Titulação coulométrica de cloreto

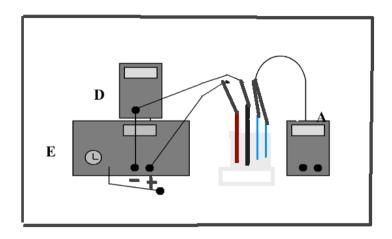
Objetivos do experimento:

- Aprender a operar um titulador coulométrico.
- Determinar a concentração de uma amostra desconhecida de cloreto

Referências: Skoog e West: Fundamentals of Instrumental Analysis

A.I. Vogel: Química Analítica Quantitativa.

Vidraria: 01 balão volumétrico de 250,0 mL para preparo do eletrólito de suporte-01 balão vol. de 100,0 mL contendo a amostra desconhecida-01 pisseta-01 pipeta volumétrica de 50,00 mL-01 pipeta volumétrica de 10,00 mL- 01 pipeta volumétrica de 1,00 mL-01 pipeta volumétrica de 2,00 mL-01 pipeta volumétrica de 5,00 mL-03 béqueres de 50 mL-02 béqueres de 100 mL com tampa- 01 contagotas-agitador magnético e barra magnética-01 garra pequena e 01 mufa- pró-pipeta


Reagentes fornecidos: amostra desconhecida de cloreto NaNO₃, HClO₄ (eletrólito de suporte)

Detecção do Ponto final da titulação:

- 1- Colorimétrica _ reagente de Fajan- (diclofluoresceína, eosina ou fluoresceína)
- mudança de cor dopreciptato levemente rosa no PE

Esquema experimental:

2- Detecção biamperométrica- 2 fios de prata de mesmo tamanho e um um equipamento de biamperometria

E- coulômetro

D- multímetro

Vermelho- fio de prata

Preto Fio de platina ou aço inox

Azul dois fios de prata

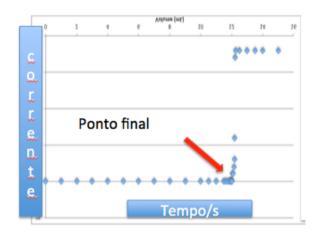
A- Biamperímetro

NO coulômetro:

(ânodo) Ag
$$\rightarrow$$
 Ag⁺ + e
$$Ag^{+} + Cl^{-} \rightarrow AgCl$$
(cátodo/aço inox) 2 H₂O + 2e = H₂ + 2OH⁻

Na biamperometria: detecta o par redox Ag/Ag+

*** Antes do PE a equação 1 não ocorre pois nao tem prata livre na solução- toda a prata gerada é consumida pelo cloreto – I = 0


Após o PE a solução tem Ag+ e Ag/ portanto o par redox e i > 0

$$(-)$$
 Ag+ + e = Ag⁰ (equação 1)

$$(+)$$
 Ag = Ag+ + e (equação 2)

1. Preparar 250,0 mL de solução $NaNO_3$ 0,1 mol/L .Rotular como eletrólito de suporte.

- Colocar 50 mL do eletrólito de suporte na célula coulométrica. Pipetar 10,00 mL da amostra desconhecida de cloreto na célula de titulação. Adicionar 3 gotas de fluoresceína na solução.
- 3. Detecção biamperométrica: Colocar no béquer o eletrodo de prata, o eletrodo de aço inox conectar com coulômetro. Adicionalmente inserir dois fios de prata idênticos e ligar ao equipamento de biamperometria.
- 4. **ATENÇÃO.** Neste experimento, o ponto final da titulação coulométrica será determinado pela mudança de cor do indicador e por meio da biamperometria.
- 5. Ajustar o coulômetro para aplicar uma corrente constante entre 10-30 mA. Colocar o multímetro em série para medida exata da corrente aplicada. Zerar o cronômetro do próprio aparelho. Ajustar o equipamento de biamperometria. Medir a corrente em função do tempo.
- 6. Disparar o botão do cronômetro do coulômetro para iniciar o experimento. Fazer paradas de tempos em tempos. Anotar o valor da corrente.
- 7. Parar o cronômetro quando o indicador visual mudar de coloração. Anotar o valor do tempo. Anotar o valor da corrente.
- 8. Continuar a titulação até que se permita obter uma curva de biamperometria conforme mostrada abaixo. (I vs. tempo).

9.

- 10. Repetir a operação com mais duas alíquotas da amostra desconhecida de cloreto
- 11. **Atenção**. Lavar cuidadosamente toda a vidraria e célula antes e após cada titulação com bastante água deionizada.
- **12.** Após cada titulação, lavar o eletrodo de prata com uma solução de amônia concentrada e o eletrodo de platina com uma solução de HNO₃ 1:1.
- **13.** Após cada titulação, descartar a solução do béquer num recipiente apropriado para descarte solução contendo resíduos de prata. Faça o mesmo com o restante da amostra desconhecida que restar. Os eletrólitos de suporte que sobrarem podem ser descartados diretamente na pia.

tempo= 0

Tratamento dos dados:

- **1.** Fazer um fluxograma do procedimento experimental executado.
- **2-** Os dados de corrente obtido no equipamento de biamperometria e tempo para as titulações foram os seguintes: Traçar a curva de titulação potenciométrica.

tempo	i(mA)	tempo	i(mA)	tempo	I(mA)
0	0	0	0	0	0
30	0	30	0	30	0
60	0	60	0	60	0
120	0	120	0	120	0
180	0	180	0	180	0
240	0	240	0	240	0
300	0	300	0	300	0
360	1,5	360	0	360	2,5
420	2,0	420	1,5	420	2,5
450	2,5	450	2,5	450	2,5
480	2,5	480	2,5	480	2,5
495	2,5	495	2,5	495	2,5
510	2,5	510	2,5	510	2,5

- **3-** O valor médio da corrente medido pelo multímetro e tempo para a viragem visual para cada titulação foi colocado na tabela 1.
- **Completar a tabela abaixo** e determinar a concentração da amostra desconhecida pelo método visual e potenciométrico.

	1ª tit.	2ª tit.	3ª tit.	Média	% erro
T _{viragem} (s) colorimétrico T _{viragem} (s)- Biamperométrico	350	350	350		
I _{aplicada} (mA) Q (C)	10	10	10		
N _{Cl} (mol) [cloreto] (mol L ⁻					

Dados: F=96487 C mol⁻¹

Ouestões:

- 1. Comparar o procedimento adotado na titulação coulométrica com o adotado em uma titulação clássica feita pelo método de Fajans ou Voulhard. Quais as principais vantagens da análise coulométrica?
- 2. Explique a curva biamperométrica obtida?
- 3. Esta mesma titulação poderia ser feita por potenciometria usando um eletrodo do primeiro tipo (fio de prata) e um eletrodo de referência conforme mostrada anteriormente. Como seria esta curva? E o que estaria sendo medido?