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Difusdao em um filme liquido descendente - Absor¢ao gasosa com reacao
quimica. Aplicacao desenvolvida a partir do exemplo apresentado no §18.5
do Bird (2002). Incluir no exemplo a reagdao de consumo de A na fase
liquida por uma reacao de primeira ordem, expressa por: -rA = K"pA.

a) Obter uma expressao para a taxa de absorcao do gas A no solvente B em
funcdo dos adimensionais Pe e Da.

b) Analisar o caso de reacao lenta. Obter uma expressao simplificada para
a taxa de absorcao.

c) Analisar o caso de reacao rapida. Obter uma expressao simplificada para

a taxa de absorcao.
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§18.5 DIFFUSION INTO A FALLING LIQUID
FILM (GAS ABSORPTION)*

In this section we present an illustration of forced-convection mass transfer, in which vis-
cous flow and diffusion occur under such conditions that the velocity field can be con-
sidered virtually unaffected by the diffusion. Specifically, we consider the absorption of
gas A by a laminar falling film of liquid B. The material A is only slightly soluble in B, so
that the viscosity of the liquid is unaffected. We shall make the further restriction that
the diffusion takes place so slowly in the liquid film that A will not “penetrate” very far
into the film—that is, that the penetration distance will be small in comparison with the
film thickness. The system is sketched in Fig. 18.5-1. An example of this kind of system
occurs in the absorption of O, in H,O.

Let us now set up the differential equations describing the diffusion process. First,
we have to solve the momentum transfer problem to obtain the velocity profile v,(x) for
the film; this has already been worked out in §2.2 in the absence of mass transfer at the
fluid surface, and we know that the result is

2
v,(x) = u,,,,,[l - (g) ] (18.5-1)

provided that “end effects” are ignored. :
Next we have to establish a mass balance on component A. We note that c, will be
changing with both x and z. Hence, as the element of volume for the mass balance, we
select the volume formed by the intersection of a slab of thickness Az with a slab of thick-
ness Ax. Then the mass balance on A over this segment of a film of width W becomes

Npel: WAX = NoJora. WAX + Nig|, WAz = Nip ., o, WAZ = 0 (185-2)

Dividing by W Ax Az and performing the usual limiting process as the volume element
becomes infinitesimally small, we get

Na . Na
& =l (18.5-3)

'S.Lynn, J. R. Straatemeier, and H. Kramers, Chem. Engr. Sci., 4, 49-67 (1955).

Fig. 18.5-1. Absorption of A into a falling film of
l’ liquid B.

v(x)

Ca0




Into this equation we now insert the expression for Ny, and N,,, making appropriate
simplifications of Eq. 18.0-1. For the molar flux in the z direction, we write, assuming
constant ¢,

a2
Np = —Byp ;zﬁ + Xa(Na + Ny = c40.00) (18.5-4)

We discard the dashed-underlined term, since the transport of A in the z direction will
be primarily by convection. We have made use of Eq. (M) in Table 17.8-1 and the fact
that v is almost the same as v* in dilute solutions. The molar flux in the x direction is

oc, ac
Npe = ~Dpp =2 + xA(I\{A, # NBT) =Wyt (18.5-5)
Here we neglect the dashed-underlined term because in the x direction A moves pre-
dominantly by diffusion, there being almost no convective transport normal to the wall
on account of the very slight solubility of A in B. Combining the last three equations, we
then get for constant 9 45

ac, Fc,
0, E = gAB ;F (185-6)
Finally, insertion of Eq. 18.5-1 for the velocity distribution gives
(x| dca _ ¥c,
vmax[l (5) Pz @AB -Ex—z— (18.5-7)
as the differential equation for c,(x, 2).
Equation 18.5-7 is to be solved with the following boundary conditions:
BC.1: ‘ atz=0, c,=0 (185-8)
B.C.2: atx =0, Ch=Cyo (18.5-9)
i _ dCy _
BC.3: atx =6, ‘E = (18.5-10)

The first boundary condition corresponds to the fact that the film consists of pure B at the
top (z = 0), and the second indicates that at the liquid-gas interface the concentration of A
is determined by the solubility of A in B (that is, c,y). The third boundary condition states
that A cannot diffuse through the solid wall. This problem has been solved analytically in
the form of an infinite series,? but we do not give that solution here. Instead, we seek orily
a limiting expression valid for “short contact times,” that is, for small values of L/ vp,,.

If, as indicated in Fig. 18.5-1, the substance A has penetrated only a short distance
into the film, then the species A “has the impression” that the film is moving throughout
with a velocity equal to v, Furthermore if A does not penetrate very far, it does not
“sense” the presence of the solid wall at x = 8. Hence, if the film were of infinite thick-
ness moving with the velocity v,,,, the diffusing material “would not know the differ-
ence.” This physical argument suggests (correctly) that we will get a very good result if
we replace Eq. 18.5-7 and its boundary conditions by

%a _ g &,

Dmax = = Dsp o (18.5-11)
BC.1: atz=0, ¢c,=0 (18.5-12)
B.C.2: atx=0, ¢4 =cu (18.5-13)
B.C.3: atx = oo, ;=0 (18.5-14)

2R, L. Pigford, PhD thesis, University of Illinois (1941).
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An exactly analogous problem occurred in Example 4.1-1, which was solved by the
method of combination of variables. It is therefore possible to take over the solution to
that problem just by changing the notation. The solution is’

Ca 2 B v 4 1
% =1- —\/-7_; ! exp(—§ ) dé ( 8.5-15)
or
CA X X
A =1 -erf -~ = prfc ———=—+—— (18.5-16
Cao VAD 457/ U, an VAD 4pZ/ Vpax )

In these expressions “erf x” and “erfc x” are the “error function” and the “complemen-
tary error function” of x, respectively. They are discussed in §C.6 and tabulated in stan-
dard reference works.*

Once the concentration profiles are known, the local mass flux at the gas-liquid in-
terface may be found as follows:
—— (18.5-17)

<0 mZ

acy
NA.\'|1=0 = —_@ABW

Then the total molar flow of A across the surface at x = 0 (i.e., being absorbed by a liquid
film of length L and width W) is

w L
Wa= [ | Nudwodzdy
0 0

QD L
= Weyo. [ Aifmax fo —édz
_ 4@.4vaax %
= WLC*“’\/ L (18.5-18)

The same result is obtained by integrating the product v,,..c, over the flow cross section
at z = L (see Problem 18C.3).

Equation 18.5-18 shows that the mass transfer rate is directly proportional to the
square root of the diffusivity and inversely proportional to the square root of the “expo-
sure time,” f., = L/?p..- This approach for studying gas absorption was apparently first
proposed by Higbie. | :

The problem discussed in this section illustrates the “penetration model” of mass
transfer. This model is discussed further in Chapters 20 and 22.
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§18.6 DIFFUSION INTO A FALLING LIQUID FILM
(SOLID DISSOLUTION)

We now turn to a falling film problem that is different from the one discussed in the pre-
vious section. Liquid B is flowing in laminar motion down a vertical wall as shown in
Fig. 18.6-1. The film begins far enough up the wall so that v. depends only on y for z = 0.
For 0 < z < L the wall is made of a species A that is slightly soluble in B.

For short distances downstream, species A will not diffuse very far into the falling
film. That is, A will be present only in a very thin boundary layer near the solid surface.
Therefore the diffusing A molecules will experience a velocity distribution that is charac-
teristic of the falling film right next to the wall, y = 0. The velocity distribution is given
in Eq. 2.2-18. In the present situation cos # = 1,and x = § — Y, and

_ pgd’ AN B Gl VAR S
4 LG -2 R B

At and adjacent to the wall (y/8)’ << (y/8), so that for this problem the velocity is, to a
very good approximation, v. = (pgd/ 1)y = ay. This means that Eq. 18.5-6, which is ap-
plicable here, becomes for short distances downstream

Bes g, T ;
ay - =Dap % (18.6-2)
where a = pgd /. This equation is to be solved with the boundary conditions
B.C. 1: atz =0, ca=0 : (18.6-3)
B.C.2: aty =0, €4 =tup (18.6-4)
BC.3: aty=oo, c,=0 (18.6-5)

In the second boundary condition, c4 is the solubility of A in B. The third boundary con-
dition is used instead of the correct one (dca/dy = 0 at y = &), since for short contact
times we feel intuitively that it will not make any difference. After all, since the mole-

' H. Kramers and P. J. Kreyger, Chem. Eng. Sci., 6, 42-48.(1956); see also R. L. Pigford, Clem. Eng.
Prog. Symposium Series No. 17, Vol. 51, pp. 79-92 (1955) for the analogous heat-conduction problem.

s Fig. 18.6-1. Solid A dissolving into a falling fim
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cules of A penetrate only slightly into the film, they cannot get far enough to “see” the
outer boundary of the film, and hence they cannot distinguish between the true bound-
ary condition and the approximate boundary condition that we use. The same kind of
reasoning was encountered in Example 12.2-2 and Problem 12B.4.

The form of the boundary conditions in Egs. 18.6-3 to 5 suggests the method of com-
bination of variables. Therefore we try c4/c4 = f(n), where 1 = y(a/9%432)'"*. This com-
bination of the independent variables can be shown to be dimensionless, and the factor
of “9” is included to make the solution look neater.

When this change of variable is made, the partial differential equation in Eq. 18.6-2
reduces to an ordinary differential equation

2
_d_f + 31’2 ﬂ =
dn’ dn
with the boundary conditions f(0) = 1 and f() = 0.
This second-order equation, which is of the form of Eq. C.1-9, has the solution

0 (18.6-6)

P i f " expl—y i + € (18.6-7)
0

The constants of integration can then be evaluated using the boundary conditions, and
one obtains finally

f exp(“ﬁs) dn f exp(—ﬁs) dn
Ca n _Jn
re

C 0
A0 fo exp(__;la)d;,

(18.6-8)

for the concentration profiles, in which I'(3) = 0.8930 . . . is the gamma function of 5. Next
the local mass flux at the wall can be obtained as follows

. 2 [La\om
- = @ABCAO[dn (CAO) ay]

=-9 Aexp(_ns)< a_\"” - +49DABCA0 a
a ke ré 9D 452

- 9D 42
Then the molar flow of A across the entire mass transfer surfaceaty = 0is

y=0 re)
= i _ 29 45 40 WL a L
WA = fo fo NAyI y=0 dZ dx = r(g) 9@AEL (]86—10)

dca
Nayly=0 = —Dps =—
Ay|y 0 AB Gy -

1/3
) (18.6-9)

where I'¢) = 5TG) = 1.1907.. .

The problem discussed in §18.5 and the one discussed here are examples of two types
of asymptotic solutions that are discussed further in §20.2 and §20.3 and again in Chapter
22. 1t is therefore important that these two problems be thoroughly understood. Note that
in §18.5, W, o< (@ 45L)/%, whereas in this section W, o (2 ,4,L)*°. The differences in the ex-
ponents reflect the nature of the velocity gradient at the mass transfer interface: in §18.5,
the velocity gradient was zero, whereas in this section, the velocity gradient is nonzero.
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