1.3.1 Roda de Maxwell

- a) Determine, h e t_b
- b) Calcule o valor do momento de inércia I_{exp} e usa incerteza $I_{\text{exp}} = \left(\frac{gt_b^2}{2h} 1\right)m.r^2 =$

Massa total $m = (1515.75 \pm 0.03)g$

Raio do eixo $r = (0.60 \pm 0.01)$ cm

Erros (incertezas)

mr² o erro relativo no valor da massa (m) neste caso pode ser desconsiderado (é muito pequeno)

 $r = (0.60 \pm 0.01) \text{ cm}$ $\pm 1.7 \% \text{ (erro relativo)}$

 $r^2 \pm 3.3 \%$

 $\frac{t^2}{h}$ neste caso podemos somar os erros relativos

 $t = (3.11 \pm 0.01)$ $\pm 0.32 \%$ (erro relativo)

 $t^2 \pm 0.64 \%$ (erro relativo)

 $h = 46.7 \pm 0.1$ $\pm 0.21 \%$

erro relativo total do termo $\frac{t^2}{h}$ $\pm 0.85 \%$ (soma dos valores amarelos)

 $\frac{gt^2}{2h}$ = 112.883 ± 0.956 ~ (unidades cgs)

 $\frac{gt^2}{2h} - 1 = 111.88 \pm 0.956$ neste caso o erro relativo ficou praticamente igual ao do termo $\frac{t^2}{h}$ $\pm 0.85 \%$

 I_{exp} ficou com erro relativo de $\pm (0.85 + 3.3)\% = \pm 4.15\%$ erro total

 $I_{exp} = 54831 (\pm 4.15 \%) = (54831 \pm 2275)$

resultado final $I_{exp} = (5.5 \pm 0.2) \ 10^4 \ g.cm^2 = (5.5 \pm 0.2) \ 10^3 \ Kg.m^2$

obs: pra t = 3.12 temos $I_{exp} 55188.1$

c) Calcule o valor do momento de inércia I_{cal} e usa incerteza a partir de seus dados geométricos

 $I_{cal} = (47463 \pm 152) \text{ g.cm}^2$ erro $\pm 0.32\%$

 $I_{cal} = (4.75 \pm 0.02) \ 10^4 \text{ g.cm}^2 = (4.75 \pm 0.02) \ 10^{-3} \text{ Kg.m}^2$

d) Compare os resultados (b) e (c)

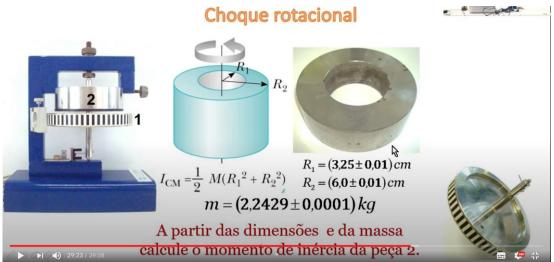
$$\frac{I_{exp}}{I_{cal}} = \frac{5.5 \pm 0.2}{4.75 \pm 0.02} = 1.16 \pm 0.05 \text{ (} \pm 4\%\text{)}$$

O valor experimental é ~16% maior que o valor calculado,

16% é muito maior incerteza (do valor experimental) de ~4%.

Portanto a discrepância foi maior que a incerteza!

Interpretação – nota-se que o valor de t_b medido deveria ser menor que o valor experimental. Possivelmente isto se deve ao fato de que o modelo teórico não considerou nenhum efeito de atrito ou perdas, que devem aumentar o valor de t_b.



1.3.2 Choques rotacionais

determinação da velocidade angular final do conjunto (ω) c)

w1	W	w1/w	A partir dos resultados experimentais determino:
14,444	7,453	1,938012	(1)4
22,756	12,177	1,868769	$\frac{\omega_1}{\omega} = 1,8645 \pm 0,0757$
24,353	13,629	1,786852	w
		0,075669	
		1,864544 1,156679	

d) Determine
$$I_2$$
 a partir da equação (18): $\omega = \frac{l_1 \cdot \omega_1 + l_2 \cdot \omega_2}{l_1 + l_2}$ obs: no experimento $\omega_2 = 0$ $\frac{l_2}{l_1} = \frac{\omega_1}{\omega} - 1 = 0,8645 \pm 0,0757$ (erro relativo 8,7%) $\frac{l_2}{l_1} = 0,865 \pm 0,08$ $\frac{l_1}{l_2} = 1,16 \pm 0,10$

$$\frac{d^2}{d_1} = \frac{\omega_1}{\omega} - 1 = 0.8645 \pm 0.0757$$
 (erro relativo 8,7%)

$$\frac{l_1}{l_2} = 0.865 \pm 0.08$$
 $\frac{l_1}{l_2} = 1.16 \pm 0.10$

Supondo
$$I_1 = (4.75 \pm 0.02) \ 10^{-3} \ \text{Kg.m}^2$$

(o valor calculado a partir dos dados geométricos)

Obtemos:
$$I_2 = (4.109 \pm 0.036) \ 10^{-3} \ \text{Kg.m}^2$$

$$I_{2exp} = (4.11 \pm 0.04) \ 10^{-3} \ Kg.m^2$$

e) calculo o valor de I_2 a partir de suas características geométricas: $I_2 = 52.22 \cdot 10^4 \text{ Kg.m}^2$ Para o cálculo da incerteza pode-se ignorar o erro da massa, obtém-se então $\delta I_2 = 0.21 \ 10^{-4} \ \text{Kg.m}^2$

Resultado final: $I_{2\text{calc}} = (5.22 \pm 0.02) \ 10^{-3} \ \text{Kg.m}^2$

Percebe-se então que I_{2exp} é ~27% menor que o valor calculado geometricamente

f) <u>Método alternativo</u> usar o valor de I₂ determinado geometricamente (5.22 10⁻³ Kg.m²) para obter I₁ usando Eq.(8):

$$\frac{l_1}{l_2} = \left(\frac{\omega_1}{\omega} - 1\right)^{-1} = 0.0856^{-1} (\pm 8.7\%) = 1.157 \pm 0.100 \qquad \qquad : \frac{l_1}{l_2} = 1.2 \pm 0.1$$

(incerteza de 1 algarismo significativo):

Neste caso temos I_1 32% \underline{maior} que o valor já calculado $I_{cal}\!=4.75~10^{\text{-}3}~\text{Kg.m}^2$

h) Compare os valores de momento de inércia obtidos

	I_1 (10 ⁻⁴ Kg.m ²)	Erro relativo	
Valor calculado (massa e dimensões)	$4,75 \pm 0.02$	0,3	
Roda de Maxwell	$5,5 \pm 0,2$	4	~ 16% acima do valor calculado
Choques Rotacionais	$6,1 \pm 0,5$	9	~ 32 % acima do valor calculado

i) Energias cinéticas rotacionais

$$K = \frac{1}{2} I. \omega^2$$

Energia cinética final (K_f) e inicial (K_i)

$$\frac{K_f}{K_i} = \frac{(I_1 + I_2)}{I_1} \cdot \left(\frac{\omega}{\omega_1}\right)^2 = \frac{5,22 + 4,75}{4,75} \left(\frac{1}{1,86}\right)^2 = 0,61$$

Onde utilizou-se I_{1calc} e I_{2cal}, ou seja os valores calculados a partir dos dados geométricos

Obs: teoricamente espera-se que $\omega = \frac{I_1}{(I_1 + I_2)} \omega_1$, logo teríamos:

$$\frac{K_f}{K_i} = \frac{(I_1 + I_2)}{I_1} \cdot \left(\frac{\omega}{\omega_1}\right)^2 = \frac{\omega}{\omega_1} = 0,54$$

Observação: o choque é inelástico

Giroscópio

A tabela abaixo foi feita no Excel para o cálculo dos parâmetros relevantes a esta demonstração.

O vídeo forneço os dados do tempo de 3 voltas completas (precessão do giroscópio), com isto calcula-se o período T e a frequência $\Omega_{exp} = 2\pi/T$.

O tacômetro fornece a frequência de rotação em rpm (rotações por minuto), logo para se obter f (em Hz) divide-se por $60 \text{ e } \omega = f/2\pi$.

O valor esperado da frequência de precessão (em radianos/seg) pode ser calculado pela equação:

$$\Omega = \frac{M.g.D}{\omega.I}$$

Onde I é o momento de inércia calculado com os dados geométricos: I = 3.1 10⁻³ Kg.m²

3T seg.	Ωexp rad/seg	tacometro rpm	ω rad/seg	Ωcal rad/seg	exp/cal	ω.Ωexp	
20,3	0,928	2448,2	256,24	0,775	1,198	237,82	
19,4	0,971	2589,7	271,06	0,734	1,323	263,23	
20	0,942	2440,9	255,48	0,780	1,208	240,66	
20,5	0,919	2493,4	260,98	0,762	1,206	239,84	
					0,059822	11,96 des\	/io
					1,234	245,39 méd	lia

A tabela mostra que obtivemos $\Omega_{exp} \sim 23\%$ maior que Ω_{cal} (note que usando o valor médio de $\Omega_{exp}/\Omega_{cal} = 1,23 \pm 0,06$)

Pode-se também observar que de acordo com a expressão teórica Ω . $\omega = M$. g. D/I, ou seja o produto Ω . ω deveria ser constante (dependendo apenas dos parâmetros geométricos). Usando os dados obtivemos os valores médios ω . Ω exp = 245 ± 12, indicando um valor constante dentro ~5%.