
Disciplina: Genética Geral (LGN 0218) 8^a semana

Genética Quantitativa: Herança de Caracteres Complexos

Material Didático do Departamento de Genética - ESALQ/USP

F = G + A ou P = G + E

Herança de caracteres complexos, cujo fenótipo é influenciado pelo ambiente

GENÉTICA QUANTITATIVA

- Os estudos são populacionais, os fenótipos são métricos
- Há muitos locos envolvidos (~20, ~40, ...~100)
- Há diferentes tipos de interação alélica envolvidos no controle do caráter (locos com dominância, ação aditiva, sobredominância, ocorre epistasia)
- A Genética Quantitativa estabelece modelos para calcular o efeito de cada um dos tipos de ação gênica
- Exige: cálculo da média, da variância e do erro de um conjunto de dados (amostra de uma população) por caráter sob estudo
- É possível decompor a variância fenotípica ou seja, estimar o quanto da variância fenotípica é devida a genes e ao ambiente $\rightarrow \sigma^2_F = \sigma^2_G + \sigma^2_A$

http://bioserv.fiu.edu/~walterm/GenBio2004/new_chap13 _inheritance/pics.htm

Os caracteres quantitativos (produção de leite, por ex.) são estudados em populações e são descritos através de parâmetros tais como a média, a variância e a covariância. Sofrem influência do genótipo dos animais (raça, por ex.) e do ambiente (dieta, manejo)

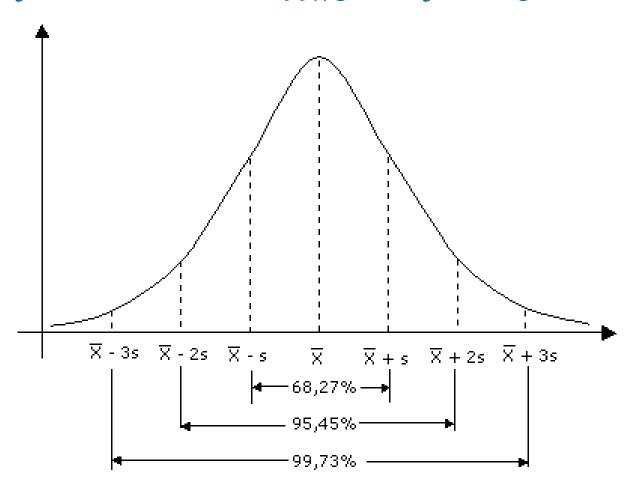
Os fenótipos são dados métricos (medidas) sendo que F= G + A

Exemplos de unidades adotadas:

Abóboras: Ton. de frutos/ha

Maçã: Peso de frutos/planta

Banana: Número de cachos/ha


Eucalipto: Diâmetro da árvore, DAF

X

Numa distribuição amostral aproximadamente normal é de se esperar que 68,27% das medidas da amostra estejam no 1º intervalo, 95,45% estejam no 2º intervalo e 99,73% estejam no 3º intervalo.

Parâmetros estatísticos: estimativa da variância

Variância

- Desvio padrão ao quadrado
 - ▶s² → variância amostral
 - ▶σ² → variância populacional

$$s^2 = \frac{\sum (x - \overline{x})^2}{n - 1}$$

$$\sigma^2 = \frac{\sum (x - \overline{x})^2}{N}$$

Observação:

A unidade da variância é a mesma unidade do conjunto de dados, elevada ao quadrado.

Parâmetros estatísticos: estimativa do desvio padrão

Desvio Padrão

De uma amostra

$$s = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}}$$

De uma população

$$\sigma = \sqrt{\frac{\sum (x - \overline{x})^2}{N}}$$

Observação:

A unidade do desvio padrão é a mesma unidade dos valores originais, ou conjunto de dados.

Genética Quantitativa

- ✓ Os estudos são familiais ou populacionais (design genético), os fenótipos são métricos
- ✓ Há muitos locos envolvidos (~20, ~40, ...~100)
- Exige conhecimento de Estatística: Cálculo da média, da amplitude, da variância e do erro do conjunto de dados para cada caráter sob estudo
 - F = G + A portanto $\sigma_F^2 = \sigma_G^2 + \sigma_A^2$
 - $\mathbf{s^2}_F = \mathbf{s^2}_G + \mathbf{s^2}_A$ (amostras de dados)
- ❖ Podem haver locos com dominância, locos com ação aditiva, sobredominante entre os genes envolvidos no controle do caráter quantitativo e pode ocorrer epistasia

Cálculo da média, variância amostral, desvio padrão

• Suponha a amostra aleatória de dados relativos à altura de 21 crianças (X_i) em cm:

50 56 70
54 54 70 Média=
$$\overline{X} = \sum_{n=1}^{Xi} \frac{1248}{21} = \frac{59,42}{21}$$

58 56 70 Variância= $\frac{1248}{21} = \frac{59,42}{21} = \frac$

Calculadora online: https://pt.symbolab.com/solver

Exercício para entregar: Os dados são referentes à taxa de colesterol total (mg/dL) de 80 indivíduos. Calcule a média, amplitude, variância e o desvio padrão desse conjunto de dados (o valor clínico desejável deve ser menor que 200 mg/dL).

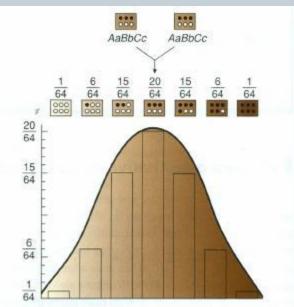
• 164 171	173	176	176	178	179	179
• 180 180	181	181	183	184	185	186
• 186 186	187	189	189	190	190	192
• 194 195	196	198	199	199	199	201
• 203 204	205	205	206	209	210	211
• 211 212	213	215	216	216	217	217
• 218 218	219	219	219	221	221	223
• 223 224	225	228	230	231	231	231
• 232 234	234	238	238	239	239	240
• 240 243	246	248	251	255	256	259

Distribuição de frequência em intervalos de classes: Dados quantitativos contínuos

- Construção de <u>Histogramas</u>:
- Organize a tabela de dados em uma coluna e a respectiva frequência na outra coluna
- Calcule a amplitude de variação dos dados
- Obtenha o número de intervalos de classes, segundo a fórmula: $k = 1 + 3.3 \times (log_{10} n)$, sendo n o tamanho do conjuntos de dados
- Construa o gráfico de barras (pode ser feito usando uma planilha excel, no computador)
- Calcule a média, a variância e o desvio padrão deste conjunto de dados. Quais as conclusões que V. chegou?
- Calculadora online: https://pt.symbolab.com/solver

Herdabilidade:
$$\sigma_G^2/\sigma_F^2$$

 $\sigma_F^2 = \sigma_G^2 + \sigma_E^2$


 Herdabilidade (h²) é a proporção da variância fenotípica que é devida a variância genética, ou seja:

•
$$H = h^2 = \sigma_G^2 / \sigma_F^2$$
 ou $H = h^2 = s_G^2 / s_F^2$

- O valor da herdabilidade varia de o a 1
- É igual a zero quando não há variação genética e toda a variação fenotípica é devida ao efeito ambiental (E), como em uma população clonal, por exemplo
- É igual a 1 quando o efeito ambiental é nulo $\sigma_E^2 = 0$

Herdabilidade: σ_G^2/σ_F^2 $\sigma_F^2 = \sigma_G^2 + \sigma_A^2$

- A herdabilidade é típica de uma população em um dado ambiente
- Caracteres cuja σ_G^2 é devida a locos de efeito aditivo (σ_A^2) tendem a mostrar herdabilidade mais alta e a sofrer menor efeito do ambiente
 - Herança poligênica da cor da pele em humanos mostra herdabilidade alta devido a alta proporção da σ^2_A como parte da σ^2_G

Como se estima o valor da herdabilidade? $h^2 = s^2_G / s^2_F$

• Em plantas, como se procede para decompor a variância fenotípica?

$$\mathbf{s^2}_F = \mathbf{s^2}_G + \mathbf{s^2}_A$$

A variação dos dados fenotípicos em uma população é estimada pela s^2_F que, por sua vez, é decomposta em $s^2_G + s^2_A$

Como se estima o valor da herdabilidade?

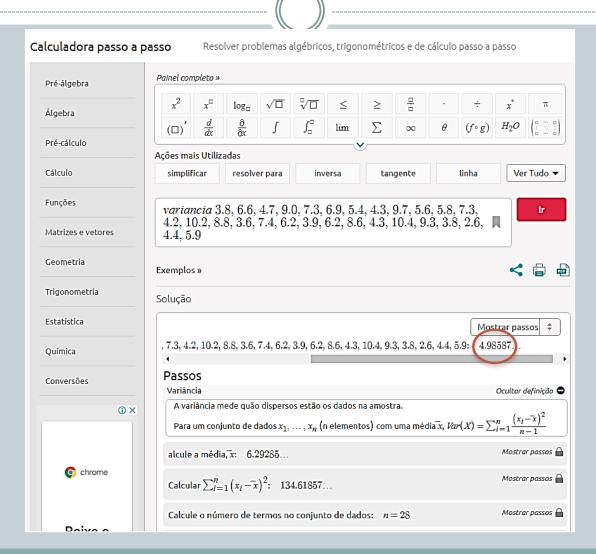
- No caso de plantas que praticam autofecundação, cultivam-se 2 lotes, lado a lado: um lote A, no qual se quer estudar a herança do caráter, e outro lote B, no qual todas as plantas têm o mesmo genótipo
- No caso de plantas que praticam alogamia, há outros protocolos para se estimar a herdabilidade

Lote A em tomateiro

Lote B em tomateiro

 Cultiva-se um lote (B) no qual todas as sementes foram retiradas do mesmo fruto O lote é geneticamente uniforme

No caso do tomateiro, as plantas são homozigóticas, pois é uma espécie que pratica autofecundação



<u>Lote A</u>: 28 plantas de tomate oriundas de sementes de plantas diferentes (valores em kg de frutos/planta)

3,8	6,6	4,7	9,0
7,3	6,9	5,4	4,3
9,7	5,6	5,8	7,3
4,2	10,2	8,8	3,6
7,4	6,2	3,9	6,2
8,6	4,3	10,4	9,3
3,8	2,6	4,4	5,9

Média = 6,29 e Variância fenotípica = s_F^2 = 4,99 = s_G^2 + s_A^2

Imagem da tela da calculadora online (Cálculos referentes ao Lote A)

Calculadora online: https://pt.symbolab.com/solver

Lote B em tomateiro: plantado adjacente ao Lote A: 18 plantas de tomate oriundas de sementes de uma mesma planta (valores em kg de frutos/planta)

5,2	4,8	3,9
4,3	4,1	5,7
6,1	6,0	5,9
4,9	5,5	5,8
3,8	6,1	5,2
4,0	4,2	4,4

Variância fenotípica = s_F^2 = 0,69 = s_A^2 pois a s_G^2 = 0

• *Lote B*:

- $s_F^2 = 0.69 = s_G^2 + s_A^2$
- $\mathbf{s^2}_G = \mathbf{o}$, pois as plantas são iguais geneticamente
- $s^2_A = 0.69$

• *Lote A*:

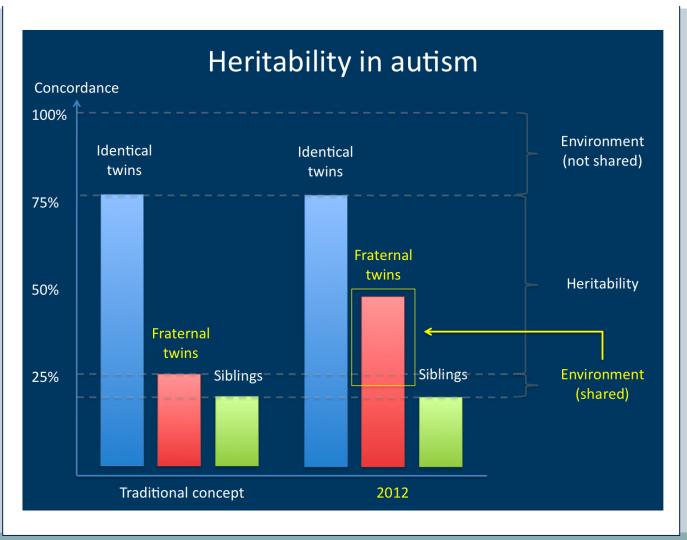
- $s_F^2 = 4.99 = s_G^2 + s_A^2$
- $s_A^2(A) = s_A^2(B) = 0.69$, pois o ambiente é o mesmo
- $s_G^2 = s_F^2 s_A^2 = 4.99 0.69 = 4.30$
- $s^2_G = 4.30$
- $h^2 = s^2_G/s^2_F = 4.30/4.99 = 0.86 = 86\%$

Lote A: seleção de 5 plantas mais produtivas

3,8	6,6	4,7	9,0
7,3	6,9	5,4	4,3
9,7	5,6	5,8	7,3
4,2	<u>10,2</u>	8,8	3,6
7,4	6,2	3,9	6,2
8,6	4,3	10,4	9,3
3,8	2,6	4,4	5,9

❖ Caso seja constituído um novo lote a partir de sementes destas 5 plantas (média = 9,72), há 86% de chance desta superioridade ser transmitida para a nova população .

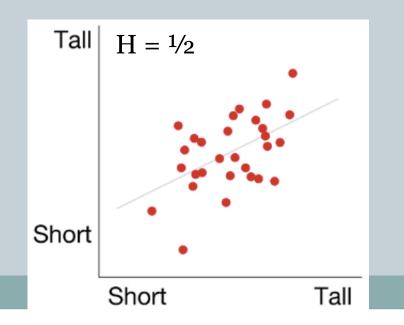
Estudos em populações naturais: o número de ovos sofre influencia ambiental?

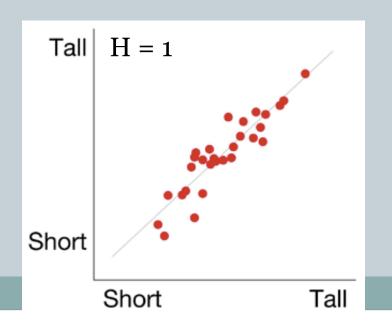


• Em humanos, pode se estimar a herdabilidade usando a medição em gêmeos Di (DZ) e Monozigóticos (MZ)

Caráter	s^2_F entre DZ	s ² _F entre MZ	Herdabilidade
Peso	134,1	41,4	69%
Estatura	1620,3	195,4	88%
Circunferência do tórax	1098,8	423,7	61%
Circunferência do quadril	16,1	6,0	63%
Circunferência da cabeça	100,0	26,1	74%

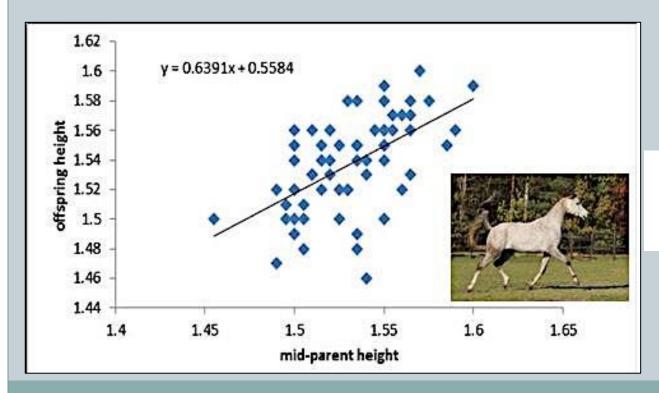
$$h^2 = s^2_{DZ} - s^2_{MZ} / s^2_{DZ}$$


Genes são responsáveis por 38% do risco de autismo. 38% da variância da tendência que leva ao autismo correspondem aos efeitos causados por genes, mas não diretamente corresponde ao risco familial.



- Pode se estimar a herdabilidade usando o coeficiente de regressão entre pais e filhos
- <u>Definição do coeficiente de regressão</u>:

•
$$H^2 = b_{\text{VX}} = cov(x,y)/var(x)$$


- Sendo que x (eixo x) é a média de cada casal (pais), y (eixo y) é o valor dos filhos
- Quanto maior o valor do coeficiente de regressão, mais os filhos tendem a se parecer com os seus pais

Coeficiente de regressão entre pais e filhos

Gráfico mostrando os dados da altura (até o garrote) da prole (y) relativamente à média dos pais (x): o coeficiente de regressão indica quanto é herdável este caráter em cavalos árabes, $h^2 = 0.64$

 $H^2 = b_{yx} = cov(x,y)/var(x)$

Examples of estimated heritability

Trait/Disease	Estimated heritability
Alcoholism	50-60%
Alzheimers	58-79%
Asthma	30%
Bipolar Disorder	70%
Depression	50%
Hair Curliness	85-95%
Lung Cancer	8%
Height	81%
Obesity	70%
Longetivity	26%
Sexual Orientation	60%
Schizophrenia	81%
Type I diabetes	88%
Type 2 diabetes	26%

http://snpedia.com/index.php/Heritability

Leitura complementar: https://iweb.langara.bc.ca/biology/mario/Biol2330notes/biol2330 chap22.html

- Heritability is a property of the population not the individual
- Heritability is the proportion of variance in a particular trait, in a particular population, that is due to genetic factors, as opposed to environmental influences
- Heritability is the proportion of variation in a trait explained by inherited genetic variants
- Heritability measures how important genetics is to a trait
- A high heritability, close to 1, indicates that genetics explain a lot of the variation in a trait between different people
- A low heritability, near zero, indicates that most of the variation is not genetic (in a clonal population for example)