
公司 新教	Contents lists available at ScienceDirect	LITHOS
A-DA ANA	124	Contraction of the
	LITIOS	
EL SEMIED	lournal homenada: www.elsevier.com/locate/lithos	1919-1919-1919-1919-1919-1919-1919-191
ELSEVIEN	- pairing non-page. The residence construction in the	
Invited review article		
Water-fluxed meltir	og of the continental crust: A review	
Water huxed mertil	ig of the continental clust. A review	CrossMars
Roberto F. Weinberg a*, F	'avlína Hasalová ^{b,c}	
School of Earth, Atmosphere and Environm	ent, Monash University, Clayton, VIC 3800, Australia	
Centre for Lithospheric Research, Czech Gei Statute of Geophysics ASCR, v.v.L. Robol III.	ological Survey, Klárov 3, Prague 1, 11823, Czech Republic (1401, Provue 4, 14131, Casch Republic	
ARTICLE INFO	A B S T R A C T	
Article history:	Water-fluxed melting, also known as fluid- or water-present melting, is a fun-	damental process in the differenti-
Accepted 30 August 2014	ation of continents but its importance has been underestimated in the pas- efforts focused mostly on dehydration melting reactions involving hydrate pl	t 20 years during which research hases, in the absence of a separate
Available online 16 September 2014	aqueous phase. The presence of a free aqueous phase in anatectic terranes influ	ences all major physical and chem-
Keywords	ical aspects of the melting process, from melt volumes, viscosity and ability to chemical and isotopic composition. A review of the literature shows that mel	segregate from rock pores, to mel Iting due to the fluxing of aqueous
Aqueous fluids	fluids is a widespread process that can take place in diverse tectonic environme	ents. Active tectono-magmatic pro-
Crustal analests	cesses create conditions for the release of aqueous fluids and deformation-driver	n, transient high permeability chan-
Granites		the second s
Granites Slikate metts Water activity	nels, capable of fluxing high-temperature regions of the crust where they trigger melting can be either congruent in regions at the water-saturated solidus, or	voluminous melting. Water-fluxed r incongruent at suprasolidus. P-1
Granites Silcate melts Water activity Water-fluxed melting	nels, capable of fluxing high-temperature regions of the crust where they trigger melting can be either congruent in regions at the water-saturated solidus, or conditions, incongruent melting reactions can give rise to peritectic hornblende,	r voluminous melting, Water-fluxed r incongruent at suprasolidus, P-1 or to nominally anhydrous minerals
Cruster Indexes Slikate melts Water activity Water-fluxed melting	nels, capable of fluxing high-temperature regions of the crust where they trigger melting can be either congruent in regions at the water-saturated solidux, on conditions. Incongruent melting reactions can give rise to periterist is hurblende, such as garnet, sillimanite or orthopyrozene. In this case, the presence of an ag- math burease the large male fraction somecration and the nucle transite fraction	r voluminous melting. Water-fluxed r incongruent at suprasolidus, P-1 or to nominally anhydrous minerals pueous phase is indicated by a mis- ne predicted in its abance
Crusial inducers Granites Sikate meks Water activity Water activity Water diuxed melting	nels, capable of fluxing high-temperature regions of the crust where they trigger melting can be either congruent in regions at the water-saturated solidus, on conditions. Incongruent melting reactions can give rise to periterist is hardbende, such as garnet, sillimanite or orthopyrozene. In this case, the presence of an aq match between the large melt fraction generated and the much smaller fraction The relatively small volumes of aqueous fluxis compared to that of rock	r voluminous melting. Water-fluxed r incongruent at suprasolidus, P-1 or to nominally anhydrous minerals queous phase is indicated by a mis- ns predicted in its absence. s imply that melting reactions are
Croating Analogy Controls Silcare moles Water activity Water-fluxed melting	nels, capable of flucing high-emperature regions of the crust where they trigger melting can be either construent in regions at the varian-statutated solidius, on conditions, incongruent melting reactions can give rise to peritexic hornblende, such as garnet, sillimattic or onthopyroane. In this case, the presence of an ag- match between the large melt fraction generated and the much smaller fraction. The relatively small volumes of aqueous fluids compared to that of rock generally rock bulfered. Fluids tend to move upwards and down temperat	voluminous melting. Water-fluxer r incongruent at suprasolidus, P-1 or to norninally anhydrous minerals pueous phase is indicated by a mis- ns predicted in its absence. s imply that melting reactions are ture. However, there are cases in
Crashi manesa Crahites Sikare nekis Water-fluxed melting	nels, capable of fluxing high-temperature regions of the crust where they trigger melting can be either congruent in regions at the water-startard solidus, on conditions, lucongruent melting resolutions can give next peritectic hornblende, such as garnet, sillimantie or onthopyrozene. In this case, the presence of an ag- match between the large melt fraction generated and the much smaller fraction. The relatively small volumes of aqueous fluxids compared to that of rock generally rock buffered. Hivids tend to move upwards and down temperat which pressure gradients drive fluxids up temperature, potentially fluxing sup at conditions environment to the move supravation generated and the second	voluminous melting, Water-fluxee, r innongruent at suprasolidus, P-1 or to nominally anhydrous minerals guesus phase is indicated by a mis- ns predicted in its absence. s imply that melting reactions are ture. However, there are cases in rassolidus terranes, Crustal regions medianet to the un-temperature
d anime de la construit Silvare notes Water activity Water-fluxed melting	nels, capable of fluxing high-temperature regions of the crust where they trigger melting can be either conjuent in regions at the water-startated solidus; on conditions, incongruent melting reactions can give nets to peritexits horthlende, such as garnet, sillimanite or orthopyrozene. In this case, the presence of an ag- match between the large melt fraction generated and the much smaller fraction. The relatively small volumes of aqueous fluids compared to that of rock generally rock bulfsred. Huids tend to move upwords and down temperat which pressure gradients drive fluids up temperature, potentially fluxing sap at conditions equivalent to the water-saturated solidus represent a natural in migration of aqueous fluids because they are consumed in melting reactions	voluminous melting, Water-fluxes r inongruent at suprasolidus, P-1 or to nominally anltydrous minerals nueuus phase is indicated by a mis no predicted in its absence. a simply that melting reactions are ture. However, there are cases in rasolidus terranes. Crustal regions mpediment to the up-temperature. In this case, continued migration
Crant Interess Sitcare meths Water-Alused mething Water-fluxed mething	nels, capable of flucing high-emperature regions of the crust where they trigger melting can be either computent in regions at the varian-startated solidus, or conditions, incongruent melling reactions can give rise to perinetic hornbendes, such as garnet, sillimanite or orthopyowene. In this case, the presence of an an match between the large melt fraction generated and the much smaller fraction (generally rock buffered. Fluids tend to move upwards and down temperat which pressure gradients drive fluids up temperature, potentially fluiding at conditions equivalent to the water-saturated solidus represent a natural in migration of aqueous fluids because they are consumed in melting reactions into supra-solidus ter-runnes take place through the migration of water-rich mu	voluminous melting, Water-fluxec rinoorguent at suprasidits, P-1 or to nominally analydrous mineral- guess phase is indicated by a mis- na practicated in its absence. is imply that melting reactions are trure. However, there are cases in raziolidus terannes, Crustal regions medianet to the up-demperature in this case, continued migration els. Thus, mells become the trans-
Cranitos Sistante neles Sistante neles Water activity Water-fluxed melting	nels, capable of fluxing high-emperature regions of the crust where they trigger melting can be either congruent in regions at the water-saturated solida; so conditions, lucongruent melting reactions can give rise to peritectic hornblende, such as garnet, sillimantie or onthopyrozene. In this case, the presence of an a match between the large melt fraction generated and the much smaller fraction. The relatively small volumes of aqueous fluxids compared to that of rock generally rock buffered. Bisids tend to move upwards and down tremperal which pressure gradients drive fluxids up temperature, potentially fluxing sup at conditions equivalent to the water-saturated solidar serpresent a natural in migration of aqueous fluids because they are consumed in melting reactions into supar-solidate transes take place through the migration of water-inch mu port agent of water into supra-solidate terranses and responsible for water-flux are extended for water into supra-solidate terranses and responsible for water-flux	voluminous melting, Water-fluxec, voluminous melting, Water-fluxec, or to nominally anthydrous mineral puous phase is indicated by a mis ns predicated in its absence. Is imply that melting reactions are tracalidus terranes. Crustal region mpediment to the up-temperature Lin this case, continued migration dis. Thus, melts become the trans- exed melting. Other processes, such usen fihild no the pre-themeters.
Control State mets State mets Water activity Water-Bused meting	nels, capable of fluxing high-temperature regions of the crust where they trigger melting can be either conjuent in regions at the water-startard solidus, on conditions, lucorgrupent melting reactions can give next periteric hornblende, such as garnet, sillimanite or orthopyrozene. In this case, the presence of an ag match between the large melt fraction generated and the much snaller fraction. The relatively snall volumes of aqueous fluxids compared to that of rock generally rock buffered. Houist tend to move upwards and down temperat which pressure gradients drive fluxids up temperature, potentially fluxing sag at conditions equivalent to the water-saturate solidus represent a natural In migration of aqueous fluids because they are consumed in melting reactions into sagn-solidus terranes take place through the migration of water-tich me port agent of water into sagna-solidus terranes and and under the relatively rapid fluid imgration through fracture, also allow regional ag saturate solidus thar and triger relation agons prover agent of water relation agons prover agent of water relations agons prover agent of water relations agons solidus conditions. When the migration of the solidus proverses as the relatively rapid fluid tran and triger melting above solidus conditions. When	voluminous melting. Water-fluxee rinomgrunt at suprasidits, P tor to nominally antlydrous mineral- guessa phase is indicated by a mis- na predicted in its absence. I imply that melting reactions ar- ture. However, there are cases in ransidiat semans. Crustal region mediament to the up-temperature. In this case, continued migration ets. Thus, melts become the trans- ue one fluids to by-pass the water- ne auguous fluids to by-pass the water- ing auguous fluids to by-pass.

Fusão parcial (anatexia) Como as rochas são materiais heterogêneos, a fusão ocorre de forma parcial e dentro de certo intervalo de temperatura (T) e pressão (P) A fusão é parcial porque a rocha funde apenas onde todos reagentes estão em contato Há geração de um fundido e, quase sempre, há geração de resíduo sólido (fase peritética) Fusão congruente – fusão total Fusão incongruente – fundido + fase(s) peritética(s)

Do que depende a fusão parcial?

- Tempetura, Pressão
- Composição da rocha
- H₂O
- Sistema aberto ou fechado
- Em que *T* uma rocha granítica funde?

Definições

- Sistema haplogranítico $Qtz Ab Or (H_2O)$
- Solidus curva de fusão mínima de qualquer sistema (onde a primeira **gota** de fundido ocorre) e isso sempre ocorre na curva com o sistema saturado em H_2O
- Liquidus curvas que representam a quantidade de água em um fundido em equilíbrio com cristais de feldspato e quartzo: se a água cair abaixo deste valor, parte do fundido solidifica para recuperar o valor mínimo; se o teor de água aumenta, ocorre a fusão para recuperar esse valor mínimo
- Solidus seco concide com a fusão total da rocha sem $\rm H_2O$

Definições

- Fusão saturada em H₂O (*wet solidus*) fusão que ocorre no *solidus*. Na natureza essa condição é muito restrita, pois a quantidade de H₂O nos poros das rochas é muito baixa. Há necessidade de ocorrer influxo constante de fonte externa para que ocorra fusão em alto volume nessas condições
 - o fundido é saturado em H_2O
 - ou seja ele tem o máximo de H2O dissolvida
 - quanto **maior** a taxa de fusão, **menor** a quantidade de H_2O que ocorrerá no fundido

Fusão sem H₂O ou com influxo de H₂O

- Fusão por desidratação ou fusão sem fluido a fusão ocorre pela quebra de fases hidratadas (micas e anfibólio), gerando fundido e fases peritéticas anidras
 - O fundido é sempre insaturado em H₂O
 - A reação de T mais baixa é da muscovita, depois da biotita e depois da hornblenda
- Fusão com influxo de H₂O ocorre quando a rocha está em *T* acima do *solidus* e recebe um influxo de H₂O, fundindo

Reconhecendo fusão com ou sem H₂O

- Leucossoma com Qtz + Kfsp + Pl \pm Bt indica fusão em presença ou introdução de H₂O
- Leucossoma contendo minerais Fe-Mg anidros (Crd, Grt, Opx) são produzidos por fusão incongruente em sistema insaturado em H₂O

granulito máfico, leucossoma com Opx peritético, Stenigekusten, Província Sveconorwegian, SuéciaQtz+Pl+Hbl=Opx+liq

Fases peritéticas

 As fases peritéticas são aquelas fases sólidas formadas como resíduos sólidos das reações de fusão incongruente

- -Qtz + Ms + H₂O = Al₂SiO₅ + Liq
 - A presença de H₂O ajuda a fusão e faz com que haja apenas uma fase peritética
- -Qtz + Ms = Al₂SiO₅ + Kfs + Liq
 - Sem H₂O ocorre número maior de fases peritéticas e aqui nenhuma é máfica!
- -Qtz + Bt + Sil = Grt + Crd + Kfs + Liq
 - A quebra de fase Fe-Mg gera fases peritéticas Fe-Mg

Do que depende a T de fusão?

- Proporção Qtz, Kfs, Pl, Ms, Bt, Sill na rocha (ou seja, a composição da rocha)
- Da quantidade de H₂O e da composição do fluido
- Da composição do plagioclásio (> An, > T)
- Da P (pressão confinante)

M. Pavan^{1,2,3*}; R. Moraes², E. W. Sawyer³

¹CPRM – Geological Survey of Brazil, Rua Costa 55, Consolação, CEP 01304-010, São Paulo SP, Brazil.

²Instituto de Geociências, Universidade de São Paulo, Rua do Lago 562, CEP 05508-080, São Paulo SP, Brazil.

³UQAC - Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Chicoutimi, QC, G7H 2B1, Canada

Submitted to Lithos

35

Table 1: Chemical composition of samples used in this work. Values in wt. % were extracted from Condie (1993), converted to mol. % and simplified to NCKFMASHTO chemical system to run the calculations in THERMOCALC. FeOt* corresponds to values converted from Fe₂O₃t.

Samples	Graywa comp	Graywacke bulk composition		Shale bulk composition	
oxides	wt. %	mol. %	wt. %	mol. %	
SiO ₂	66.10	70.22	63.1	68.26	
TiO ₂	0.77	0.61	0.64	0.52	
Al_2O_3	15.00	9.39	17.5	11.15	
Fe ₂ O ₃	-	0.10	-	0.10	
FeO _T *	5.80	5.15	5.65	4.99	
MgO	2.10	3.32	2.2	3.55	
CaO	2.60	2.96	0.71	0.82	
Na ₂ O	2.80	2.88	1.06	1.11	
K_2O	2.50	1.70	3.62	2.50	
H_2O	-	3.67	-	7.00	
Sum	97.67	100.00	94.6	100.00	

Relação entre composição de rocha, reação de fusão, resíduo, *T*, fase peritética e composição do fundido

 Cada rocha funde intervalo específico de T em T mais baixa (~730 °C) a reação de fusão em um pelito

 $- Qtz + Ms + Pl = Kfs + Al_2SiO_5 + Liq$ o fundido é granítico, pois a reação funde Ms, Qtz e Pl

as fases peritéticas tem K₂O e Al₂O₃, relacionadas à Ms

45

• Em *T* mais elevada (*T* >750 °C) a reação de fusão em um pelito

-Qtz + Bt + Sil + Pl = Kfs + Grt + Crd + Liq

o fundido é granítico a granodiorítico, pois a reação funde Qtz, Pl e Bt (e se soma ao fundido granítico que já estava presente)

as fases peritéticas tem K_2O , FeO, MgO, Al_2O_3 , relacionadas à Bt e Sil

-Qtz + Pl + Hbl = Cpx + Liq

o fundido é tonalítico, pois a reação funde Qtz, Pl e não há de onde tirar K_2O

a fase peritéticas tem CaO, FeO e MgO relacionadas à Hbl e Pl

47

Leucossoma

- Fundido (granito) mínimo representa composição do eutético, onde feldspato alcalino (albita - ortoclásio) coexistem com quartzo, Qtz-Ab-Or-H₂O, ou de um ponto em cima da linha cotética em sistema Qtz-Ab-Or-An-H₂O
- Muitos granitos apresentam composição normativa em torno dessa composição
- Leucossoma com essa composição é raro

Objetivos

- Comparar:
 - composição do leucossoma dentro do schollen
 - composição do leucossoma grosso do diatexito
 - avaliar semelhanças, diferenças de fonte, fusão e o processo de cristalização

51

Texturas

- Existem microestruturas que indicam:
 - fusão (auréolas de contato texturas raras)
 - cristalização de líquido residual (resíduo)
 - cristalização do líquido anatético (leucossoma)
 - -recristalização
 - fases peritéticas
 - reações de substituição de fases peritéticas

12/3/20

Cristalização de líquido residual dentro do resíduo (neossoma não segregado)

• Comumente formada por filmes de quartzo e ou feldspatos cristalizados entre as fases residuais e com continuidade óptica

- Notar:
 - quartzo intersticial com orientação cristalográfica contínua

89

Notar os filmes de Pl, Kfs e do Qtz em torno da Grt e Crd - isso é cristalização de fundido!

Luz polarizada

Luz polarizada

91

e Crd - isso é cristalização de fundido!

E quando não ocorre retroreação?

 Isso implica em perda de fundido (ou seja, a proporção fundido gerado/fases peritéticas mudou)

•
$$aBt + bQtz \rightarrow cKfs + dGrt + el$$

Texturas - conclusão

- A textura do migmatito:
 - leucossoma textura ígnea + fases petitéticas
 - pode ser alterada por deformação tardia com recristalização
 - resíduo textura metamórfica + cristalização do líquido aprisionado
 - pode mudar por rescristalização + deformação
 - colar de pérolas, grãos recristalizados, contatos 120 °
 - textura de consumo parcial das fases peritéticas por reação com o líquido
 - diatexito predomina textura ígnea + fases peritéticas
 - pode mudar por rescristalização + deformação, gerando grãos recristalizados e contatos de 120 °

ELSEVIER Linker 56 (2001) 75-96	
Partial melting, partial melt extraction and partial back reaction in anatectic migmatites	
Leo M Kriegsman	
Department of Geology, University of Turba, FDN-20014, Tarin, Finland Received 30 March 2000, received in revised from 12 June 2000, received 12 June 2000	
Abstract Anstectic migmatities commonly show both prograde (encopy producing) and retrograde reactions between minerals and metry the final textures, mineral modes and mineral chemistries are affected by four nuccessive processes (i) prograde partial metring and small-cacale suggestion into metric rich domains and retrict domains. (ii) partial retriggest reactions (such reaction) between in situ crystallizing mell and the restite; (iv) crystallization of remaining mell at the coldius, releasing volotiles. A new model is presented which combines the four successive processes. Partial melling is assumed to affect all textural memory and a migmatite unit in a closed system. Hence, the protoidit (palaeocome) is separated into restine (now messionae) + mit. A batch melling model is assumed with aggregation fraile batche except the last. The segregated, but corresponders are assumed with the dijacent portions of the messiones, resulting in a melanostme-kacotime pairs the last subscription is a subscription of the messiones, resulting in a melanostme-kacotime pairs the last subscription is a flexit back reaction back with aggregation fraile back. The segregated, but not extracted, melt back reacts only with the dijacent portions of the messiones, resulting in a melanostme-kacotime pairs the last subscription is a flexit back and voluces fraction between meta togeragation infraelool (back reactive with the correspondence) of this model is in the melanostome-leuconeme-messioneme compositions down lace meaning whow lineer compositional trends in a closed system. This affects back compositions deduced from leucosemes, mineral modes and compositions are full an model. The segregation that texturally observable back reaction between mult and restite may occur if forthan distales and milling and genes that texturally observable back reactions between mult and restite may occur if and there caese, mellanose bactetic is pairly relicit and partity produced during back reactions. The ratis of retrograde versus	
Asyssoria: Melt, Migmannes, Back reaction, P-1 paths, Mass balance	

descrição	leucossoma (neossoma)	melanossoma (neossoma)	resíduo (neossoma)	paleossoma	selvedge	mesossoma
Mehnert (1967)	porção leucocrática Qtz + Kfs + Pl	porção melanocrática Bt, Grt, Crd, Hbl, Px	porção da rocha que sobrou da fusão após segregação do fundido	 porção da rocha pouco ou não modificada pela fusão -rocha encaixante protolito 		
Brown (1973)	porção leucocrática Qtz + Kfs + Pl	porção melanocrática Bt, Grt, Crd, Hbl, Px	porção da rocha que sobrou da fusão após segregação do fundido	porção da rocha que sobrou da fusão após segregação do fundido		
Johannes & Gupta (1982)	porção leucocrática Qtz + Kfs + Pl	porção melanocrática Bt, Grt, Crd, Hbl, Px	porção da rocha que sobrou da fusão após segregação do fundido			resíduo mesocrático de qualquer rocha bandada
Sawyer (2008)	porção leucocrática Qtz + Kfs + Pl	porção melanocrática Bt, Grt, Crd, Hbl, Px fases peritéticas das reações de fusão	porção da rocha que sobrou da fusão após segregação do fundido	rocha que não fundiu (algo totalmente diferente do protolito)	porção máfica que separa duas porções diferentes do migmatito	
Kriegsman (2000)	porção leucocrática Qtz + Kfs + Pl	porção melanocrática Bt, Grt, Crd, Hbl, Px	porção da rocha que sobrou da fusão após segregação do fundido	várias definições	porção máfica tardia (confunde com a definição de melanossoma)	

origem	leucossoma (neossoma)	melanossoma (neossoma)	resíduo (neossoma)	paleossoma	selvedge	mesossoma
Mehnert (1967)	cristalização do fundido após segregação	fases residuais da fusão parcial	rocha que sobra após fusão e segregação de fundido	termo mal definido (um enigma), pois a definição muda ao longo livro ~ residuo do protolito		
Brown (1973)	cristalização do fundido após segregação	fases residuais da fusão parcial	rocha que sobra após fusão e segregação de fundido	resíduo do protolito		
Johannes & Gupta (1982)	cristalização do fundido após segregação	fases residuais da fusão parcial				resíduos mesocráticos de rochas bandadas submetidas à fusão parcial
Sawyer (2008)	cristalização do fundido após segregação com cristalização fracionada ou não	fases residuais (peritéticas) da fusão parcial	rocha que sobra após fusão e segregação de fundido	parte que não fundiu da rocha uma rocha totalmente diferente do protolito do migmatito	porção máfica formada por reação entre o fundido e uma porção adjacente, normalmente resíduo, durante o resfriamento	
Kriegsman (2000)	cristalização do fundido após segregação	fases residuais (peritéticas) da fusão parcial	rocha que sobra após fusão e segregação de fundido	várias definições	porção máfica tardia gerada por reação entre fundido e porção adjacente melanossoma	

Ashworth J.R. and Brown M. (Eds.) 1990. High-Temperature Metamorphism and Crustal Anatexis. The Mineralogical Society Series. 384 p.

Ashworth, J.R. 1985 Migmatites. Kluwer Academic Publishers, 320 p.

Atherton, M.P. & Gribble, C. D. (Eds.) 1983. Migmatites, melting and metamorphism; Proceedings/ Meeting High grade metamorphism, migmatites and melting of the Geochemical Group of the Mineralogical Society of the University of Glasgow. 326 p.

Mehnert, K.R. 1968 Migmatites and the origin of the granitic rocks. Elsevier Publishing Company, Amsterdam, 393 p.

Sawyer, E. W. 2008. Atlas of Migmatites. Special Publications of The Canadian Mineralogist, Vol. 9. 386pg.

Sawyer, E.W. 2010. Migmatites formed by water-fluxed partial melting of a leucogranodiorite protolith: Microstructures in the residual rocks and source of the fluid. Lithos, 116: 273-286.

Vernon, R. H., Clarke, G. 2008. Principles of Metamorphic Petrology. Cambridge University Press. 446p.