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Introduction
• Justification

• Understanding the system

• Intervention:

– Rehabilitation

– Training

• Development of bioinspired control systems:

Duysens J, Forner-Cordero A. (2018). Walking with 

perturbations: a guide for biped humans and robots. Bioinspir

Biomim. 2018 Sep 4;13(6):061001.

Duysens, Jacques; Forner-cordero, Arturo. A controller 

perspective on biological gait control: Reflexes and central 

pattern generators. Annual Reviews in Control. p.392 - 400, 2019. 
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Biological and robotic CPGs

• Central pattern generators:

– Biological or artificial neurons (or oscillators) 

capable of generating a movement pattern:

– Autonomously:

• It can work in the absence of stimulus

– Modulated by:

• Sensory stimuli 

• Higher centers
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Advantages and disadvantages

• “Entrainment” and adaptation:

– Tune the controller with the plant and the 

environment.

– Robustness against:

• Perturbations

• Parameters variation

• Difficult to tune:

– Not clear procedures

– Empirical adjustments
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Motor control mechanisms

Robotics Lab. Japan Advanced Institute

of Science and Technology (JAIST)

• Reflexes
– (Sherrington, 1898)

• CPGs?
– Indirect evidence

– Several animals

• Internal models?
– Working hypothesis

• Lower limbs

• Applicable to upper 
limbs
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Motor control

Koditchek, Full and Buehler, 2004.
Arth. Strut. Dev.18/11/2020



Motor control

Koditchek, Full and Buehler, 2004.
Arth. Strut. Dev.18/11/2020



Goals

• Biological CPG:

– Physiology and functional anatomy

– Function and properties

– Modeling 

• Artificial CPGs:

– Overview of the artificial systems

• Assistance: interaction with the user

• Biorobotics and biomimetic robotics

18/11/2020



Contents

1. Introduction: Justification e goals

2. The biological Central Pattern Generator

• Organization and structure

• Operation principles

3. Artificial (biomimetic) CPG
• Artificial-biological CPG comparison

• Artificial CPGs
– Matsuoka model, van der Pol oscillator

4. Walking robots applications
– Bipeds

– Quadrupeds and more...

18/11/2020



Biological CPG. Neural Network

– Autonomous: generates rhythmic patterns

– Cyclical movements:
– Locomotion 

– Mastication

– Modulation:
• Sensory feedback

• Cortical control 
(voluntary?)

– Processes:
• Reciprocal inhibition 

• Self-inhibition
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Anatomy

• Spinal cord:
– Toraco-lumbar in humans?

• Small groups of autonomous neurons 
– Rhythmic pattern generation
– Cortical loopss?

• Rhythm generation:
– Neural interaction 
– Current interaction in individual neurons

• Half Center Oscillators:
– Two coupled neurons with reciprocal inhibition
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Lamprey

Cohen, 1987. J Comp. Physiol.

18/11/2020



Rats

Cazalets Jet al. 1995 J. Neurosci.
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Cats

Kandel et al. 2000. Principles of Neural Science
Trabalhos de Pearson, Duysens, Stein.
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Humans?

Guertin, 2009. 
Brain Res Rev.
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Humans?
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Evidence

• Hip flexion in paraplegics

• Rhythmic coupling of arms and legs during 
walking

• Other:

– Preference for in-phase coordination patterns 
(Kelso et al, 1990).

18/11/2020



WRISTS IN-PHASE WRISTS ANTI-PHASE

Li et al. (2005) Exp. Brain Res.
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Forner-Cordero et al. 2005. 
Biol Cybern.
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Padrões coordenação
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Forner-Cordero et al. 2005. 
Biol Cybern.
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Human gait?

– “The human frame is built for walking. It has both 
the right kinematics and the right dynamics”.

– Neurofisiology: CPGs + reflexes .

• CPGs: neural circuits that generate rhythmic activity

Laboratorio de Biomecatrônica
Kuo, 2002. 
Motor Control18/11/2020



New hypothesis: hybrid model

Kuo, 2002. 
Motor Control.
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Asymmetric CPG

Proposed control architecture:

- Flexor function is mainly 

controlled by higher centers:
- Gai initiation or termination

- Extensor function is mainly 

controlled by sensory 

afference:
- Leg support during stance

Duysens&Forner-Cordero. Ann. Rev. Control, 2019
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Matsuoka model

Robotics Lab. Japan Advanced
Institute of Science and 

Technology (JAIST)18/11/2020



Theoretical model of locomotion

Golubitsky et al, 
1999. Nature
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Models

• Integrated circuit simulate CPG
» Lewis et al. 2000. Biol Cybern.
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CPG models

• Matsuoka: 
– (Matsuoka, 1985. Biol. Cybern.)

– Activation and fatigue

– Half Center Oscilators

• Van der Pol

– Non-linear oscilators

• Other
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Matsuoka model

• Activation and neuron state:

Neuron state

Neuron fatigue

Weighted inputs from 
other neurons

External inputs:
- Higher levels
- Sensory inputs
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Matsuoka model
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Matsuoka model
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Matsuoka model
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Matsuoka model
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Matsuoka model

• Parameter adjustments:

– Criteria to guarantee convergence to limit cycle

– Experimental adjustment of the weights

• It does not exist a general methodology

– Empirical adjustments

• Network topology dependence
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Matsuoka model
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Biped robots

• Simulations:

– Taga, 1995: Biped gait

– Others

• Real robots:

– Morimoto, 2004

– Nakanishi, 

18/11/2020



Taga model

Taga, 1995. Biol. Cybern.
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Taga model

Taga, 1995. Biol. Cybern.
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Taga model

Taga, 1995. Biol. Cybern.18/11/2020



Morimoto Robot 

Morimoto et al. ICRA2004

Uses two CPGs to generate:
1. Linear motion
2. Oscillatory motion
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Morimoto Robot 

Morimoto et al. ICRA2004

Uses sensory feedback to modulate the gait cycle
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Morimoto et al. ICRA2004
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Nakanishi Robot

Nakanishi et al, 
2006. Biol. Cybern.

18/11/2020

Resets the CPG phase
Response to perturbations: robot push on the back



Nakanishi Robot

Nakanishi et al, 
2006. Biol. Cybern.
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Laboratório de Biomecatrônica
• Bioinspired robots

Kamambaré, Robot camaleão 
(Bernardi R, Forner-Cordero 
A, Cruz J 2011)

http://www.youtube.com/watch?feature=player_detailpage&v=Bjy4TeEvnT8

../Videos/VideosKamambare/watch.htm


Video Kamambaré
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GAIT CONTROL 
BIPED ROBOTS



Biological models of gait 
control: Asymmetrical CPG

Biped stability criterion:

Predicted Step Viability

Experimental study of gait: 
subliminar perturbations

with metronome

Bipo: Biped robot 
controller design and

construction
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Predicted step viability

• The robot should walk to complete a given task (Task 
Planning) along a certain path (Path Planning).

• Stability criterion is part of the Motion Planning in 
which the step is prescribed (e.g., walk on flat 
surface).

• The analytical model of the biped is similar to the 
concept of the internal model in human motor control 
and it is used by the controller to synthesize gait.



Diagram gait control structure of biped robots

Rossi et al JBSMSE, 2019
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Bipedal Locomotion Research

• Development of a control algorithm for 
walking capable of withstand different 
types of perturbation and adapt for 
different walking conditions.

• Design and build a biped robot to serve 
as a testbed for different control 
strategies.

• Validate the proposed controller on the 
real robot 

• MSc Student: Ivan Fischman Ekman 
Simões

Simões&Forner-Cordero ICAR, 2019
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