Integer Programming Basic Concepts

Outline

- What is it?
- Problem formulations.
- Binary variables.
- Modeling nonlinear functions

What is it? [1]

- Mathematical programming is the branch of mathematics concerned with the theory and methods for solving problems on finding the extrema of functions on sets defined by linear and non-linear constraints (equalities and inequalities) in a finite-dimensional vector space.
- Mathematical programming is a branch of operations research, which comprises a wide class of control problems

Mathematical programming

Algorithm selection Numerical calculation

What is it? [1]

- The problems of mathematical programming find applications in various areas of human activity where it is necessary to choose one of the possible ways of action, e.g. in solving numerous problems of control and planning of production processes as well as in problems of design and long-term planning.
- The term "mathematical programming" is connected with the fact that the goal of solving various problems is choosing programs of action.

Mathematical programming

Problem simplification
Model formulation Sensitivity analysis

Algorithm selection Numerical calculation

What is it?

Linear Program (LP)

max cx
st.

$$
\begin{aligned}
& A x \leq b \\
& x \geq 0
\end{aligned}
$$

What is it? Linear Program (LP)
$\operatorname{Max} \mathrm{X}_{1}+\mathrm{X}_{2}$
s.t.

$$
x_{1}+2 x_{2} \leq 2
$$

$$
2 x_{1}+x_{2} \leq 2
$$

$$
x_{1} \geq 0, x_{2} \geq 0
$$

What is it? Linear Program (LP)
$\operatorname{Max} \mathrm{X}_{1}+\mathrm{X}_{2}$
s.t.

$$
\begin{aligned}
& x_{1}+2 x_{2} \leq 2 \\
& 2 x_{1}+x_{2} \leq 2 \\
& x_{1} \geq 0, x_{2} \geq 0
\end{aligned}
$$

Solution: $(2 / 3,2 / 3)$

What is it?
Integer Program (IP)
max cx
st.
$A x \leq b$
$x \in Z_{+}$(positive integer)

What is it? Integer Program (IP)
$\operatorname{Max} \mathrm{X}_{1}+\mathrm{X}_{2}$

$$
\begin{aligned}
& x_{1}+2 x_{2} \leq 2 \\
& 2 x_{1}+x_{2} \leq 2 \\
& x_{1} \geq 0, x_{2} \geq 0 \text { integer }
\end{aligned}
$$

What is it?
Integer Program (IP)

$\operatorname{Max} 5 \mathrm{x}_{1}+8 \mathrm{x}_{2}$

s.t.

$$
x_{1}+x_{2} \leq 6
$$

$$
5 x_{1}+9 x_{2} \leq 45
$$

$x_{1} \geq 0, x_{2} \geq 0$ integer

What is it?

Mixed-Integer Program (MIP)
max cx + hy
st.
$A x+G y \leq b$
$x \geq 0, y \in Z_{+}$(positive integer)

What is it? Mixed-Integer Program (MIP)
$\operatorname{Max} X_{1}+x_{2}$

$$
\begin{aligned}
& x_{1}+2 x_{2} \leq 2 \\
& 2 x_{1}+x_{2} \leq 2 \\
& x_{1} \geq 0, x_{2} \leq z_{+}
\end{aligned}
$$

Solution: $(1,0)$ and $(0,1)$

Problem Formulations

Knapsack Problem

Problem Formulations

Traveling Salesman Problem (TSP)

Problem Formulations

Lot-sizing problem

Binary Variables

Logical constraints [2]

- Constraints feasibility: When is the constraint satisfied?

$$
\begin{aligned}
& f(x 1, x 2, \ldots, x n) \leq b \\
& f(x 1, x 2, \ldots, x n)-B y \leq b, y \in\{0,1\} \\
& y=0 \Rightarrow f(x 1, x 2, \ldots, x n) \leq b \\
& y=1 \Rightarrow f(x 1, x 2, \ldots, x n) \leq b+B
\end{aligned}
$$

Binary Variables

Logical constraints [2]

- Alternative constraints

$$
\begin{array}{ll}
f 1(x 1, x 2, \ldots, x n) \leq b 1 & \\
f 2(x 1, x 2, \ldots, x n) \leq b 2 & \\
f(x 1, x 2, \ldots, x n)-B y 1 \leq b 1 & f(x 1, x 2, \ldots, x n)-B y \leq b 1 \\
f(x 1, x 2, \ldots, x n)-B y 2 \leq b 2 & f(x 1, x 2, \ldots, x n)-B(1-y) \leq b 2 \\
y 1+y 2 \leq 1, y \in\{0,1\} & y \in\{0,1\}
\end{array}
$$

Binary Variables

Logical constraints [2]

- Conditional constraints:

$$
\begin{aligned}
f 1(x 1, x 2, \ldots, x n)>b 1 & \Rightarrow f 2(x 1, x 2, \ldots, x n) \leq b 2 \\
& \Leftrightarrow \\
f 1(x 1, x 2, \ldots, x n) \leq b 1 & \vee f 2(x 1, x 2, \ldots, x n) \leq b 2
\end{aligned}
$$

Binary Variables

Logical constraints [2]

- Conditional constraints: k -fold alternatives:

We must satisfy at least k constraints from

$$
\begin{aligned}
& f j(x 1, x 2, \ldots, x n) \leq b j \text { for } j=1, \ldots, p \\
& f j(x 1, x 2, \ldots, x n)-B j(1-y j) \leq \text { bj for } j=1, \ldots, p \\
& y 1+\ldots . y j \geq k \\
& y j \in\{0,1\}, j=1, \ldots, p
\end{aligned}
$$

Binary Variables

Logical constraints [2]

- Compound alternatives

Region 1: $\quad f 1(x 1, x 2)-B 1 y 1 \leq b 1$

$$
\mathrm{f} 2(\mathrm{x} 1, \mathrm{x} 2)-\mathrm{B} 2 \mathrm{y} 1 \leq \mathrm{b} 2
$$

Region 2: $\quad f 3(x 1, x 2)-B 3 y 2 \leq b 3$ f4(x1,x2) - B4y2 $\leq b 4$
Region 3: $\quad f 5(x 1, x 2)-B 5 y 3 \leq b 5$

$$
f 6(x 1, x 2)-B 6 y 3 \leq b 6
$$

$$
f 7(x 1, x 2)-B 7 y 3 \leq b 7
$$

$$
x 1 \geq 0, x 2 \geq 0
$$

$y 1, y 2, y 3$ binary.

Adapted from [2]

$$
y 1+y 2+y 3 \leq 2
$$

Modeling Nonlinear Functions

Modeling Nonlinear Functions

$$
\begin{aligned}
& x=\delta 1+\delta 2+\delta 3 \\
& 0 \leq \delta 1 \leq 4 \\
& 0 \leq \delta 2 \leq 6 \\
& 0 \leq \delta 3 \leq 5 \\
& \text { Cost }=5 \delta 1+\delta 2+3 \delta 3 \\
& x=2 \Rightarrow \delta 1=\delta 3=0 \\
& \quad \delta 2=2, \text { Cost }=2
\end{aligned}
$$

Adapted from [2]

Modeling Nonlinear Functions

$$
\begin{aligned}
& x=\delta 1+\delta 2+\delta 3 \\
& 4 w 1 \leq \delta 1 \leq 4 \\
& 6 w 2 \leq \delta 2 \leq 6 w 1 \\
& 0 \leq \delta 3 \leq 5 w 2 \\
& w 1, w 2 \text { binary } \\
& \text { Cost }=5 \delta 1+\delta 2+3 \delta 3 \\
& x=2 \Rightarrow \delta 1=2, w 1=0 \\
& \quad \delta 3=\delta 2=0, w 2=0
\end{aligned}
$$

Cost $=10$

Modeling Nonlinear Functions

$$
\begin{aligned}
& x=\delta 1+\delta 2+\delta 3 \\
& 4 w 1 \leq \delta 1 \leq 4 \\
& 6 w 2 \leq \delta 2 \leq 6 w 1 \\
& 0 \leq \delta 3 \leq 5 w 2 \\
& w 1, w 2 \text { binary }
\end{aligned}
$$

- $w 1=0 \Rightarrow w 2=0$ with $0 \leq \delta 1 \leq 4, \delta 2=0$, and $\delta 3=0$.
- $w 1=1$ e w2 $=0$ with $\delta 1=4,0 \leq \delta 2 \leq 6$, and $\delta 3=0$.
- $w 1=1$ e w2 $=1$ with $\delta 1=4, \delta 2=6$, and $0 \leq \delta 3 \leq 5$.
- $w 1=0, w 2=0 \Rightarrow 0 \leq x \leq 4$ since $\delta 2=\delta 3=0$.
- $w 1=1, w 2=0 \Rightarrow 4 \leq x \leq 10$ since $\delta 1=4$ and $\delta 3=0$.
- $w 1=1, w 2=1 \Rightarrow 10 \leq x \leq 15$ since $\delta 1=4$ and $\delta 2=6$.

$$
L_{j} w_{j} \leq \delta_{j} \leq L j w_{j-1},
$$

Modeling Nonlinear Functions

Cost $=\delta 1+3 \delta 2+6 \delta 3$ s.t.

$$
\begin{aligned}
& 0 \leq \delta 1 \leq 4 \\
& 0 \leq \delta 2 \leq 6, \\
& 0 \leq \delta 3 \leq 5 .
\end{aligned}
$$

Adapted from [2]

Modeling Nonlinear Functions

Referências

[1] Enciclopedia of Mathematics,
https://www.encyclopediaofmath.org/index.php/Mathematical programming.
[2] MIT - Integer Programming,
http://web.mit.edu/15.053/www/AMP-Chapter-09.pdf.

