MAT0130 - Equações Diferenciais I

3a. Lista de Exercícios - 2o. semestre de 2020

1. Determine a equação característica e os autovalores das seguintes matrizes:

$$\mathbf{A} = \begin{bmatrix} 2 & 3 \\ -1 & -2 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 1 & -4 \\ 3 & 1 \end{bmatrix} \qquad \mathbf{C} = \begin{bmatrix} -2 & -3 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

2. Considere os vetores:

$$\mathbf{x(t)} = \begin{bmatrix} t \\ 1 \end{bmatrix}$$
 $\mathbf{y}(t) = \begin{bmatrix} t^2 \\ 2t \end{bmatrix}$

- (a) Calcule o Wronskiano de \mathbf{x} e \mathbf{y} .
- (b) Em que intervalos \mathbf{x} e \mathbf{y} são linearmente independentes?
- (c) Que conclusão se pode tirar sobre os coeficientes no sistema homogêneo de equações diferencias satisfeitas por \mathbf{x} e \mathbf{y} ?
- (d) Encontre esse sistema de equações diferenciais e verifique as conclusõe do item (c).

3. Encontre a solução geral do sistema dado

(a)
$$\begin{cases} \frac{dx}{dt} &= x + 2y\\ \frac{dy}{dt} &= 4x + 3y \end{cases}$$

(b)
$$\begin{cases} \frac{dx}{dt} &= 3x - y\\ \frac{dy}{dt} &= 9x - 3y \end{cases}$$

(c)
$$\begin{cases} \frac{dx}{dt} = 6x - y \\ \frac{dy}{dt} = 5x + 2y \end{cases}$$

(d)
$$\mathbf{X}' = \begin{bmatrix} -1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 3 & -1 \end{bmatrix} \mathbf{X}$$

(e)
$$\mathbf{X}' = \begin{bmatrix} 5 & -4 & 0 \\ 1 & 0 & 2 \\ 0 & 2 & 5 \end{bmatrix} \mathbf{X}$$

(f)
$$\mathbf{X}' = \begin{bmatrix} 1 & -1 & 2 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} \mathbf{X}$$

4. Determine a solução do problema de valor inicial

$$\mathbf{X}' = \begin{bmatrix} 1 & -12 & -14 \\ 1 & 2 & -3 \\ 1 & 1 & -2 \end{bmatrix} \mathbf{X}, \quad \mathbf{X}(0) = \begin{bmatrix} 4 \\ 6 \\ -7 \end{bmatrix}$$

5. Calcule $e^{t\mathbf{A}}$ nos equintes casos

(a)
$$\mathbf{A} = \begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix}$$

(b)
$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ -2 & -2 & -2 \end{bmatrix}$$

6. Seja **A** a matriz
$$\mathbf{A} = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$
.

- (a) Determine os autovalores e autovetores de A.
- (b) Para quais valores de \mathbf{b} é possível encontrar soluções constantes para o problema não homogêneo: $\dot{\mathbf{x}} = \mathbf{A} \ \mathbf{x} + \mathbf{b}$, sendo \mathbf{b} um vetor constante? Justifique.

(c) Determine a solução do problema
$$\dot{\mathbf{x}} = \mathbf{A} \mathbf{x} + \mathbf{b}$$
, sendo $\mathbf{b} = \begin{bmatrix} 3 \\ -5 \end{bmatrix}$

7. **4 pontos** Dada a matriz
$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

- (a) Encontre uma matriz \mathbf{M} tal que $\mathbf{M}^{-1}\mathbf{A}\mathbf{M}$ é da forma: $\mathbf{D} + \mathbf{N}$, sendo \mathbf{D} uma matriz diagonal e \mathbf{N} uma matriz nilpotente que comuta com \mathbf{D} .
- (b) Use o ítem (a) e a definição de exponencial de matrizes para encontrar a matriz $e^{\mathbf{t}\mathbf{A}}$
- (c) Determine uma solução fundamental do sistema matricial: $\frac{d}{dt} \mathbf{x(t)} = \mathbf{Ax}$
- (d) Use o item (c) para encontrar a matriz exponencial e^{tA} . Compare com o resultado obtido em (b).