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SUMMARY
Most coronaviruses cause respiratory or intestinal infections in their animal or human host. Hence, their interaction
with polarized epithelial cells plays a critical role in the onset and outcome of infection. In this paper, we review the
knowledge regarding the entry and release of coronaviruses, with particular emphasis on the severe acute respiratory
syndrome and Middle East respiratory syndrome coronaviruses. As these viruses approach the epithelial surfaces from
the apical side, it is not surprising that coronavirus cell receptors are exposed primarily on the apical domain of
polarized epithelial cells. With respect to release, all possibilities appear to occur. Thus, most coronaviruses exit through
the apical surface, several through the basolateral one, although the Middle East respiratory syndrome coronavirus
appears to use both sides. These observations help us understand the local or systematic spread of the infection within
its host as well as the spread of the virus within the host population. Copyright © 2014 John Wiley & Sons, Ltd.
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INTRODUCTION
Coronaviruses (CoVs) comprise a large family of
enveloped, positive-stranded RNA viruses that infect
a broad range of animal hosts as well as humans.
These viruses can cause a wide variety of diseases, in
particular respiratory and enteric, but also including
hepatic, renal and neuronal infection [1,2]. CoVs are
divided into three genera, namely, Alphacoronavirus,
Betacoronavirus and Gammacoronavirus, as well as a
tentative new genus, the Deltacoronavirus [3]. Well-
known representatives are porcine transmissible
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gastroenteritis virus (TGEV), porcine respiratory CoV
(PRCoV) and porcine epidemic diarrhea virus
(PEDV); canine CoV (CCoV), feline CoV (FCoV),
bovine CoV (BCoV), human CoVs (HCoVs) including
HCoV-229E, HCoV-OC43, HCoV-NL63 and HCoV-
HKU1, severe acute respiratory syndrome-associated
CoV (SARS-CoV) and Middle East respiratory
syndrome virus (MERS-CoV); murine hepatitis virus
(MHV); and the avian CoV infectious bronchitis virus
(IBV) and turkey CoV (TCoV) [4].
The CoV genome typically encodes four struc-

tural proteins: the spike protein (S), envelope pro-
tein (E), membrane protein (M) and nucleocapsid
protein (N); some CoVs additionally have a
haemagglutinin-esterase (HE) protein [5–7]. The S
glycoprotein of CoV is the dominant surface protein
and is responsible for virus attachment and
membrane fusion [8–11].
Epithelia are formed of cells that line the cavities

in the body and also cover flat surfaces. Epithelial
cells cover the inner and outer linings of body
cavities and act as a primary barrier to infection
by microorganisms, entering their host via body
cavities, such as the respiratory or intestinal tract
[12]. Primary replication of CoVs is often confined
to respiratory or gastrointestinal tract epithelial



309Polarized infection of coronaviruses
cells [13]. Epithelial cells are functionally polarized;
their surface exhibits two distinguishable regions,
which are called apical domain and basolateral
domain [14]. The apical membrane faces the lumi-
nal (external) compartment and contains proteins
that determine the cells’ primary functions such as
secretion and absorption, whereas the basolateral
domain faces the systemic (internal) compartment,
that is, tissues and blood [15,16].
As CoVs generally spread through the fecal–oral

or respiratory route, polarized epithelial cells
constitute their first natural barrier. Hence, their
interaction with these cells determines for a major
part the outcome of the infection [17]. In this paper,
we review the entry and release of several CoVs in
polarized epithelial cells as this information will
contribute to our understanding of the pathogene-
sis of these viruses.

CORONAVIRUS ENTRY INTO POLARIZED
EPITHELIAL CELLS
The entry of several CoVs in polarized epithelial
cells has been investigated for several decades. As
early as 1994, Rossen and colleagues analyzed the
entry of TGEV in filter-grown polarized LLC-pig
kidney 1 (LLC-PK1) cells, a line of pig kidney
epithelial cells, using radioactive labeling, immu-
noprecipitation and electron microscopy. The
results showed that TGEV infection was restricted
to the apical plasma membrane [18]. In 2001,
Rossen et al. similarly analyzed the entry of FCoV
and CCoV in polarized epithelial LLC-PK1 cells ex-
pressing the recombinant feline aminopeptidase-N
(fAPN), which acts as a receptor for these viruses,
and compared it with TGEV. The results showed
that FCoV and CCoV, like TGEV, establish their
infection into polarized epithelial cells specifically
by entry through the apical membrane [19]. The
same pattern has subsequently also been found with
a large number of other CoVs including HCoV-
229E, HCoV-OC43,HCoV-NL63,HCoV-HKU1, BCoV,
SARS-CoV and MHV [4,17,18,20–28]. Recently,
Pratelli reported a study with CCoV in filter-grown
polarized epithelia primary dog kidney cells (A72
cells) and epithelia feline kidney cells (CrFK cells)
showing productive infection both through the
apical and basolateral cell membrane [29].
It is clear that the S glycoprotein of CoV mediates

viral attachment to the cellular receptor and subse-
quent entry into cells [10,11]. Thus, exploration of
the distribution of cellular receptor in polarized
Copyright © 2014 John Wiley & Sons, Ltd.
epithelial in relation to CoV entry is important for
understanding virus invasion. It is well known that
porcine aminopeptidase-N (pAPN), the cellular
receptor of TGEV, is primarily expressed on the
apical side in polarized epithelial cells [18,30].
Rossen et al. chose LLC-PK1 cells, which are
derived from the proximal tubule of porcine
kidney, as their in vitro model for determining the
association of TGEV entry with localization of
pAPN [18]. Furthermore, the authors performed a
confocal laser scanning microscope method of
filter-grown LLC-PK1 cells, which allows optical
sections to be cut either in the horizontal plane
(XY section) or in the vertical plane (XZ section)
to determine the plasma membrane distribution of
the pAPN receptor. The results showed that when
the LLC-PK1 cells were not fully polarized, pAPN
was expressed on both apical and basolateral sides;
in contrast, expression of the pAPN was limited to
the apical side in fully polarized LLC-PK1 mono-
layers [18], consistent with TGEV entry into these
cells to be mediated by pAPN. Similarly, also the
entry of HCoV-229E and FCoV through the apical
domain of polarized epithelial cells correlated with
the apical expression of their cognate aminopepti-
dase-N (APN) receptor [19,20,24,31–34]. Besides,
the apical distribution of angiotensin-converting
enzyme II (ACE2; HCoV-NL63 receptor) mediated
the apical entry of HCoV-NL63 [24,26]. For their
study of polarized MHV entry, Rossen et al. used
porcine LLC-PK1 cells stably expressing the
carcinoembryonic antigen receptor for MHV
(MHVR) and confirmed that the apical entry of
the virus could be explained by the specific apical
expression of its receptor [23,35]. As far as the entry
of SARS-CoV is concerned, Tseng et al. first
reported the apical entry of this virus in polarized
Calu-3 (a human lung cancer cell line) cells in
2005 using immunofluorescence staining, confocal
microscopy and transmission electron microscopy
[17]. In the same year, Jia et al. investigated interac-
tions between SARS-CoV and human airway
epithelia using native tissue and a primary culture
model of polarized, well-differentiated tracheal
and bronchial epithelia [21]. They also confirmed
SARS-CoV receptor, ACE2, to be expressed in
greater abundance on the apical surface of the
polarized cells [21,36,37]. Furthermore, Ren et al.
analyzed the entry of vesicular stomatitis virus
(VSV) pseudotypes bearing SARS-CoV S protein
in polarized Vero (a line of monkey kidney cell
Rev. Med. Virol. 2014; 24: 308–315.
DOI: 10.1002/rmv



310 Y. Cong and X. Ren
line), Calu-3 and Caco-2 cells (a human colon
cancer cell line) using confocal immunofluores-
cence and surface biotinylation [12]. Their results
indicated that SARS-CoV S mediated apical entry
into polarized epithelial cells. Furthermore, the
authors used human respiratory tissues in an
immunohistochemical assay. They found a strong
expression of ACE2 on the epithelium of almost
all tracheal glands, and no ACE2 was detected in
the lower bronchi of any of the tissues. These
results clearly showed ACE2 to be present on the
epithelia of certain parts of the respiratory tract and
to mediate SARS-CoV entry [12,38]. The findings
indicate the importance of CoV receptors in the
context of entry of these viruses into polarized
epithelial cells. It can thus be concluded that CoVs
bind to particular host cell molecules and that their
specific entry route is mediated by the distribution
of these molecules on polarized epithelial cells. The
most likelymechanism for the sorting of intracellular
budding viruses to the apical or basolateral plasma
membrane side involves their interaction with a
membrane cellular receptor, which is polarized and
targeted to a specific destination. To some extent, it
explains the entry of CoV [29]. In our recent study,
we infected polarized Vero cells and intestinal
epithelial cells (IEC) with PEDV and revealed by
using immunofluorescence assays the apical entry
of PEDV into both these cell types (unpublished
data). Currently available reports have claimed that
pAPNmight serve as a functional receptor for PEDV
[39–41]. Interestingly, Vero cells are ofmonkey rather
than pig origin and do not express pAPN; therefore,
the apical entry of PEDVis independent of the pAPN
molecule. Identification of the actual cellular recep-
tor of PEDVis important for understanding the inter-
action between PEDVand its receptor.Whether there
are additional other mechanisms or factors contrib-
uting to the entry of CoVs into polarized cells
remains unclear.

CORONAVIRUS RELEASE
Coronaviruses are assembled in their host cells
from the structural proteins and genome RNA by
budding into the endoplasmic reticulum and early
Golgi membranes, after which virions are transported
through the Golgi complex and secreted out of the
cell [42]. Such processes are complex, and as a
consequence, understanding the release of CoVs
from polarized epithelial cells is more complicated
than their entry. It has been reported that TGEV
Copyright © 2014 John Wiley & Sons, Ltd.
was preferentially released from the apical plasma
membrane. In this study, the amounts of infectious
TGEV particles released into the apical and
basolateral media of infected LLC-PK1 cells were
determined by plaque assay. The results showed that
30-fold more pfu had accumulated in the apical
medium than in the basolateral medium [18]. The
same pattern was also found upon infections of
polarized epithelial cells with HCoV-229E, HCoV-
OC43, HCoV-NL63, HCoV-HKU1, SARS-CoV and
BCoV by virus titration or real-time PCR
[12,17,20,21,23–28,43]. In 1997, Lin et al. demon-
strated that BCoV isolated from enteric (enteric
BCoV, EBCoV) and respiratory (respiratory BCoV,
RBCoV) tract infections was released through the
apical surfaces of the polarized HRT-18G cells, an
epithelioid human rectal tumor cell line [28]. Later,
in 2000, the same was shown by Wang et al. for
HCoV-229E infection of polarized airway epithelia
[20], whereas the apical release of HCoV-OC43 from
polarized primary epithelial cells was reported by
Dijkman et al. in 2013 [24]. In contrast to these
examples of apical release, however, CCoV, FCoV
andMHVwere found to be released from the oppo-
site side [12,17,19–28,43]. Thus, Rossen et al. studied
FCoV and CCoV release from polarized porcine
epithelial LLC-PK1 cells stably expressing the
recombinant fAPN and observed the progeny
viruses to accumulate preferentially in the
basolateral medium of the epithelial cells [19]. To
investigate whether the differential release of
different CoVs is determined by the cells rather than
the viruses, these same authors also analyzed the
release of TGEVand MHV from the same polarized
cells. Using the porcine LLC-PK1 expressing the
MHV receptor to make them susceptible to this
murine virus, they confirmed by virus titration the
apical release of TGEV, whereas infectious MHV
was predominantly released into the basolateral
fluid [18,22]. For PEDV, an important pathogen
circulating in Asia, but which recently also emerged
in Europe [44,45], we investigated the release in
polarized VERO and IEC cells and found the virus
to be secreted apically using virus titration and
real-time PCR (unpublished data). Taken together,
the observations demonstrate that there are two
patterns for CoV release from the polarized
epithelial cells. As epithelial cells are the initial
target cells for most CoV infections, the pivotal role
in the pathogenesis of viral infections is obvious.
The virus specifically released from the apical
Rev. Med. Virol. 2014; 24: 308–315.
DOI: 10.1002/rmv



Figure 1. Two patterns for coronavirus entry and release from polarized epithelial cells. (A) Entry and release through the apical membrane
facilitates lateral spread. (B) Entry at the apical membrane and release through the basolateral membrane facilitates vertical transmission

311Polarized infection of coronaviruses
surface is targeted to the lumen; hence, the resulting
infection is more likely to be restricted to the epithe-
lial surface. In contrast, basolateral release should
provide access to the blood and lymph vessels,
resulting in a systemic infection [23,46]. Clarifica-
tion of the different release routines of CoVs may
provide important insight into the mechanisms of
transmission and pathogenesis and will facilitate
the design of effective antiviral strategies to control
CoV infection.
POLARIZED INFECTIONS BY SEVERE HUMAN
RESPIRATORY SYNDROME CORONAVIRUSES
IN EPITHELIAL CELLS
As HCoV infections are significant threat to public
health, a thorough understanding of their infections
in polarized cells is important. Particularly, in com-
parison with the usually milder HCoV-229E,
Copyright © 2014 John Wiley & Sons, Ltd.
HCoV-OC43 andHCoV-NL63 viruses, the infections
of humans by SARS-CoV and MERS-CoV are very
severe because of their high mortality rates.

Infection of SARS-CoV in polarized epithelia has
been examined by several investigators [12,17,21,43].
Tseng et al. infected an established cell line of human
bronchial epithelial origin, Calu-3, which is a relevant
cell culture model for SARS-CoV infection despite its
pulmonary adenocarcinoma origin [17]. The func-
tional receptor for SARS-CoV, ACE2, is preferentially
expressed on the apical surface of these cells
[12,17,21,43]. Although the authors, as mentioned
earlier, demonstrated that SARS-CoV enters these
cells through the apical domain of polarized Calu-3
cells, they also found the release to be almost
exclusively through this domain. Because SARS-
CoV naturally enters its host through the mucosa of
the respiratory tract and the eyes, Jia et al. described
the entry and release of the virus in polarized human
Rev. Med. Virol. 2014; 24: 308–315.
DOI: 10.1002/rmv



Table 1. Entry and release of selected coronaviruses from polarized epithelial cells

Coronavirus Entry Release Reference

TGEV Apical Apical [18]
PEDV Apical Apical Unpublished data
PRCoV ? ?
CCoV Apical Basolateral [19]

Apical/basolateral Apical/basolateral [29]
FCoV Apical Basolateral [19]
HCoV-229E Apical Apical [20]
HCoV-OC43 Apical Apical [24]
HCoV-NL63 Apical Apical [26]
HCoV-HKU1 Apical Apical [25]
MHV Apical Basolateral [22]
SARS-CoV Apical Apical [17]

[21]
[12]
[43]
[53]

BCoV Apical Apical [27]
[28]

IBV ? ?
MERS-CoV Apical/basolateral Apical/basolateral [54]

BCoV, bovine coronavirus; CCoV, canine coronavirus; FCoV, feline coronavirus; HCoV, human coronavirus; IBV, avian
coronavirus infectious bronchitis virus; MERS-CoV, Middle East respiratory syndrome virus; MHV, murine hepatitis
virus; PEDV, porcine epidemic diarrhea virus; PRCoV, porcine respiratory coronavirus; SARS-CoV, severe acute
respiratory syndrome-associated coronavirus; TGEV, transmissible gastroenteritis virus.

312 Y. Cong and X. Ren
airway epithelia. Their results were consistent with
those of Tseng et al. [17,21]. They used native lung
tissue and a model of well-differentiated cultures of
primary human airway epithelia and showed ACE2
receptor expression to increase and appear more
abundantly on the apical side with the differentiation
state of epithelia. SARS-CoV preferentially exited via
the apical surface of the well-differentiated cells
[10,21,47].

In September 2012, the MERS-CoV drew attention
as a new cause of severe respiratory illness in
humans in the Middle East [48–50]. Patients
with confirmedMERS-CoV infection presented with
a spectrum of disease symptoms ranging from
mild influenza-like illness to severe pneumonia ac-
companied by respiratory and renal failure and
resulting in death; the case fatality rate (CFR)
presently stands at 45%, in contrast to the 7% CFR
of SARS [51]. For MERS-CoV, no animal reservoir
or intermediate host(s) has been definitely
Copyright © 2014 John Wiley & Sons, Ltd.
implicated in transmission. Limited human-to-human
transmission has occurred within several clusters of
cases in many countries [52]. MERS-CoV infects
primary human bronchial epithelial Calu-3 cells and
primary human kidney cells, and CD26 (also known
as dipeptidyl peptidase 4, DPP4) was identified as
the cellular receptor for MERS-CoV [53]. Tao et al.
indicated that MERS-CoV could not infect the cell
lines without CD26 expression including ACE2-
expressing A549 cells, embryonic kidney 293 cells
and ACE2-expressing 293 cells and infected the
primary human bronchial epithelial Calu-3 cells,
which are target cell lines for MERS-CoV and SARS
with the distribution of CD26 being indiscriminately
expressed on the entire membrane of cells by sequen-
tial images caught by z-scanning and ACE2 being
distinctly expressed on the apical side. Then, these
two HCoVs infected both sides of the polarized
epithelial Calu-3 cells. SARS-CoV infected and
released almost exclusively through the apical side,
Rev. Med. Virol. 2014; 24: 308–315.
DOI: 10.1002/rmv
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whereas MERS-CoV was indeed capable of doing so
through either side and released through both
routes. It should be noted that there was a nearly
100-fold-lower titer released from the apical side
when infection was carried out from the basolateral
rather than apical routes [54]. Because of the
bilateral entry and release, MERS-CoV caused the
lateral spread, human-to-human transmission and
vertical transmission, whereas viral particles can
be detected in serum and plasma [49,50].
So far, two main patterns of entry into and

release from polarized epithelial cells apply to
most CoVs. One is apical entry and apical release,
and the other is apical entry and basolateral
release. The apical release allows a rapid lateral
spread over the respiratory or intestinal epithe-
lium; virus is deposited from infected cells into
the lung or gut lumen followed by efficient
infection of new nearby target cells. A schematic
drawing of the process is shown in Figure 1A.
SARS-CoV, for instance, mainly infects through
the respiratory tract [12,17,43]. The new progeny
virions are released from the apical domain of
polarized epithelial cells and subsequently infect
adjacent epithelial cells. However, these virions
do not easily cross the epithelial cell layer and
infect tissues; hence, the infection is maintained
at the surface of the epithelial cells and causes a
massive lateral spread. This condition enables
efficient horizontal transmission by respiratory
secretions, body fluids or body contact and leads
to a widespread dissemination into the population
[55,56]. In contrast, basolateral release supports
the vertical transmission from the infected epithe-
lia to blood and lymph vessels, consequently
promoting the establishment of a systemic infec-
tion [57,58], and a proposed schematic drawing
is shown in Figure 1B. Virions reach underlying
cells and tissues, pass into the bloodstream and
are transported around the body, circulating
through body fluids. MHV, CCoV and FCoV,
which were found to exhibit this pattern of virus
release from polarized epithelial cells, cause a
systemic infection [19,22,23]. The current knowl-
edge regarding the entry and release of several
CoVs is summarized in Table 1.
CONCLUSIONS
Studying the infection of polarized epithelial cells
by CoVs is important for understanding the
Copyright © 2014 John Wiley & Sons, Ltd.
molecular basis of the pathogenesis of these vi-
ruses. The polarized distribution of cellular recep-
tors for CoVs determines the entry domain of
most CoVs; their polarized release helps explain
their pathogenesis.

Multiple factors should be considered in the
analysis of the polarized entry and release of CoVs.
First, the characteristics of CoVs have an impact on
polarized entry, especially on target cell tropisms.
For instance, HCoV-229E has a preference to infect
nonciliated cells, unlike HCoV-NL63, HCoV-
HKU1 and HCoV-OC43 [24]. Experimental
polarized cell lines might not reflect the real
infection in hosts. Second, laboratory-adapted
strains were commonly used in most of the studies;
nonetheless, the wild strains might differ in certain
infection properties when characterizing the polar-
ized entry or release from the epithelial cells.
Finally, as recombination plays a key role in the
evolution of the CoVs [59–61], especially of HCoVs,
most of their target cells were the same, potentially
facilitating recombination. Whether it makes a con-
tribution to the polarized entry and release should
be investigated in further work.

The entry of several CoVs in polarized epithelial
cells is still unclear, as illustrated by PRCoV, IBV
and PEDV; for the latter two, this is due particu-
larly to the uncertainty of their cellular receptors.
Further elucidation of CoV entry of polarized cells
and identification of molecules that are involved
in this process should be realized in the future to
understand CoV invasion of their target cells in
detail. This holds even more for understanding
the release of CoVs, as little is still known about
the mechanisms and pathways that direct these
viruses to specific membrane destinations for their
targeted removal from infected cells.
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