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This research was carried out to develop a fuzzy logic classifier that integrates both weather and animal
factors to assess individually the level of thermal stress in feedlot finishing cattle. An experiment was per-
formed with two groups of Nellore feedlot finishing cattle for the acquisition of weather and physiolog-
ical data including the average of surface temperature in different parts of the animal body using infrared
thermography. A statistical analysis of the data was applied to seek the best correlation between the
weather and physiological measurements and the infrared thermography (IRT) measurements in differ-
ent parts of the animal body surface and to orient the construction of membership functions. A
knowledge-based system was constructed from rules that associate the memberships of the input vari-
ables dry bulb temperature, wet bulb temperature and front surface infrared temperature which were
found to be suitable for predicting the rectal temperature. Predicted rectal temperature was rated for
the level of thermal stress and compared with the real rectal temperature and a traditional tempera-
ture–humidity index. The results indicated little correspondence between the fuzzy classifier and tem-
perature–humidity index (29.3%), but the average rectal temperature value during the day showed
great consistency (83.2%) between the fuzzy classifier and animal’s response. In addition, the IRT mea-
surements allowed an accurate assessment and classification of the individual thermal stress of animals
in the same day. The proposed fuzzy classifier resulted in better estimates of the thermal stress level
when compared to the traditional temperature–humidity index and fuzzy-based systems previously
developed.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

One of the focuses of scientific and technological developments
in animal production systems is currently related to improving the
decision making process for increasing productivity and efficiency
in resource utilization. It has long been known that climatic and
environmental conditions especially have a significant impact on
the performance of feedlot cattle because high ambient tempera-
ture, humidity and solar radiations reduce the performance,
decrease animal comfort and, in extreme situations, can lead to
the death of the animal (Collier et al., 2006; Scharf et al., 2011;
Gaughan and Mader, 2013). The performance is adversely affected
because conditions of increased temperature reduce the dry matter
intake, increase the body temperature and decrease weight gain
(Mader and Griffin, 2015).
Many indices of thermal stress considering environmental vari-
ables have been proposed (Dikmen and Hansen, 2009), and the one
that is mostly used in research is the temperature–humidity index
(THI) (Thom, 1959). Adjustment of the THI has been studied to bet-
ter fit the prediction of thermal stress for animals, but the use of
THI is limited and it does not consider the individual response of
each animal and species (Brown-Brandl et al., 2005a; Eigenberg
et al., 2005; Silva et al., 2007; Dikmen and Hansen, 2009). Further-
more, the thermal stress is a result of thermal energy exchange
between the animals and the environment, and depends on both
physiological and environmental factors (Taylor et al., 1969;
Collier et al., 2006; Mader and Griffin, 2015).

Physiological responses such as respiration rate and body tem-
perature are good indicators of animal welfare (Burfeind et al.,
2012; Gaughan and Mader, 2013; Scharf et al., 2011). However,
the approach to animal status assessment traditionally includes
manual and visual scoring that is laborious, invasive and stressful
for the animal (Wathes et al., 2008). Thus, the development of
models for predicting the thermal stress that considers, in addition
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Fig. 1. Main steps proposed to design the heat stress classifier based on infrared
thermography.
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to environmental factors, the physiological response of the animal
can contribute more adequately to infer the animal health and wel-
fare (Mader, 2006; Silva et al., 2007; Dikmen and Hansen, 2009;
Scharf et al., 2011).

Among the non-invasive tools, infrared thermography was
studied for use in instrumentation systems, for continuous moni-
toring of the temperature of the body surface profiles and correla-
tion with other animal welfare factors (Wathes et al., 2008).
Montanholi et al. (2008) examined the relationship between the
infrared thermography temperature of different body locations
and heat and methane production in dairy cows. Schaefer et al.
(2012) investigated the use of infrared thermography to non-
invasively identify animals with bovine respiratory disease and
examined the feasibility of automating the collection of infrared
thermography data. Metzner et al. (2014) compared different algo-
rithms for the evaluation of udder skin infrared thermography pic-
tures for automated computer-supported processing and detection
of acute mastitis and fever. Martello et al. (2015) evaluated the use
of infrared thermography images as a tool for monitoring the body
surface temperature of beef cattle, and its relationship with resid-
ual feed intake.

As a complement, it is important to investigate and develop a
system based on non-invasive sensors integrated with soft com-
puting techniques to allow continuous assessment of animal wel-
fare for climate management in livestock production systems
(Huang et al., 2010; Wathes et al., 2008). Brown-Brandl et al.
(2005b) constructed and evaluated five different models to predict
thermal stress for cattle: two statistical models, two fuzzy infer-
ence systems and one neural network. The weather data and the
respiration rate collected during the experiments were applied to
construct the models that use the weather data to estimate the res-
piration rate. The models based on soft computing tools, neural
network and fuzzy logic, presented better results, but the authors
noted the need for improvements to refine the prediction. Shao
and Xin (2008) applied a real-time image processing system to
detect movement and classify thermal stress state of group-
housed pigs based on their resting behavioral patterns. Mirzaee-
Ghaleh et al. (2015) observed the better performance of a fuzzy
controller for monitoring and management indoor variables of a
poultry house (temperature, relative humidity, and concentration
of CO2 and NH3) when compared to a conventional on/off con-
troller. The fuzzy system presented better performance for assess-
ing and controlling the indoor variables with high accuracy and
lower energy consumption.

This work aims to propose a novel method for predicting the
thermal stress of animals by taking into account previous research
efforts (Brown-Brandl et al., 2005b; Hernandez-Julio et al., 2014)
which were made to develop non-invasive techniques based on
their physiological responses and soft computing modeling. More
specifically, a classifier of thermal stress for beef cattle based on
a fuzzy logic inference system is developed. This system determi-
nes the physiological factor which predicts the thermal stress level
by means of collected weather data, physiological measurements
and non-invasive infrared thermography pictures of different body
parts.
2. Materials and methods

A method for designing the classifier of thermal stress based on
fuzzy logic was developed and applied. It consists of three main
steps as shown in the flowchart in Fig. 1.

The first step corresponds to feeding cattle for a specific period
for the acquisition of weather data, invasive physiological data and
the average of surface temperature in different parts of the animal
body using thermography.
The second step corresponds to the statistical analysis of these
data to determine which physiological variables, rectal tempera-
ture (RT) or respiration rate (RR) have the best correlation with
the average infrared temperature of each body parts studied. In
addition, it was sought to determine which parts of the body had
a good correlation between their infrared temperature (IRT) and
physiological variables (RR or RT). Thus, at this step it was possible
to determine the physiological variable that would be applied
while predicting output in the classifier, the part of the body whose
temperature was used as a classifier input variable and the rating
scale of heat stress from this input variable.

The third step corresponded to actual construction of classifier
based on Fuzzy Logic (FC). A Fuzzy inference system is a soft com-
puting tool of mapping from the given inputs to one or more out-
puts using Fuzzy Logic. The mapping created a basis on which
decisions can be made, or patterns discerned. The process of fuzzy
inference involves four main stages: (1) the membership functions
associated to fuzzification; (2) the knowledge based on heuristic
rules; (3) the fuzzy logic operators to aggregate the membership
functions and the knowledge base; and (4) the defuzzification
method (Zimmermann, 2001). The results of the second step were
used for the construction of both membership functions of linguis-
tic variables associated with the IRT as well as the linguistic output
variable associated with the classifier’s prediction.

2.1. Feedlot and data acquisition

The study was carried out at the facilities of Faculdade de
Zootecnia e Engenharia de Alimentos (FZEA) of the Universidade
São Paulo (USP) in Pirassununga, SP, Brazil, located at 21�5700200S,
47�2705000W at a mean elevation of 630 m above sea level. The
average annual temperature is 22 �C, with approximately
1360 mm of rain per year. The study was conducted according to
the Institutional Animal Care and Use Committee Guidelines of
FZEA/USP (NRC, 2003).

The data acquisition consisted of two phases (two feedlots). The
first phase was conducted to guide the development of the FC
using weather and physiological measurements. The second phase
was carried out to validate and enforce the FC developed. In the
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first phase, eight Nellore steers (18 month-old, 380 ± 15 kg initial
body weight, and castrated) were evaluated over a period of eight
days. In the second phase, eighteen Nellore steers (16–21 month-
old, 334 ± 19 kg initial body weight, and castrated) were evaluated
over a period of ten days. For both phases the cattle were allotted
in individual pens and were exposed to natural environmental con-
ditions between May (first phase) and July (second phase). The cat-
tle were housed in individual pens (5 � 8 m) with soil-surface,
automatic water fountains and sheltered feed bunks. The pens
had additional shade for animals (20 m2/head) which were fed a
daily diet containing 85% of concentrate and 15% of roughage on
an ad libitum basis (14.6% of crude protein, 9.9% of rumen degrad-
able protein, and 74.5% of total digestible nutrients as estimated by
Weiss et al. (1992)). The diet (dry matter basis) was composed by
corn grain (41.2%), soybean meal (13.6%), citrus pulp (28.2%), crude
sugarcane bagasse (15.0%), urea (0.8%), mineral mix (1.0%), ammo-
nium sulfate (0.05%), potassium chloride (0.2%) and Rumensin�

(0.03%).
At least three daily measurements were defined in order to

obtain the variation of physiological variables (RT and RR) through-
out the day. The schedule for measurements was adjusted accord-
ing to the animal handling labor work during their placement into
the squeeze chute. In the first phase, the small number of animals
(n = 8) allowed four daily measurements. However, in the second
phase, three daily measurements were defined due to the
increased labor work of handling 18 animals. The measurements
of RT, RR and IRT of all animals in the first phase were collected
daily at 07h00, 11h00, 14h00 and 16h00. The same variables in
the second phase were collected daily at 07h00, 12h00 and 16h00.

The RR was measured by counting the flank movements within
a time period of 15 s. The procedure was repeated three times for
obtaining an average for the 15 s period. This average was used to
calculate movements per minute. The RR was measured with the
animals in their barn, just before the IRT and RT measurements
which were collected with the bulls restrained in the squeeze
chute. RT was manually collected with a digital thermometer
(Viomed� – VMDT01), simultaneously with IRT.

Infrared images were collected using a camera (TI 20-9 Hz –
Fluke, Fluke Corporation, Everett, WA, USA) and the emissivity
value used was 0.98. Four body locations were of interest for this
study: front, ocular area, flank, and front feet (Fig. 2). The animals
were brought individually from their pens and placed in the shade
for taking thermography images. The IRT were taken at a distance
of approximately 1 m from each of the body locations studied. The
images were interpreted using the software FLUKE InsideIRTM 4.0
(FLUKE Corporation, EUA). The IRT traits defined in this study were
the average temperature of a specific shape of each body location
photographed (Fig. 2a, b and d), except the ocular area, therefore
defining a sub-area of each image. For the ocular area (Fig. 2c),
the IRT trait was the maximum temperature within it. The total
number of measurements in the first phase was 256 of which 33
thermographic images were dropped from analysis due to the
low quality of the images and therefore low reliability of the tem-
perature values. In second phase, were obtained 540 measure-
ments and all of them were used to validate the classifier.

A data logger (HOBO� U12) was installed at the center of the
pens at 2 m above the floor, approximately at the same level of
the animals head. Among other weather data, dry bulb tempera-
ture (DBT, �C) and wet bulb temperature (WBT, �C) were consid-
ered for this study based on the several research results that
show the high correlation between these variables and the thermal
stress (Mader, 2006; Dikmen and Hansen, 2009). These variables
were automatically recorded 24 h a day at hourly intervals. In
the first phase, the average DBT and relative humidity (RH) were
23.8 ± 0.37 �C (range 8.8–31.6 �C) and 70 ± 1.31%, respectively. In
the second phase, the average DBT and RH were 26.4 ± 0.15 �C
(range 18.6–29.6 �C) and 40 ± 0.47%, respectively.

2.2. Statistical analysis and definition of thermal stress levels

Pearson’s correlations were computed to evaluate the associa-
tion between IRT of different body locations (front, ocular area,
flank and front feet) and physiological variables (RT and RR) and
to determine the IRT most related to them. With similar purpose,
correlations between IRT and DBT as well as WBT were computed
and used to determine the lags between these inputs. All analyses
were performed using the SAS System software 9.3 (SAS Institute
Inc., Cary, NC, USA). Therefore, at this step, the following factors
were determined: the physiological variable to be predicted as
the output of the fuzzy inference system and the part of the body
and its temperature to be used as its input.

The levels of surface temperature corresponding to low, med-
ium or high heat stress are not well established in the literature.
Therefore, the rating scale of heat stress from the input variable
IRT was determined from its amplitude within the data set, based
on a two-step process: (1) definition of the thermal stress levels (or
classes) of IRT according to the ranges of the physiological param-
eter (RT, RR) reported in the literature (Kolb, 1987; Hahn, 1999;
Kadzere et al., 2002; Mader, 2006); (2) creation of the correspond-
ing IRT classes according to the received correlations between the
IRT and physiological parameters from the statistical analysis per-
formed. The intervals of temperatures obtained by the IRT were
ranked into three levels with regard to the fuzzy terms: Low,
Medium and High; and into four levels of thermal stress: normal,
alert, danger and emergency. The concept of fuzzy terms is pre-
sented in Section 2.3.

2.3. Design of the classifier

The FC designed was composed of two modules: an inference
system based on fuzzy logic for predicting a physiological variable,
and a sub routine that classifies the output of the inference module
into the already defined four levels of thermal stress.

The inference module was implemented through the Fuzzy
Logic Toolbox from Matlab software version R2010b (Mathworks
Inc., USA) according the Mamdani method. Mamdani’s fuzzy infer-
ence is the most common model that can be applied to guide the
construction of the membership functions and the fuzzy rules. It
is supported by a formal methodology to transfer human experi-
ences or knowledge to the inference system. Linguistic variables
are used to compose fuzzy sets, and simple and intuitive condi-
tional statements (fuzzy rules or knowledge-based) that, after
the aggregation process, generate a fuzzy set for each output vari-
able that needs defuzzification (Zimmermann, 2001).

Triangular and trapezoidal shapes were used to compose the
membership functions for the inputs and outputs. The ’fuzzy shape
initially set per variable, their domains and the degree of overlap
between neighboring sets as well as the fuzzy knowledge-based
sets were achieved through the results of statistical analysis, liter-
ature review and an intuitive understanding of the output predic-
tion. Following that, the model based on the fuzzy system was run
(simulated) a few times to fine-tune the knowledge base andmem-
bership functions.

All knowledge bases used the operator AND for proposition
rules with three inputs and one predicted physiological output:

if ADBT is B1 and AWBT is B2 and AIRT is B3 then Apredicted is B4;

where ADBT, AWBT, AIRT and Apredicted are linguistic variables related
to DBT, WBT, IRT, and the predicted physiological output, respec-
tively, and B1, B2, B3, B4 are fuzzy terms.



Fig. 2. Illustrative infrared images of the (a) front, (b) feet, (c) ocular area and (d) flank. The specific shapes of each body location used for deriving the infrared temperatures
are also shown.
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The aggregation stage that was implemented for those state-
ments is the Max–Min technique that sets the inputs via the ‘‘max
imum’’ function and creates outputs via the ‘‘minimum’’. The final
stage of the fuzzy inference system is the determination of the
expected crisp value by a process known as defuzzification. The
Centroid defuzzification is the most commonly used technique
and it was chosen as the defuzzified values have a tendency to
change smoothly around the output fuzzy value, that is, changes
in the fuzzy set topology from one model frame to the next, com-
monly result in smooth changes in the predicted value
(Zimmermann, 2001).
2.4. Evaluation and validation of the classifier

The FC performance was evaluated in two ways: (1) by compar-
ison between the predicted value of the physiological variable with
its measured value using the linear correlation; (2) by comparison
between the thermal stress classification obtained by the FC with
the classification obtained according to the traditional tempera-
ture–humidity index (THI) proposed by Thom (1959). Values of
the THI were determined for every time interval by using

THI ¼ 0:72� ðDBTþWBTÞ þ 47 ð1Þ

THI thresholds that were used in the present study to classify into
heat stress levels were the same adopted by Livestock Weather
Safety Index (Thom, 1959; Eigenberg et al., 2005), that categorized
THI as normal (THI 6 74), alert (74 < THI 6 79), danger
(79 < THI 6 84) and emergency (THI > 84).

The values of the measured and predicted physiological vari-
ables were classified into four categories: normal, alert, danger
and emergency (Section 2.2). Thereby, the frequency distribution
and coincidence (%) were used to summarize the distribution of
values in the categories and to allow a comparative analysis
between the levels of thermal stress which correspond to the
THI, FC and the measured physiological variables. This methodol-
ogy (comparative analysis) was applied to both phases of the
experimental procedure. On one hand, the data obtained from
the first phase (n = 8) was used to evaluate the performance of
the FC regarding the detection of thermal stress. On the other hand,
the measurements from the second group of animals (n = 18) were
used for the validation of the FC.
3. Results and discussion

3.1. Data analysis

The correlations between physiological and weather variables
from the first group of animals are presented in Table 1. Overall,
physiological traits were positively correlated with DBT and
WBT. The IRT traits were better correlated (0.97–0.80) to the



Table 1
Correlations (r) between infrared temperature traits of different body parts (IRT),
physiological variables (RT and RR) and weather variables (DBT and WBT).

Traits rDBT (p value) rWBT (p value)

IRT – Front 0.97 (0.0001) 0.86 (0.0001)
IRT – Eyes 0.92 (0.0001) 0.80 (0.0001)
IRT – Feet 0.95 (0.0001) 0.83 (0.0001)
IRT – Flank 0.93 (0.0001) 0.85 (0.0001)
RT 0.78 (0.0001) 0.66 (0.0001)
RR 0.58 (0.0001) 0.60 (0.0001)

Table 3
Classification of levels of heat stress of beef cattle due to the rectal temperature
ranges (RT) and the infrared temperature of front of animals (IRT front).

Levels of thermal stress RTa, �C IRT, �C

Normal RT < 39.1 IRT < 35.0
Alert 39.1 6 RT < 39.5 35.1 6 IRT < 35.4
Danger 39.5 6 RT < 40.5 35.4 6 IRT < 36.5
Emergency RTP 40.5 IRTP 36.5

a Kolb (1987).
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weather traits (DBT and WBT) than the physiological traits (RT and
RR) (0.78–0.58). Considering all IRT traits, front temperature had
the highest correlation with DBT (0.97) and WBT (0.86).

The relations between the RT and RR with IRT traits were also
studied by Pearson’s correlations (r) as shown in Table 2. For all
parts of the body, the surface temperatures observed were posi-
tively associated with RR and RT.

The data in Table 2 indicate that an increase in these tempera-
tures is linked to an increase of RR and RT. Similar to these results,
Collier et al. (2006) and Martello et al. (2010) found a positive cor-
relation between RR and IRT (r = 0.73 and r = 0.64, respectively)
and between RT and IRT (r = 0.73 and r = 0.55, respectively).
Considering all IRT traits, the IRT front had the highest correlation
with RT (r = 0.79). Previous studies (Kessel et al., 2010; Mccafferty,
2007) considered regions of the head (i.e., brain) as an indicator of
core temperature because of its proximity to the brain, which
houses the central nervous system and is responsible for body tem-
perature regulation (Weschenfelder et al., 2013).

From the statistical results (Tables 1 and 2), RT, which pre-
sented the best correlation with IRT and weather variables, was
chosen to be applied as the predicting output by the fuzzy infer-
ence system and IRT of the front was chosen as an input physiolog-
ical variable in the FC. The predicted output from fuzzy inference
system in this study is called PRT (Predicted Rectal Temperature).

The next step was defining intervals of heat stress for the IRT
front. Body temperatures taken closer to external surface are sub-
ject to the influence of environmental temperatures and are less
stable than deeper body temperatures such as RT. As mentioned
earlier, the surface temperature limit values indicating presence
of stress for the cattle are not well established in literature. In pre-
vious studies, Berry et al. (2003) and Montanholi et al. (2008)
found IRT temperatures of different body sites and observed differ-
ent patterns of temperature depending on the body region avail-
able. In this study, the interval of heat stress for IRT front was
obtained by considering the ranges of RT values corresponding to
the levels of heat stress for cattle which are best established in
the literature (Table 3).

3.2. Fuzzy logic classifier

The membership functions lDBT and lWBT shown in
Fig. 3a and b are, respectively related to the weather inputs DBT
and WBT. They are composed of three fuzzy terms Low, Medium
and High. The ranges of IRT shown in Table 3 were applied to elab-
orate the membership function lIRT presented in Fig. 3c.
Table 2
Correlations (r) between infrared temperature traits of different body parts (IRT) and
physiological variables (RT and RR).

Traits rRT (p value) rRR (p value)

IRT – Front 0.79 (0.0001) 0.63 (0.0001)
IRT – Eyes 0.77 (0.0001) 0.55 (0.0001)
IRT – Feet 0.72 (0.0001) 0.60 (0.0001)
IRT – Flank 0.76 (0.0001) 0.63 (0.0001)
The central value of the range of IRT between 35.10 �C and
35.40 �C (Table 3) was selected as the central point of the term
Medium, associated with 1.0� of membership and with a range of
uncertainty of ±1.25 �C around this center point (total range is
34.00–36.50 �C). Thus, the term Medium has some complementary
values for degree of membership with the term Low (left width) in
the range of 34.00–35.25 �C and with the term High (right width)
in the range of 35.25–36.50 �C.

The limit points 39.10 �C, 39.40 �C and 40.50 �C for the RT
showed in Table 3 were applied to construct the membership func-
tions lPRT related to the physiological variable output PRT. As
shown in Fig. 4, it is composed of five fuzzy terms: Low,
Medium-Low, Medium, Medium-High and High.

For constructing the membership function lPRT, the central
value of the range between 39.10 �C and 39.40 �C (Table 3) was
chosen as center point of the term Medium and associated with
1.0� of membership with a range of uncertainty of ±1.25 �C around
this center point (total range is 38.00–40.50 �C). This range was not
just associated with the Medium term but also the terms Medium-
Low and Medium-High as seen in Fig. 4. Thus, the Medium term
has some complementary values of degree of membership with
the Medium-Low (left width) and Medium-High (right width).
Similarly, the term Medium-Low has some complementary values
of degree of membership with the term Low and the term
Medium-High has some complementary values of degree of mem-
bership with the term High.

The fuzzy inference system consists of 28 linguistic rules
(knowledge base) related to the fuzzy sets (membership functions)
to define the relation between the inputs WBT, DBT and IRT to the
PRT output. The set of rules is shown in Table 4.

3.3. Evaluation of the classifier

The linear correlation between the RT and PRT, as shown in
Fig. 5, was used to evaluate the performance of the model in pre-
dicting the rectal temperature.

The simulation allowed the fine-tuning of the modeling and
made it possible to obtain 0.71 as the value for correlation coeffi-
cient (Fig. 5). The robust correlation shows the feasibility of the
application of the Mamdani method associated with the
Max–Min technique, the AND aggregation operator and the cen-
troid defuzzification process. Furthermore, the result of this corre-
lation (0.71) is considerably better than the result obtained in the
work of Brown-Brandl et al. (2005b) (r = 0.52) that evaluated,
among other methods, a fuzzy inference model based on Mamdani
method for prediction of RR. In addition, the present study
employed three inputs for the inference process while Brown-
Brandl et al. (2005b) used five inputs that made the model
construction more complex by the increment of membership func-
tions with a continuous increment in the number of knowledge-
based rules.

To verify the potential of the FC as thermal stress classifier for
cattle, the PRT related to each set of measurements from the first
confinement (n = 8) was classified in levels of thermal stress
according to Table 3 and compared with the THI classification.



Fig. 3. Membership input functions for: (a) dry bulb temperature (DBT); (b) wet bulb temperature (WBT); (c) infrared temperature of the animal front surface (IRT).

Fig. 4. Membership output function for the predicted rectal temperature (PRT).

Table 4
Set of rules for the fuzzy inference system. If the set of conditions are used as inputs
(first three columns), then the model predicts the rectal temperature (last column).

if and and then
Dry bulb
temperature

Wet bulb
temperature

Infrared
temperature

Predicted rectal
temperature

Low Low Low Low
Low Low Medium Medium-Low
Low Low High Medium-Low
Low Medium Low Low
Low Medium Medium Low
Low Medium High Medium-Low
Low High Low Low
Low High Medium Medium-Low
Low High High Medium-Low
Medium Low Low Medium-Low
Medium Low Medium Medium
Medium Low High Medium
Medium Medium Low Low
Medium Medium Medium Medium-Low
Medium Medium High Medium
Medium High Low Medium-Low
Medium High Medium Medium-Low
Medium High High Medium
High Low Low Medium-Low
High Low Medium Medium
High Low High Medium
High Medium Low Medium-Low
High Medium Medium Medium-Low
High Medium High Medium
High High Low Medium-Low
High High Medium Medium-High
High High High High

Fig. 5. The linear relationship between measured rectal temperature (RT) and
predicted rectal temperature (PRT). The points represent individual measurements,
the line represents the linear regression, and r represents the correlation coefficient.
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Additionally, a comparison was made between the FC and THI
assessments. The RT measurements were also considered as a ref-
erence classifier, for which the values of limits were the same as
shown in Table 3.

The comparison between the assessments of THI and FC agreed
in only 29.3% (Table 5). It is observed that the FC classified 83.2% of
the data as normal while the THI showed 28.1% in this condition. It
is noted that the FC presents only 1.2% as emergency while THI
28.1%.



Table 5
Frequency distribution and coincidence (%) of the classification of the data by fuzzy
classifier (FC), rectal temperature (RT) and temperature humidity index (THI), using
data from eight animals.

THI

Normal Alert Danger Emergency Total

FC
Normal 28.1 25.0 18.7 11.33 83.2
Alert 0.0 0.0 0.0 9.4 9.4
Danger 0.0 0.0 0.0 6.2 6.2
Emergency 0.0 0.0 0.0 1.2 1.2

Total 28.1 25.0 18.7 28.1 100.0

RT
Normal 28.1 25.0 17.6 21.1 91.8
Alert 0.0 0.0 1.2 5.9 7.0
Danger 0.0 0.0 0.0 1.2 1.2
Emergency 0.0 0.0 0.0 0.0 0.0

Total 28.1 25.0 18.7 28.1 100.0

Table 7
Frequency distribution and coincidence (%) of the classification of the data by fuzzy
classifier (FC), temperature humidity index (THI) and rectal temperature (RT), using
data from eighteen animals.

RT

Normal Alert Danger Emergency Total

FC
Normal 84.5 9.7 0.7 0.0 94.9
Alert 3.2 0.9 0.2 0.0 4.4
Danger 0.7 0.1 0.0 0.0 0.8
Emergency 0.0 0.0 0.0 0.0 0.0

Total 88.4 10.7 0.9 0.0 100.0

THI
Normal 20.1 0.0 0.0 0.0 20.1
Alert 37.3 2.2 0.1 0.0 39.6
Danger 28.5 7.2 0.7 0.0 36.4
Emergency 2.4 1.2 0.1 0.0 3.7

Total 88.4 10.7 0.9 0.0 100.0
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Similar to the comparison between THI and FC, the comparison
between the classifications obtained by THI and RT presented low
coincidence (Table 5). The assessments performed by THI and RT
show only 28.1% of coincidence during the days of the experiment.
The THI classifies 28.1% of measures as emergency while RT is 0%.
Indeed, RT values above 40 �C were not observed indicating that
animals were not in a situation of emergency.

The positive performance of the FC can be ascertained by its
comparison with RT (Table 6). As opposed to that observed
between THI and RT (Table 5), FC and RT classified 83.2% of the
measures at the same level of stress (80.9% as normal and 2.3%
as alert). Moreover, the assessments carried out by the FC
approached better those carried out by RT (Table 6) than those car-
ried out by THI (Table 5).
3.4. Validation of the classifier

The next step was to validate the FC measured from the second
group of animals (n = 18). As was done previously, the measured
RT of these animals was used as a reference to classify and com-
pare the stress levels (Table 7).

Clearly, the comparison between FC and RT assessments
showed correspondence in 85.4% of the measurements (Table 7)
as well as a slight improvement in FC efficiency (83.2% coincidence,
Table 6). Just as observed for RT classification, FC did not classify
any measure as emergency, showing a slightly better response
for eighteen animals than for eight animals. Additionally, FC
appears to have underestimated the condition of alert, classifying
some of these measures as a normal condition. Thereby, the
desired generalization capability for a soft computing model
related to its ability to have a persistent performance on unseen
data, was observed in this FC. This means that FC developed using
Table 6
Frequency distribution and coincidence (%) of the classification of the data by rectal
temperature (RT) and by fuzzy classifier (FC), using data from eight animals.

FC

Normal Alert Danger Emergency Total

RT
Normal 80.9 7.0 3.5 0.4 91.8
Alert 1.6 2.3 2.7 0.4 7.0
Danger 0.8 0.0 0.0 0.4 1.2
Emergency 0.0 0.0 0.0 0.0 0.0

Total 83.3 9.3 6.2 1.2 100.0
a relatively small dataset can accurately represent the thermal
stress process and can be used to predict this trait in different
and larger datasets. Moreover, this generalization capability rein-
forces that the adopted methodology for FC design, that guided
the construction of the knowledge base and membership functions,
was adequate to estimate the animals’ thermal stress.

To verify the performance of THI in the data set of eighteen ani-
mals, the assessments were compared with RT (Table 7). The
assessments performed by THI and RT presented a very low corre-
spondence of 23% (20.1% as normal, 2.2% as alert, 0.7% as danger
and 0% as emergency), thus having a slightly worse classification
than the previous set of eight animals (28.1% coincidence, Table 5).
4. Conclusion

A methodology was presented for the development of a classi-
fier of thermal stress for beef cattle based on fuzzy logic inference
system that predicted the rectal temperature by means of weather
(dry bulb temperature and wet bulb temperature) data and the
non-invasive physiological measurement of body surface tempera-
ture using infrared thermography. The assessments of the fuzzy
classifier presented a strong coincidence with the cattle’s thermal
stress assessed according the rectal temperature measured.
Moreover, the fact that the same fuzzy classifier maintained a sat-
isfactory assessment for animals from different feedlots (different
data sets in different seasons) strengthens the potential of this
model for application as a thermal stress classifier. Thus, the appli-
cation of the non-invasive technique based on infrared thermogra-
phy showed great potential when associated to the fuzzy inference
system for predicting the rectal temperature.

The performance in assessment of the fuzzy classifier was
markedly superior compared to the temperature–humid index.
Furthermore, unlike what occurs with the temperature–humidity
index, it was observed that the fuzzy classifier allowed an individ-
ual assessment, i.e. in the same period of the day, different animals
of the same group were classified into different levels of thermal
stress. The reason is that the model uses the surface of body infra-
red temperature as an input and consequently consider an inher-
ent characteristic of each animal.
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