INSTITUTO DE GEOCIÊNCIAS DEPARTAMENTO DE MINERALOGIA E GEOTECTÔNICA GMG-106 – CRISTALOGRAFIA FUNDAMENTAL

LISTA DE EXERCÍCIOS II

SIMETRIA INTERNA E PRINCÍPIOS DE CRISTALOGRAFIA DE RAIOS X

- 1) A. Faça um esquema dos retículos de Bravais. Indique para cada um as coordenadas (x,y,z) de seu nós (pontos equivalentes) e dê o Fator de Multiplicidade em cada caso.
 - B. Dada uma posição com coordenadas (x,y,z)=(1/4.1/4.1/2), dê as coordenadas de todas as posições relacionadas através da simetria implícita nas celas P, I e F.
- 2) A. Quais os tipos de simetria presentes nos Grupos Espaciais e quais as correlações com os Grupos Pontuais? Qual o significado nas notações de Herman-Mauguin F432, Imm2, Pmm2, I4/m2/m2/m, I4/a32/d, Pcc2, C2/m?
 - B. Mostre através de desenhos e projeções ortográficas como operam os planos deslizantes **a**, **b**, **c** e **n** e os eixos helicoidais 2₁, 3₁, 3₂, 4₂, 4₃, 6₁, 6₄ e 6₅.
- 3) A. Nas representações de Grupos Espaciais da Figura 1 (e também nas Figuras distribuídas nas aulas práticas que você tenha dúvidas !!) complete os desenhos adicionando a simetria ou as posições equivalentes conforme o caso. Por que os exemplos mostrados nas figuras 1 e 2 correspondem a celas P enquanto o da Figura 3 é uma cela I? Qual Grupo Espacial da estrutura da Figura 3?
 - B. Para o Grupo Espacial Pcc2 (Figura 2) dê as coordenadas das posições equivalentes à posição genérica (x,y,z) e às posições especiais (1/2,0,z) e (0,0,z). PS: posições genéricas não coincidem com nenhum elemento de simetria, posições especiais coincidem com um ou mais elementos.
- 4) O diamante (C) cristaliza em condições de altas pressões e temperaturas e apresenta simetria externa 4/m32/m e estrutura F 4/d32/m, em que a₀=3,56 Å. Nesta estrutura, tem-se átomos de c nas posições (x,y,z) = (0,0,0) e (1/4,1/4,1/4). Faça um esquema da estrutura do diamante em escala adequada, adicionando uma projeção no plano (001)₀. Qual o valor de Z (número de átomos de C por cela)?
- 5) A. Interprete o difratograma do metal anexo identificando-o com ajuda das fichas JCPDS que você tem disponíveis. Faça uma leitura da ficha correspondente mostrando quais informações mineralógicas e cristalográficas são nelas destacadas.
- B. Como deve aparecer um difratograma de um material amorfo? Justifique.
- C. Difratogramas de materiais com simetria ortorrômbica devem, em geral, apresentar maior número de "reflexões" (picos) que os de simetria tetragonal e estes, por sua vez, maior número que os de simetria cúbica. Esta assertiva é verdadeira? Justifique.

6) Para um silicato de Mn (análogo artificial do mineral tefroíta, Mn₂SiO₄) de simet**r**ia ortorrômbica, foram obtidos os seguintes dados através do método do pó em difratômetro convencional e indexação (determinação dos índices de Miller, h, k e l) com auxílio do fichário JCPDS:

Pico	2 θ	hkl	!/l 0
01	22,05	021	60
02	24,65	111	70
03	31,35	130	80
04	34,62	131	80
05	35,30	112	100
06	38,80	140	60

A. Calcule as constantes e o volume da cela unitária deste composto, justificando o procedimento adotado.

B. Sabendo que a densidade deste material é 4,113 g/cm³, calcule o valor de Z (o número de moléculas por cela unitária). As massas atômicas do Mn, Si e do O são, respectivamente, 54,938, 28,086 e 15,999. O número de Avogadro vale 6,023 x 10²³.