Aula 15 – Sequências e séries

Prof. Rogério Augusto dos Santos Fajardo

Instituto de Matemática e Estatística

MAT1352 - Cálculo para funções de uma variável real II

Definição 1

Uma sequência em $\mathbb R$ é uma função de $\mathbb N$ em $\mathbb R$.

- ightharpoonup Quando não especificado, toda sequência mencionada é em \mathbb{R} .
- ▶ Denotamos uma sequência por $(x_n)_{n\in\mathbb{N}}$, podendo utilizar outra letra no lugar de x.
- ▶ Para cada $n \in \mathbb{N}$, x_n é o valor da função correspodente a n.

Limite de sequência

- ▶ Dizemos que uma sequência $(x_n)_{n\in\mathbb{N}}$ tende a um número real x quando n tende a infinito se x_n se aproxima de x à medida que n aumenta.
- ▶ Formalmente: se para todo $\varepsilon > 0$, existe $n_0 \in \mathbb{N}$ tal que, para todo $n \ge n_0$, $|x_n x| < \varepsilon$.
- ► Intuitivamente: se x_n fica tão próximo de x quanto quisermos, desde que tomemos n suficientemente grande.
- Notação: $x = \lim_{n \to \infty} x_n$.
- ▶ Outra notação: $x_n \to x$.
- ▶ Também dizemos que x é o limite de $(x_n)_{n\in\mathbb{N}}$ ou que $(x_n)_{n\in\mathbb{N}}$ converge para x.

Definição 2

Uma sequência $(x_n)_{n\in\mathbb{N}}$ é convergente (ou converge) se existe $x\in\mathbb{R}$ tal que $(x_n)_{n\in\mathbb{N}}$ converge para x, e é divergente (ou diverge) caso contrário.

Teorema 1 (Unicidade do limite)

O limite de uma sequência, quando existe, é único. Isto é, se $x_n \to x$ e $x_n \to y$, então x=y.

Teorema 2 (Propriedade arquimediana)

$$\lim_{n \to \infty} \frac{1}{n} = 0.$$

Observação 1

Para evitar divisão por 0 ou dificultar a notação, eventualmente consideramos o conjunto dos números naturais \mathbb{N} "começando do 1", isto é, sem o número 0. Ficará claro no contexto quando fizermos isso.

Propriedades operatórias

- ▶ Se $x_n \to x$ e $y_n \to y$ então:
- $ightharpoonup x_n + y_n o x + y;$
- $ightharpoonup x_n y_n o xy$.
- ▶ Se, além disso, $x_n, x \in dom(f)$ e f é contínua, então $f(x_n) \to f(x)$.
- ► Em particular, se $y_n \neq 0$ e $y \neq 0$, $\frac{x_n}{y_n} \rightarrow \frac{x}{y}$.
- ▶ E também, se $c \in \mathbb{R}$, $cx_n \to cx$.
- ▶ Logo, $x_n y_n \rightarrow x y$;

Exercícios

Usando as propriedades operatórias prove que:

▶ Se $(x_n)_{n\in\mathbb{N}}$ converge e $(y_n)_{n\in\mathbb{N}}$ diverge, então $(x_n+y_n)_{n\in\mathbb{N}}$ diverge.

Teorema 3 (Teorema do Confronto para sequências)

Se $(y_n)_{n\in\mathbb{N}}$ e $(z_n)_{n\in\mathbb{N}}$ ambos convergem para x e $y_n\leq x_n\leq z_n$, então $x_n\to x$.

Exemplo 1

Mostre, a partir desse teorema, que $\frac{1}{n!} \to 0$.

Definição 3

Uma sequência $(x_n)_{n\in\mathbb{N}}$ é monótona se, para todo n, temos $x_n\leq x_{n+1}$ ou se, para todo n, temos $x_n\geq x_{n+1}$. No primeiro caso dizemos que a sequência é crescente e no segundo decrescente.

Definição 4

Uma sequência $(x_n)_{n\in\mathbb{N}}$ é limitada se existe $M\in\mathbb{R}$ tal que $|x_n|< M$, para todo $n\in\mathbb{N}$.

Teorema 4

Toda sequência monótona e limitada é convergente.

Teorema 5

Toda sequência convergente é limitada.

Séries

- ▶ Seja $(x_n)_{n \in \mathbb{N}}$ uma sequência.
- Fixados $n_0 \le n_1$ em \mathbb{N} , defina $\sum_{i=n_0}^{n_1} x_i = x_{n_0} + \ldots + x_{n_1}$.
- A sequência $\left(\sum_{i=n_0}^{n_0+n} x_i\right)_{n\in\mathbb{N}}$ é chamada de *série de termos* $(x_n)_{n\in\mathbb{N}}$ a partir de n_0 .
- Essa sequência será denotada por $\sum_{n=1}^{\infty} x_n$.
- ▶ Denotamos o limite da série, quando existir, por $\sum_{n=n_0}^{\infty} x_n$.
- Por abuso de notação diremos que $\sum_{n=n_0}^{\infty} x_n$ converge se esse limite existir e diverge caso contrário.

Exemplos de séries convergentes

$$\blacktriangleright \sum_{n=0}^{\infty} \frac{1}{2^n}.$$

$$\sum_{n=1}^{\infty} \frac{1}{n^2}.$$

$$\sum_{n=0}^{\infty} \frac{1}{n!}.$$

Exemplos de séries divergentes

$$\sum_{n=0}^{\infty} n.$$

$$\sum_{n=0}^{\infty} (-1)^n.$$

$$\sum_{n=1}^{\infty} \frac{1}{n}.$$

$$\triangleright \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}.$$

Critérios de convergência

Na próxima aula estudaremos critérios para sabermos se uma série converge ou diverge.

Fim