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A B S T R A C T

The performance of feedlot cattle is adversely affected by thermal stress but the approach to assess the status of
animal stress can be laborious, invasive, and/or stressful. To overcome these constraints, the present study
proposes a model based on an artificial neural network (neural model), for individual assessment of the level of
thermal stress in feedlot finishing cattle considering both weather and animal factors. An experiment was per-
formed using two different groups of Nellore cattle. Physiological and weather data were collected during both
experiments including surface temperatures for four selected spots, using infrared thermography (IRT). The data
were analyzed (in terms of Pearson’s correlation) to determine the best correlation between the weather and
physiological measurements and the IRT measurements for defining the best body location and physiological
variable to support the neural model. The neural model had a feed-forward and multi-layered architecture, was
trained by supervised learning, and accepted IRT, dry bulb temperature, and wet bulb temperature as inputs to
estimate the rectal temperature (RT). A regression model was built for comparison, and the predicted and
measured RTs were classified on levels of thermal stress for comparing with the classification based on the
traditional temperature–humidity index (THI). The results suggested that the neural model has a good predictive
ability, with an R2 of 0.72, while the regression model yielded R2 of 0.57. The thermal stress predicted by the
neural model was strongly correlated with the measured RT (94.35%), and this performance was much better
than that of the THI method. In addition, the neural model demonstrated good performance on previously
unseen data (ability to generalize), and allowed the individual assessment of the animal thermal stress condi-
tions during the same period of day.

1. Introduction

The performance of feedlot cattle is negatively affected by high
ambient temperatures, humidity, and solar radiation, which reduce the
dry matter intake, increase the body temperature, and decrease the
weight gain (Mader and Griffin, 2015). Previous research demonstrated
a strong correlation between weather variables and animal welfare,
assessed in terms of physiological responses such as body temperature
(Mader, 2006; Burfeind et al., 2012; Gaughan and Mader, 2013).
However, the approach to assessing the animal status traditionally in-
cludes manual and visual scoring, which is laborious, invasive, and
imposes stress on the tested animals (Wathes et al., 2008).

Some indices of thermal stress based on environmental variables
have been proposed (Dikmen and Hansen, 2009). One of the most used
in research is the temperature-humidity index (THI) (Thom, 1959).

However, the THI does not consider the individual responses of animals
and breed (Eigenberg et al., 2005; Da Silva et al., 2007; Dikmen and
Hansen, 2009). Furthermore, the animal thermal stress is a result of
thermal energy exchange between the animals and their environment,
and depends on both physiological and environmental factors (Taylor
et al., 1969; Collier et al., 2006; Mader and Griffin, 2015). Thus, de-
velopment of models that use non-invasive input data for predicting the
thermal stress that consider, in addition to environmental factors, the
physiological response of the animal, can contribute more adequately to
assessment of the animal health and welfare. Such methods are likely to
contribute to novel decision making systems for increasing livestock
productivity and efficiency of resource involved in livestock production
(Scharf et al., 2011; Dikmen and Hansen, 2009; Martello et al., 2015).

The blood flow to the surface of the skin is an important regulator of
heat exchange. Animal temperature in the superficial layers of skin can
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be used for diagnosing inflammatory processes that are accompanied by
changes in the peripheral blood circulation, thus affecting local and
general thermal equilibria (Metzner et al., 2014). Motivated by this
notion, instrumentation systems that use infrared thermography (IRT)
have been considered for monitoring body surface temperature profiles
and their relationship to other animal welfare traits (Wathes et al.,
2008). Montanholi et al. (2008) studied the correlation between the
IRT-measured temperature of different body surface areas and heat and
methane production in dairy cows. Montanholi et al. (2009) demon-
strated the potential application of IRT in the assessment of feed effi-
ciency in beef bulls. A non-invasive and automated method was sug-
gested by Schaefer et al. (2012) for the identification of the bovine
respiratory disease in receiver calves, using IRT. Metzner et al. (2014)
compared different algorithms for the evaluation of udder skin ther-
mography images for the detection of acute mastitis and fever, seeking
to obtain objective and valid results for future automated computer-
supported processing. Martello et al. (2015) evaluated the use of IRT
images as a tool for monitoring the body surface temperature of beef
cattle, and its relationship to residual feed intake.

Mathematical models are frequently generated to merge several
input data and predicting some specific responses from a dynamic
system. In a typical biological system, its component subsystems, such
as the animal thermoregulation system, and the complex interactions
between them, introduce a large number of variables, which results in
rather complex mathematical modelling. Recently, some predictive
modelling methods based on soft computing techniques have been used
for assessment of animal welfare using non-invasive sensors integrated
into predictive models (Huang et al., 2010; Sousa et al., 2016). Brown-
Brandl et al. (2005) designed and evaluated five different models for
predicting thermal stress in cattle: two statistical models, two fuzzy
inference systems, and one artificial neural network (ANN). Among
these, the ANN-based method yielded the best results. Shao and Xin
(2008) considered a real-time image processing system for the detection
of motion and classification of the thermal stress state of group-housed
pigs, based on their resting behavioral patterns. Hernandez-Julio et al.
(2014) evaluated techniques for modelling the physiological responses,
rectal temperature (RT), and respiratory rate of black and white Hol-
stein dairy cows. Again, the model based on the ANN demonstrated the
best performance, followed by the models based on neuro-fuzzy net-
works and regression. Sousa et al. (2016) proposed a fuzzy classifier
that yielded better estimates of the thermal stress level, compared with
the traditional THI and previously considered fuzzy-based systems.

This paper continues the approach presented by Sousa et al. (2016)
for developing a non-invasive method for prediction of physiological
variables related to the thermal stress state of cattle. The objective of
this study was to develop and test an ANN-model to provide a predic-
tion of animal thermal stress state using surface temperature and
weather data.

2. Materials and methods

The proposed model based on ANN (neural model) for predicting
physiological variables was developed and tested on two different
groups of Nellore finishing cattle confined in two phases (two feedlots)
for data collection. The data collected should broadly cover the problem
domain including exceptions and conditions within the boundaries of
the problem domain. In this sense, different numbers of animals (first
phase n= 8, second phase n=18) and data collection schemes were
used applied for each group, for increasing the data heterogeneity for
the ANN training. In both phases, the acquired physiological data in-
cluded rectal temperature (RT), respiration rate (RR), and body surface
temperature (IRT) from four body locations detailed in Sousa et al.
(2016): front, ocular area, flank, and front feet. In addition, the weather
data of the dry bulb temperature (DBT) and wet bulb temperature
(WBT) were stored and used in modelling.

Before constructing the neural model, a statistical analysis based on

Pearson’s correlation was performed on the IRT data from different
body locations (front, ocular area, flank and front feet) and physiolo-
gical variables (RT and RR), to determine the best body location and
physiological variable to use in the predictive model. The results of this
statistical analysis are detailed in Sousa et al. (2016), who used the
same groups of animals to develop a fuzzy logic-based predictive
model.

After the data were collected and analyzed, the neural model was
designed, trained, and modified as needed, for yielding accurate results.
A regression model was built for comparison. The final models that
were built were then run against the selected test data to generate
predictions, calculate linear correlations between the measured and
estimated animal responses, and evaluate the models’ predictive abil-
ities. In addition, the predicted RT (PRT) was rated for the level of
thermal stress (thermal stress classification) and compared with the
classification of thermal stress based on the measured RT and on the
traditional THI.

2.1. Data acquisition and statistical analysis

The experiments were conducted between May (first phase) and
July (second phase), 2010, at the facilities of the Faculty of Animal
Science and Food Engineering (FZEA) of the University of São Paulo
(USP) in Pirassununga, SP, Brazil, located at 21°57′02″S, 47°27′50″W,
at a mean elevation of 630m above the sea level. The average annual
temperature in that region is 22.00 °C, with approximately 1360mm of
rain per year. In the first phase, the average temperature and relative
humidity were 23.80 ± 0.37 °C (range 8.80–31.60 °C) and
70.00 ± 1.31% (range 40.00–96.10%), respectively. In the second
phase, these parameters were 26.40 ± 0.15 °C (range 18.60–29.60 °C)
and 39.70 ± 0.47% (range 23.90–74.90%), respectively.

The experiments were regulated according to the Institutional
Animal Care and Use Committee Guidelines of FZEA/USP. The phy-
siological data in both phases were collected daily with the cattle re-
strained in the squeeze chute over the shade (around 10min), using the
same tools. In the first phase, eight Nellore steers (18month-old,
380 ± 15 kg initial body weight, and castrated) were evaluated over a
period of eight days. In the second phase, eighteen Nellore steers
(16–21month-old, 334 ± 19 kg initial body weight, and castrated)
were evaluated over a period of ten days. For both phases the cattle
were allotted in individual pens and were exposed to natural environ-
mental conditions. The cattle were housed in individual pens (5×8m)
with soil-surface, automatic water fountains and sheltered feed bunks,
fed ad libitum diet.

In the first phase the measurements of RT, RR, and IRT were col-
lected for all cattle at 7 a.m., 11 a.m., 2 p.m., and 4 p.m. In the second
phase (n=18) the same variables were measured at 7 a.m., 12 a.m.,
and 4 p.m. The RT was collected manually, using a digital thermometer
(VMDT01, Viomed, China). The RR was measured by counting the flank
movements within a period of 15 s, and the measurements were re-
peated three times for obtaining an average RR for the period. The IRT
images were acquired using a thermographic camera (TI 20-9 Hz, Fluke
Corporation, Everett, USA) with the emissivity of 0.98, at a distance of
approximately 1m from each of the four body locations (front, ocular
area, flank, and front feet). The WBT and DBT data were stored using a
data logger (HOBO U12, Onset Computer Corporation, USA) that was
fixed at the center of the pens at 2m above the floor, approximately at
the level of the cattle head. These weather variables were automatically
recorded 24 h a day, with hourly intervals. Additional details about the
animals, the feeding, the facilities and the physiological data collected
are described in Sousa et al. (2016).

Before performing the statistical analysis, the data (IRT, RR, TR,
DBT, WBT) from measurements associated to low quality images were
manually eliminated. The images were interpreted using the software
FLUKE InsideIRTM 4.0 (FLUKE Corporation, EUA) and it was obtained
the average temperatures for the front, flank, and front feet areas, and
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the maximal temperature for the ocular area. Overall, 796 measure-
ments were analyzed (256 in the first phase and 540 in the second
phase). Thirty-three thermographic images from the first phase were
discarded owing to their low quality that would be translated into low-
accuracy temperature data.

The statistical analysis based on Pearson’s correlation was per-
formed for IRT data for different body locations (front, ocular area,
flank and front feet) and physiological variables (RT and RR). All
analyses were performed using the SAS System software 9.3 (SAS
Institute Inc., Cary, NC, USA), and the procedures and results are de-
tailed in Sousa et al. (2016). Table 1 summarizes the main findings.

The study of Sousa et al. (2016) found that the correlation between
the RT and weather variables was stronger than that between the RR
and weather variables. In addition, considering all IRT traits, the study
found that the front temperature was strongly correlated with DBT
(0.97), WBT (0.86), and RT (0.79); these findings are summarized in
Table 1.

In the present work, following the conclusions of Sousa et al.
(2016), the RT was chosen as the output (dependent) variable of the
neural model, while the IRT of the front (Fig. 1), DBT, and WBT served
as the input (independent) variables to the neural model. The IRT traits
defined in this study were the average temperature of a specific shape
(rectangle of 65×139 pixels) of the front area (Fig. 1) to define a sub-
area of each image. Through the tool box of the IRT software this sub-
area (same shape and size) was used for all other front images.

Previous studies (Kessel et al., 2010; Mccafferty, 2007;
Weschenfelder et al., 2013) considered regions of the head (i.e., brain)

as an indicator of core temperature because of its proximity to the
brain, which houses the central nervous system and is responsible for
body temperature regulation.

2.2. Neural network model

The neural model was implemented using the Neural Network
Toolbox in MATLAB R2010b software (Mathworks Inc., USA), ac-
cording to the fitting methodology. The neural network model had a
feed-forward and multi-layered architecture, with a sigmoid transfer
function in the hidden layer and a linear transfer function in the output
layer. The neural architecture was run (simulated) in several realiza-
tions, to fine-tune the neural network’s parameters using the supervised
learning approach. The neural network accepted DBT, WBT, and front
IRT as inputs, and estimated the RT output (PRT) for given input
parameters. For training the neural network, it was used 60% of the
data randomly selected (typical value find in literature and confirmed
on fine-tune procedure – 70% and 60% are the most common). The
training was performed using the Levenberg–Marquardt back-
propagation method, the mean squared error was used as a measure of
performance, the learning rate was 0.01, the performance goal was
0.00, and maximum of 1000 iterations were used for learning. The
remaining 40% of the data were partitioned into a validation set (20%)
and test set (20%).

Different ANNs were considered, with the number of neurons (N) in
the hidden layer set to 7, 10, 15, 20, 30, 50, and 100. In addition, as the
input data were randomly selected, the performance of the model could
be affected by the specific dataset chosen for training. Thus, choosing
less representative data for training is likely to yield a less generalizable
model. Thus, it was trained one hundred neural networks for each
hidden layer architecture, with different random partitions of the data
across different realizations. Fig. 2 shows the flowchart of the algorithm
for training an ensemble of ANNs.

As Fig. 2 shows, for each hidden layer architecture the algorithm
determined the best ANN out of one hundred realizations. Thus, overall
seven hundred ANNs were generated and compared, and one ANN was
selected for each hidden layer architecture (totaling seven

Table 1
Correlations (r) between infrared temperature traits of different body parts (IRT), phy-
siological variables (RT and RR) and weather variables (DBT and WBT).

Traits rDBT (p value) rWBT (p value) rRT (p value) rRR (p value)

IRT – Front 0.97 (0.0001) 0.86 (0.0001) 0.79 (0.0001) 0.63 (0.0001)
IRT – Eyes 0.92 (0.0001) 0.80 (0.0001) 0.77 (0.0001) 0.55 (0.0001)
IRT – Feet 0.95 (0.0001) 0.83 (0.0001) 0.72 (0.0001) 0.60 (0.0001)
IRT – Flank 0.93 (0.0001) 0.85 (0.0001) 0.76 (0.0001) 0.63 (0.0001)

Fig. 1. Illustrative infrared images of the front
and the specific shape (rectangle) of the body lo-
cation used for deriving the infrared tempera-
tures.
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architectures). The performance of these ANNs was evaluated by
comparing the PRTs and measured RTs using the linear regression
model and its parameters – the slope, the intercept, the mean error, the
root mean square error (RMSE), and the determination coefficient (R2).

2.3. Classical regression-based modelling

The best-performing ANN was selected and compared with a linear
regression model. The regression model was fit using the regression
routine in the SAS software 9.3 (SAS Institute Inc., Cary, NC, USA). The
same datasets (60% for training, 20% for validation, and 20% for
testing) as those that were used for training and selecting the best ANN
were used for training, validating, and testing the regression model. The
regression model was parameterized in terms of its statistical para-
meters – the slope, the intercept, the mean error, the RMSE, and R2.

2.4. Evaluation and validation of the classifier

The models were also evaluated in terms of the thermal stress
classification on the measured RT, the RT predicted by the ANN, and
the classification obtained using the traditional THI that was proposed
by Thom (1959). The THI was determined for every time interval, as
follows:

= + +THI 0.72(DBT WBT) 47 (1)

The measured and predicted RT values were classified into four
categories: normal, alert, danger, and emergency. The RT thresholds
that were used in the present study to classify into different heat stress
levels were based on those used by Kolb (1987) and are listed in
Table 2. The THI thresholds were the same as those adopted by the
Livestock Weather Safety Index (Thom, 1959; Eigenberg et al., 2005),
which categorizes the heat stress level also showed in Table 2.

The frequency distribution and coincidence (%) were used to sum-
marize the distribution of values in the different categories and to allow
a comparative analysis between the levels of thermal stress which
correspond to the THI, ANN, and the measured RT. This methodology
(comparative analysis) was applied for all data obtained in both ex-
perimental phases.

3. Results and discussion

The results are shown in the following sequence. First, it is de-
scribed the best ANN considering the number of neurons in the hidden
layer and the input data. Next, it is presented the regression model
obtained for the same training data that yielded the best ANN. The
thermal stress ratings based on the measured RTs and PRTs are shown
and compared with the THIs. Finally, the results are discussed and
compared with results of some previous studies.

3.1. Neural model

The statistical parameters related to the seven best models (with
seven different hidden layer configurations) obtained at the completion
of the training process are listed in Table 3. All of the parameters in
Table 3 are significant, with p < 0.001.

Considering the mean error, the RMSE, and R2 in Table 3, the three
best models were those that had 50, 75, and 100 neurons in their
hidden layers. The best performing model was the one with 50 neurons
for which the mean error was 0.21 °C and the RMSE was 0.27 °C. This
model was able to account for 73% of total variation in RT. In this case,
the slope was 0.95 and the intercept was 1.78.

The statistical parameters related to the seven best models tested
against the remaining 20% of data are presented in Table 4 (all of the
parameters are significant, with p < 0.001).

Similar to the results for the training set, the best-performing ANN
in Table 4 was the one with 50 neurons in the hidden layer. This neural
network accounted for 72% of total variation in RT. In this case, the
mean error was 0.23 °C, the RMSE was 0.28 °C, the slope was 0.88, and
the intercept was 4.60. Correspondence between the measured RT and
that predicted by the best ANNs is shown in Fig. 3a and b, for the
training set and test set data, respectively.

3.2. Regression model

The linear regression model was obtained for the same training set
data (60%) that were used for determining the best ANN. The statistical
parameters of the linear regression model are listed in Table 5.

Using from the parameters of the linear regression parameters in
Table 5, the following linear model was generated:

= − + +TR 0.04289 DBT 0.02856 WBT 0.05988 IRT 35.87991 (2)

Here, the total RT variation is 53.33% and all parameters are sta-
tistically significant (p < 0.001). The distribution of RT-related var-
iation was accounted for by the DBT (49.60%), WBT (1.79%), and IRT
(1.94%).

Linear relationships between the measured RT and PRT (linear re-
gression) were obtained for both the training set data and the test set
data. The statistical parameters related to the performances of the

Fig. 2. Flowchart of the algorithm for determining the best neural model.

Table 2
Rectal temperature (RT) and temperature-humidity (THI) index based classification of the
levels of heat stress of beef cattle.

Levels of Thermal Stress RT (°C) THI

Normal RT < 39.1 THI≤ 74
Alert 39.1≤ RT < 39.5 74 < RT≤ 79
Danger 39.5≤ RT < 40.5 79 < RT≤ 84
Emergency RT≥ 40.5 THI > 84
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linear regression model on these data sets are listed in Table 6 (all of the
parameters are significant, with p < 0.001). Fig. 4a and b show the
correspondence between the measured RT and PRT using the linear
regression model, for both the training set data and test set data.

3.3. Assessing the thermal stress

To assess the predictive ability of the ANN model for thermal stress
classification in cattle, the RTs predicted by the ANN model were
classified into levels of thermal stress according to Table 2, and this
classification was compared with a similar classification based on the
measured RTs and THIs (Tables 7and 8).

Table 7 shows that the THI-based and ANN-based RT classifications
agreed only in 31.91% of cases (31.66% agreement on “normal”, 0.25%
agreement on “alert”, 0% agreement on “danger”, and 0% agreement
on “emergency”). The THI-based classification agreed with the mea-
surement-based RT classification only in 33.17% of cases (31.66%
agreement on “normal”, 1.51% agreement on “alert”, 0% agreement on
“danger”, and 0% agreement on “emergency”).

The comparison between predicted and measured RT assessments
(Table 8) reveals that the two methods agreed in 94.35% of cases
(93.97% agreement on “normal”, 0.38% agreement on “alert”, 0%
agreement on “danger”, and 0% agreement on “emergency”). Just as in
the case of measurement-based RT classification, prediction-based RT
classification classified no measures as “emergency”. In addition, pre-
diction-based RT classification appears to have slightly underestimated
the “danger” and “alert” categories, classifying some of these measures
as “alert” and “normal”, respectively.

3.4. Discussion

Comparing the data in Table 4 and Table 6, it is possible to evaluate
the performance of the ANN model (with 50 neurons in the hidden
layer) and the regression model, on the test set data. The superior
performance of the ANN was verified. For the ANN, the mean error and
the RMSE were 0.23 °C and 0.28 °C, respectively, while for the regres-
sion model those measures were 0.28 °C and 0.34 °C, respectively. In
addition, the R2 value for the ANN model was 0.72 (Table 4); conse-
quently, the value of r was 0.85 (Fig. 3b). Both of these measures had
higher values than those obtained for the regression model, which
yielded R2 of 0.57 (Table 6) and r of 0.75 (Fig. 4b). Thus, compared
with the regression model the RT estimates generated by the ANN
model are much stronger correlated with the actually measured values.

According to the results for the training set data (Fig. 3a), the ANN
model yielded a significantly higher coefficient correlation (0.86, cor-
responding to R2= 0.74) compared with the results obtained by Sousa
et al. (2016) (0.71, corresponding to R2= 0.50). Sousa et al. (2016)
developed and validated a fuzzy logic-based predictive model that used
the same inputs for estimating RT.

The statistical results for the test set data, presented in Table 4, can
be used for comparing the performance of the ANN model with per-
formances of similar models proposed by other authors. In Brown-
Brandl et al. (2005), five types of inputs were used (one of which was
the cattle breed and the other four were weather variables) to estimate
the RR. Those authors used a similar ANN architecture as the one
proposed in this work, but with a larger number of inputs, 12 neurons
in the hidden layer, and with a different training process. When simu-
lated on the test set data (30% of the overall data set) to estimate the
RR, the model proposed by Brown-Brandl et al. (2005) yielded R2 of
0.68 and mean error of 1.04 °C, while for the ANN model in the present
work the values of those same parameters were 0.72 and 0.23 °C, re-
spectively (Table 4).

Hernandez-Julio et al. (2014) developed two neural models that
used two weather variables to estimate the RR and RT for Holstein dairy
cows. The authors used a similar ANN architecture as the one used in
the present work; however, the training process was different. The best-
performing network for the RT prediction was the one that had 100
neurons in its hidden layer. That network yielded R2 of 0.67 and RMSE
of 0.21 °C, while the ANN model proposed in the present work yielded
R2 of 0.73 and RMSE of 0.27 °C. The major difference between these
two approaches is in the fact that the presently proposed ANN model
allows individual assessments, because it uses the body surface tem-
perature as input and thus accounts for characteristics of individual
animals.

The RT predictions of the ANN model for thermal stress assessment
were strongly correlated with the measured RT values (94.35%), and
the performance was markedly superior compared with that of the THI-
based method. The THI classified 9.05% of measures as “emergency”
while RT was 0%. Indeed, RT values above 40 °C were not observed,
indicating that animals were not in a situation of emergency.
Furthermore, unlike what occurs in the THI-based classification, the
ANN-based classifier allowed individual assessments, i.e., during the
same period of day, different animals from the same group were clas-
sified into different levels of thermal stress. In addition, the corre-
spondence between the classifications of measured RTs and PRTs was
better than the equivalent correspondence obtained by Sousa et al.

Table 3
Statistical results for the seven models with different hidden layer architectures, for simulations on the training set data.

N=7 N=10 N=15 N=20 N=30 N=50 N=75 N=100

Slope 1.02 1.02 1.03 0.98 0.94 0.95 0.98 0.93
Intercept −0.93 −0.73 −1.20 0.72 2.34 1.78 0.87 2.58
Mean Error, °C 0.23 0.23 0.24 0.23 0.24 0.21 0.22 0.21
RMSE, °C 0.31 0.30 0.31 0.31 0.31 0.27 0.29 0.28
R2 0.66 0.67 0.64 0.66 0.66 0.73 0.69 0.72

N, number of neurons; RMSE, root mean square error; R2, coefficient of determination.

Table 4
Statistical results for the seven models with different hidden layer architectures, for simulations on the test set data.

N=7 N=10 N=15 N=20 N=30 N=50 N=75 N=100

Slope 1.04 1.07 1.05 0.95 0.91 0.88 0.93 0.83
Intercept −0.16 −2.82 −2.08 1.73 3.49 4.60 2.57 6.70
Mean Error, °C 0.25 0.25 0.26 0.26 0.25 0.23 0.23 0.26
RMSE, °C 0.32 0.32 0.33 0.34 0.32 0.28 0.29 0.33
R2 0.66 0.65 0.66 0.68 0.71 0.72 0.69 0.67

N, number of neurons; RMSE, root mean square error; R2, coefficient of determination.
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(2016) (83.20%).
The good performance of the proposed ANN model was only re-

flected in its generalizability, which refers to the predictive perfor-
mance of a model on previously unseen data. Moreover, this general-
izability increased the feasibility of the proposed algorithm for

Fig. 3. Correspondence between measured and predicted rectal temperature (RT) and, for the best ANNs: (a) for the training set data; (b) for the test set data. In each plot, the points
represent individual measurements, the dotted line represents the linear regression, and r represents the correlation coefficient.

Table 5
Statistical parameters of the linear regression model for rectal temperature based on the
dry bulb temperature (DBT), infrared temperature (IRT), and wet bulb temperature
(WBT).

Trait Model Parameter Partial R2 Model R2

Training Data Intercept 35.87991 – –
DBT 0.04289 0.4960 0.4960
IRT Front 0.02856 0.0194 0.5154
WBT 0.05988 0.0179 0.5333

R2, coefficient of determination.

Table 6
Statistical results of the linear regression model, for the training set data and test set data.

Training Testing

Slope 1.00 1.02
Intercept 0.00 −0.70
Mean Error (°C) 0.28 0.28
RMSE (°C) 0.36 0.34
R2 0.53 0.57

Fig. 4. Correspondence between measured and predicted rectal temperature (RT) and for the linear regression model: (a) for the training set data; (b) for the test set data. In each plot, the
points represent individual measurements, the dotted line represents the linear regression, and r represents the correlation coefficient.

Table 7
Frequency distribution and coincidence (%) of data classifications using the measured
and predicted rectal temperature (RT), and using the THI.

THI

Normal Alert Danger Emergency Total

RT by Neural
Model

Normal 31.66 43.97 15.08 8.54 99.25
Alert 0 0.25 0 0.50 0.75
Danger 0 0 0 0 0
Emergency 0 0 0 0 0
Total 31.66 44.22 15.08 9.05 100.0

Measured RT Normal 31.66 42.71 13.07 6.78 94.22
Alert 0 1.51 2.01 1.88 5.40
Danger 0 0 0 0.38 0.38
Emergency 0 0 0 0 0
Total 31.66 44.22 15.08 9.05 100.0

R.V.d. Sousa et al. Computers and Electronics in Agriculture 144 (2018) 37–43

42



determining the best model using the proposed iterative process that
associated different hidden layer architectures with different random
partitions of the dataset for training.

4. Conclusion

A method was presented for developing a model based on the neural
artificial intelligence for predicting the rectal temperature of cattle
based on weather (dry bulb temperature and) data and non-invasive
physiological measurements of body surface temperature using. A new
training approach was proposed in which one hundred neural networks
were trained for each hidden layer architecture, with random partitions
of the dataset, thus avoiding the problem of using non-representative
data that could yield poorly generalizable models. The proposed model
showed a good performance on rectal temperature prediction tasks
compared with a classical regression model, and demonstrated a better
capacity for persistent performance on previously unseen data. In ad-
dition, the proposed model allows to assess thermal stress conditions of
individual animals, during the same period of day. In addition, the
performance of the model was better than those of previously proposed
comparable models. These results suggest that the proposed method is
promising for development of systems for continuous, real-time, and
individual assessment of animal welfare in the production system en-
vironment.
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