Novel fluorophores for
localization-based microscopy
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STORM: Stochastic Optical Reconstruction Microscopy



Fluorescence Microscopy: STORM & Conventional

Conventional microscopy
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STORM: Stochastic Optical Reconstruction Microscopy Bates et al., Science, 2007



Novel red fluorophores

red-fluorescent dyes set as benchmark

structure shortcomings

AttoBA7TM +  Lipophilic character leading to background

fluorescence
+  Two diastereomers existing (problematic for analytical
methods like electrophoresis analysis)

K114 +  Negative net charge of the dye (problematic for cell

permeability)
+  Only medium stability of the NHS ester

The challenge is to design new red dyes that overcome these shortcomings and keep at the same
time a good performance on

+Spectral characteristics
+Fhotostability

*High fluorescence quantum yields
+STED at 750 - 775nm

Wurm et al. Optical Nanoscopy 2012, 1:7
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Novel red fluorophores

Four novel red-fluorescent dyes

Abberior
STARG635

R: OH

X: S(CH,),SO,H

n:4

Atto647N
KK114

KK1119
KK9046
STARG35

STARG35P

KK9046

R: OH
X F
n: 1

Abberior
STARG635P

R: OP(O)(OH)2
X F

n: 1
Absorption Emission  Extinction Net NHS Fl. Quant. Tr Tr Solubility ©
Max. (nm) Max. (nm) Coefficient® Charge®  Stability  Yield* (ns) (ns)° aq. buffer
644 669 1.5 +1 good 51 % 3.4 1.2 low
637 660 0.9 -1 moderate 53 % 3.6 3.6 excellent
637 660 0.9 -1 good 55 % 3.7 1.2 excellent
632 654 0.9 +1 good 45 % 3.6 1.8 moderate
634 654 0.6 0 very good 51 % 3.7 2.8 good
635 655 0.8 -3 good 55 % 3.6 3.3 good

Wurm et al. Optical Nanoscopy 2012, 1:7



Novel red fluorophores

oy 1 ~ i 1 o
3 | KK1119 F s | KK9046 s
| = [ = [
2 Ke) 2 2
B % © 2
o = (=]
g 5 2 :
0.5 0.5
0 0
480 560 640 720 800 480 560 640 720 800
Wavelength (nm) Wavelength (nm)
51 : S S5 1 : 5
s Abberior s o Abberior o
5 | STAR635 5 s | STAR635P 5
- % = 3
o = o £
2 § 2 5
0.5 0.5
0 | 0
480 560 640 720 800 480 560 640 720 800
Wavelength (nm) Wavelength (nm)
?x (107°L x mol'x cm™) ®of dye residue in conjugates “in aq. solution in cell samples PH27

Wurm et al. Optical Nanoscopy 2012, 1:7



STED microsco

Figure 26. Principle of stimulated emission depletion (STED) mucroscopy. (A) STED is
based on shrinking the excitation focal spot by depleting the outer excited state
fluorochromes through stimulated emission with a doughnut-shaped STED beam of red-
shifted and At time-shifted light (B). In essence the excitation PSF is combined with the
PSF of the STED depletion laser (B) to produce a resultant PSF that is smaller than the
diffraction limit of light. (C) Ultra-high resolution nanopattern distribution of the antibody-
tagged SNARE protein SNAP-25 on the plasma membrane of a mammalian cell imaged
with confocal and STED microscopy. The encircled areas show linearly deconvolved data.
STED microscopy provides a substantial leap forward in the imaging of protein self-
assembly: here it reveals for the first time that SNAP-25 is ordered in clusters of <60 nm
average size. Part C adapted from [288]. © 2006 IOP Publishing Ltd.
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Fig. 1. Principles and implementation of STED polarizing micro-
scopy (STED-PM). (a) Diagram illustrating the photophysical proc-
esses of fluorophores, including excitation, spontaneous emission, and
stimulated emission. (b) Absorption and fluorescence spectra of Nile
Red and the wavelengths and their ranges used in this work for exci-
tation (570 nm), fluorescence detection (600-640 nm, as marked by
orange arrows), and STED (715 nm). (c) Super-resolution PSF ob-
tained by co-locating the donut-shaped STED beam and diffraction-
limited excitation beam. (d) Simplified schematic of a STED polariz-
ing microscope. A polarizer placed in an optical path right before the
epi-detection objective enables polarized imaging and ensuing n(r)
reconstruction based on polarization-dependent fluorescence textures.
The laser pulse duration is 100 ps, and the repetition rate is 20 MHz.

S-H B. Tai and I.I. Smalyukh. Opt Lett 2018, 20.
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Novel red fluorophores

Tubulin

STAR635P

Vimentin

confocal

Resolution gain by STED over confocal microscopy in raw data. Confocal (left) and
STED (right) imaging of Abberior STAR635P labeled Vimentin. Note the optical resolution
<25 nm identified with an individual antibody cluster in the STED image (arrows in the inset).

Comparison of the novel dye STAR635P (a) and the benchmark dye Atto647N. (b) The
tubulin cytoskeleton was immunolabeled in fixed PtK2 cells and imaging of the same area in Wurm et al. Optical Nanoscopy 2012, 1:7



FRET microscopy

Common Fluorescent Protein FRET Biosensor Strategies
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FRET microsco

FRET Detection of in vivo Protein-Protein Interactions Resonance Energy Transfer Jablonski Diagram
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https://www.olympus-lifescience.com/en/microscope-resource/primer/techniques/fluorescence/fret



FRET microscopy

Figure 23. In vivo multiphoton FLIM-FRET measurements. Living HeLa cells co-
expressing either unfused. free EGFP and unfused. free mCherry (A), or GFP-coupled
directly to mCherry through a 17-amino-acid linker (B), or GFP-coupled directly to
mCherry through a 7-amino-acid linker (C) were imaged by using a multiphoton scanning
microscope. For each panel, the spatial distribution of the mean fluorescence lifetime (Ty)
and of the fluorescence lifetime of the donor molecules interacting with the acceptor (Tp4)
is shown throughout the cells. The FRET efficiencies were calculated for each pixel from
Eq. 24 x 100%. Color scale shown covers the range of Epgrr values from 0% to 60%. Bars,
10 pm. Adapted from [217] with permission. © 2007 John Wiley & Sons.
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Diagnostic resolution — microscopx technigues
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DNA-PAINT

(~20 1 0) R Jungmann et al., Nano letters, 2010
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* Does not rely on fluorophore photo-physics * Requires long exposure times (100 — 300 ms)
* No irreversible photo-bleaching (low laser) * Time consuming

e Image buffer not required

DNA-PAINT: DNA-based Point Accumulation for Imaging in Nanoscale Topography



DNA-PAINT
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Schnitzbauer et al, Nature Protocols, 2017

DNA-PAINT: DNA-based Point Accumulation for Imaging in Nanoscale Topography



