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(1) Steady-state: \ L8 BT, €gen . !
(called the Poisson equation) a axz  9y? 97> k !

(2) Transient, no heat generation:
(called the diffusion equation) l I

(3) Steady-state, no heat generation:
(called the Laplace equation)
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12.1 Elliptic Partial Differential Equations

The elliptic partial differential equation we consider is the Poisson equation,

9% u 9%u

Viu(x,y) = 560+ e (x,y) = f(x,y) (12.1)

X

onR ={(x.,v) |a =x < b,c = v <= d}.with u(x,vy) = g(x,v) for (x,v) € 5, where
§ denotes the boundary of R. If f and g are continuous on their domains, then there is a
unique solution to this equation.

. . Por enquanto apenas C.C. de Dirichlet
Selecting a Grid a P

The method used is a two-dimensional adaptation of the Finite-Difference method for linear
boundary-value problems, which was discussed in Section 11.3. The first step is to choose
integers n and m to define step sizes h = (b — a)/n and k = (d — c¢)/m. Partition the
interval [a, b] into n equal parts of width & and the interval [c, d] into m equal parts of width

k (see Figure 12.4).



Figure 12.4




Place a grid on the rectangle R by drawing vertical and horizontal lines through the
points with coordinates (x;,y;), where

x;=a+ih, foreachi=0,1,....n, and y;=c+jk, foreach;=0,1,...,m.

The lines x = x; and y = y; are grid lines, and their intersections are the mesh points of

the grid. For each mesh point in the interior of the grid, (x;,y;), fori =1,2,...,n— 1 and
j=12,....,m— 1, we can use the Taylor series in the variable x about x; to generate the
centered-difference formula

3 u u(xiyy,y;) — 2u(x,y;) +u(xi—, ) h* 9*u

— (X, ¥) = - - — — i» Vi) 12.2

where & € (x;_j.x;+1). We can also use the Taylor series in the variable y about y; to
generate the centered-difference formula

3 u Wi, ¥ip1) — 2u(x;, ) + uxi,vi)  k* 3w

ayz ") = K2 T 120y

{-Ih Hj;la [123}

where 1; € (¥j—1,¥j+1).



Using these formulas in Eq. (12.1) allows us to express the Poisson equation at the
points (x;, y;) as

U(Xie1. Vi) — 2u(x;, V) + u(xi_y,¥5) H(In}:m)—lu{my}+u{x,-,}y_1l

h? k2
h* 0%u k> 9%u
= Xis Vi) + i + Xis
= f(x.y)) 123;&("? )+ 13357 i)
foreachi =1,2,...,n—landj = 1,2,...,m — 1. The boundary conditions are
u(xo,vj) = g(xo,y;) and u(x,,y;) = g(x,,y;), foreach j=0,1,..., m:

u(x;,¥o) = g(xi,¥0) and  u(x;, yy) = g(X;,¥m), foreach i=1,2,....n— L

Por enquanto apenas C.C. de Dirichlet



Finite-Difference Method

In difference-equation form, this results in the Finite-Difference method:

h\> n\?
2[(5) + 1]”":‘; — (Wis1j + Wimy) — (E) (Wijs1 + wij1) = = f (Y, (12.4)

foreachi=1,2,...,.n—landj=1,2,...,m — 1, and

wo; = g(xo,y;) and w, = g(x,,y;), foreach;j=0,1,...,m; (12.3)
wi = g(x.ve) and wy, = g(x;i.vy,). foreachi=1,2.....,n—1;

where w;; approximates u(x;, y;). This method has local truncation error of order O(h* + k%)
The typical equation in (12.4) involves approximations to u(x, v) at the points

{If—l:-:"l_.f;l:- (If.,_}'j], (—II--I-l!}if-}'l {If'l}if-—l):- ﬂ.ﬂd (—Iﬁ}if--Fl}-

j+1 ®
j ® - ®
-1 ®




Reproducing the portion of the grid where these points are located (see Figure 12.5)
shows that each equation involves approximations in a star-shaped region about the blue X

at (x;, y;).

Figure 12.5
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We use the information from the boundary conditions (12.5) whenever appropriate in
the system given by (12.4); that is, at all points (x;.y;) adjacent to a boundary mesh point.



This produces an (n — 1)(m — 1) x (n — 1)(m — 1) linear system with the unknowns being
the approximations w;; to u(x;,y;) at the interior mesh points.

The linear system involving these unknowns is expressed for matrix calculations more
efficiently if a relabeling of the interior mesh points is introduced. A recommended labeling
of these points (see [Varl], p. 210) is to let

Py =(x;,y;) and w; = wj,

wherel =i+ (m—1—j)(n— 1), foreachi = 1,2,..., n—landj=1,2,....m— 1.
This labels the mesh points consecutively from left to right and top to bottom. Labeling
the points in this manner ensures that the system needed to determine the w;; is a banded
matrix with band width at most 2n — 1.



For example, with n = 4 and m = 3, the relabeling results in a grid whose points are
shown in Figure 12.6.

Figure 12.6 Y A
Y5 +
Yy Pl P B3
V3 L P“’- PE- PE-
Y24 Pry Ps, Pol
v L Pyl Pul P
Yo 1
| | i | | =
Xp X1 Xz X3 Xy x




Example 1

Determine the steady-state heat distribution in a thin square metal plate with dimensions
0.5 m by 0.5 m using n = m = 4. Two adjacent boundaries are held at 0°C, and the
heat on the other boundaries increases linearly from 0°C at one corner to 100°C where the
sides meet.

Solution Place the sides with the zero boundary conditions along the x- and y-axes. Then
the problem is expressed as
97 u 37 u

a2 Y 5y

(x,y) =0,

for (x,y)intheset R={(x,v) |0 =x <= 0.5, 0 = v = 0.5 }. The boundary conditions are
w(0,v) =0, u(x,0) =0, u(x,0.5) =200x, and u(0.5,v) = 200vy.



t=linspace(0,0.5,50);

TO=200;

function z=my surface(x, y) SO|U§§O em Série
n=100;

2=0;

for k=1:n

cg -T0/ (k*3pi*sinh (k*%pi) ) *cos (k*%pi) ;

ck = cg;

ug =cg*sin(2*k*3pi*x)*sinh(2*k*3pi*y);

uk =ck*sin(2*k*%pi*y)*sinh(2*k*3pi*x)
z=Z + ug + uk;

end

endfunction

function zz=fexatai(x, y) ~ _
ZZ-2*TO*xX*y Solugao exata = 400xy

endfuncticon

(t,t,my _surface) ;
1(t,t,fexata);

plot3d(t,t,z);
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If n = m = 4, the problem has the grid given in Figure 12.7, and the difference equation
(12.4) is

dwij — wisrj — wi—1j — wij—1 — Wij41 =0,

foreachi=1,2,3and;j = 1,2, 3.

Figure 12.7




Expressing this in terms of the relabeled interior grid points w; = u(F;) implies that
the equations at the points P; are:

Py . dw) — wy — wy = w3 + W4,
Fg . 4111,-‘2 — Wy — W) — Wy = ?.L'g;:h

Ps . 4wy — wy — wg = Wy3 + Wag,
Py : 4wy — ws — wy) — w3 = w2,

Ps: 4dws —wg —wy —wy —wg =0,

Ps : dwe — ws — w3 — Wy = Wy,

Py 4wy — wyg — wg = wo + Wy,
Py . dwg — wg — w7 — ws = Wy,

Py : dwo — wg — we = wWip + Wy,

where the right sides of the equations are obtained from the boundary conditions.
In fact, the boundary conditions imply that

Wy p = Wrp = W3g = Wy = Wpar = wp3 =0,

wyg = wyy; =25, wyy=wys =250, and wsy=wy; =75.



So the linear system associated with this problem has the form

4 -1 0
1 4 -1
0 -1 4
-1 0 0
0 -1 0
0 0 —I
0 0 0
0 0 0
0 0 0

The values of wy., wa, ..

are given in Table 12.1.

—1 0 0 0 0 0
0 -1 0 0 0 0
0 0 -1 0 0 0
4 —1 0 -1 0 0

—1 4 —1 0 -1 0
0 -1 4 0 0 -1

—1 0 0 4 —1 0
0 -1 0 -1 4 -1

1 4

., wg, found by applying the Gauss-Seidel method to this matrix,

25
50
150
0

0
50
0

0
25




Table 12.1
w;

18.75
37.50
36.25
12.50
25.00
37.50
6.25

12.50
18.75

L T

These answers are exact, because the true solution, u(x, y) = 400xy, has

*u 0*u
)

dx*  ay*t

and the truncation error is zero at each step.

O 00 =] O L s L D =

u(Xis1. V) — 2u(x;, y;) + w(x;_1, ;) N w(xg, Vipr) — 2u(x;, yi) + u(x;, yi—1)
I, 2 kl




The problem we considered in Example 1 has the same mesh size, 0.125, on each axis
and requires solving only a 9 x 9 linear system. This simplifies the situation and does not
introduce the computational problems that are present when the system is larger.

9 x 9 = 81 coeficientes
Nesse caso 48 nulos, ou seja 59%

O que ocorre a medida que a matriz cresce ?
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1.3

The Jacobi and Gauss-Siedel Iterative Techniques

In this section we describe the Jacobi and the Gauss-Seidel iterative methods, classic
methods that date to the late eighteenth century. Iterative techniques are seldom used for
solving linear systems of small dimension since the time required for sufficient accuracy
exceeds that required for direct techniques such as Gaussian elimination. For large sys-
tems with a high percentage of 0 entries, however, these techniques are efficient in terms
of both computer storage and computation. Systems of this type arise frequently in circuit
analysis and in the numerical solution of boundary-value problems and partial-differential
equations.

An iterative technique to solve the n x n linear system Ax = b starts with an initial
approximation x'” to the solution x and generates a sequence of vectors {x'“'"’“,-f_E " that
converges to X.



The Gauss-Seidel Method

A possible improvement in Algorithm 7.1 can be seen by reconsidering Eq. (7.5). The

components of x*~1 are used to compute all the components x.* of x*'. But, for i > 1,

the components x{ . ,x}f}l of x'¥) have already been computed and are expected to be

better approximations to the actual solutions xy, .. ., x;_; than are .:i:ik_“,. .. .:i:fk : D Ttseems

k
reasonable, then, to compute :.:,{ )

X = Z{aux‘ ) — Z{au S ER A (7.8)

J=i+1

using these most recently calculated values. That is, to use

foreachi = 1,2,...,n, instead of Eq. (7.5). This modification is called the Gauss-Seidel
iterative technique and is illustrated in the following example.



Example 3

Use the Gauss-Seidel iterative technique to find approximate solutions to

I'U.I] — X+ 2}[3 =6,
—x1+11x> —  x34 3x4 =25,
2x1— x4 10x3 — x4 = —11,

30— x3+8xy =15
starting with x = (0,0,0,0)" and iterating until

Ix®) — x*=D

-3
o 0

Solution The solution x = (1,2, —1, 1)’ was approximated by Jacobi’s method in Example
1. For the Gauss-Seidel method we write the system, foreach k = 1,2,... as

*) U -y 1 gy 3

X, = ﬁxg 5.:n:_clh + E"
_ 1 . 1 3 25
k) (k) (k—1) (k—1)

X, = —X + —X — —X + —,
. 117! 17 114 11

1 ., 1 1 11
k) k) (k) (k—1)

X, = —= + — —X - —,
3 51 102 10 10
_ 3 1 15
(k) (k) (k)

4 g ° g8 8

When x'” = (0,0,0,0)", we have x'" = (0.6000, 2.3272, —0.9873, 0.8789)". Subsequent
iterations give the values in Table 7.2.



Table 7.2

k 0 I 2 3 4 5
x) 0.0000 0.6000 1.030 1.0065 1.0009 1.0001
b 0.0000 2.3272 2.037 2.0036 2.0003 2.0000
) 0.0000 —0.9873 ~1.014 —1.0025 —1.0003 —1.0000
xy 0.0000 0.8789 0.9844 0.9983 0.9999 1.0000

Because

Ix® —x® oo 0.0008
X  2.000

— 4 x 1074,

x"?) is accepted as a reasonable approximation to the solution. Note that Jacobi’s method in
Example 1 required twice as many iterations for the same accuracy. ]



Gauss-Seidel lterative

To solve Ax = b given an initial approximation x'”:

INPUT the number of equations and unknowns n; the entries a@;;, 1 < i,j < n of the
matrix A; the entries b;, | < i < n of b; the entries XO;, 1 < i < n of XO = x'?; tolerance
TOL; maximum number of iterations N.

OUTPUT the approximate solution x, ..., x, or a message that the number of iterations
was exceeded.

Step T Setk =1.
Step 2 While (k < N) do Steps 3-6.
Step3 Fori=1,....n
| i—1 n
set x; = ol gauxj —jzzp;l a;i XO; + b;

Step 4 1f ||x — XO|| = TOL then OUTPUT (xy,...,x,);
(The procedure was successful.)
STOP.

Step5 Setk=k+ 1.
Step6 Fori=1,...,nsetX0O; = x;.

Step 7 OUTPUT (‘Maximum number of iterations exceeded’);

(The procedure was successful.)
STOP. |



2222222




Poisson Equation Finite-Difference

To approximate the solution to the Poisson equation

au au

X. V) +
Hﬂ( y) ay?

-

(x.v)=flx.y), a=x=b c=yv=d,

subject to the boundary conditions

ulx,v) =glx,y) ifx=aqorx=5 and c=y=d

and

ulx,y) =glx,y) ifv=cory=d and a=x=<b:



INPUT endpoints a, b, ¢, d; integers m = 3, n = 3; tolerance TOL; maximum number of
iterations N.

OUTPUT approximations w;j to u(x;, y;) foreach i=I1,....n—1 and foreachj = 1....,
m — | or a message that the maximum number of iterations was exceeded.

Step 1

Step 2
Step 3
Step 4

Step 5

Step 6
Step 7

Seth=1(b—a)/n;
k=1(d—c)/m.

Fori=1,....,n— 1setx; =a+ih. (Steps 2 and 3 construct mesh points.)
Forj=1,....m— 1sety; =c+jk.

Fori=1.....n—1
forj=1,....m—1setw;; =0.

Set & = h%/k>:
po=2(1+2);
[=1.

While [ = N do Steps 7-20.  (Steps T-20 perform Gauss-Seidel iterations.)

Set 7 — {—hzf(xlgym—]} + g(a‘};m_]) -+ }.,g(xl,d} + AWl m-2 + IUEJH—]) [
NORM = |z — wy jy—1|;

Wy m—1 = -



Step8 Fori=2,....,n—2

set 2 = (— W2 f (i, Yme1) + 28(x;, d) + Wiy ey

F Wit mo1 + AWim—2)/ 1
if |wim—1 — z| = NORM then set NORM = |wm—1 — Z|;
set W m_ = Z.

SI’EP 9 Setz= ( T hzf{xn—lz-ym—l) +g[b=yrrr—1} +lg[~xn—ls'd]

+?-'Un—2,m—| + lwﬂ—l;ﬂ—l)f“;
if lwy_y m—1 — 2| = NORM then set NORM = |w,_y m—1 — 2|3

set Wyp—1m—1 = Z.
Step 10 Forj=m—2,...,2do Steps 11, 12, and 13.

Step 11 Setz = (—h>f(x1,y;) + g(a,y;) + Awyjsy + Awyj_y + waj) /113
if lwyj — z| = NORM then set NORM = |w; — z|;
set wyj = Z.

Step 12 Fori=2,....n—2
set 2 = (—h? f(xi,¥) + wi_yj + Aw;joy + Wiy + Awij_1) /1
if |lw;; — z| = NORM then set NORM = |w;; — z|;
set w;; = Z.

Step 13 Setz = (—h* f(x,—1,¥;) + (b, ¥) + wy_2;

+AWw,_j+1 + lwn—u—l)fﬁ;
if [w,—1; — 2| = NORM then set NORM = |w,_,; — z|;
set ?.L'ﬂ_u = Z.



Step 14 Setz = (—h” f(x1,y1) + ga,y) + Ag(x1,¢) + Awy o + way) /1
if [wy; — z| = NORM then set NORM = |w; — z|;
setw;; = 1.

Step 15 Fori=2,....n—2

setz = (—hzf{x,-,m} + Ag(X;, €) + wi_y 1 + Aw;z + wf+|,|) /1L
if lw;; — z| > NORM then set NORM = |w;; — z|;
set w; | = Z.

Step 16  Setz = (—h” f(xa—1,¥1) + (b, y1) + Ag(Xy_1,€) + w2y + Aw,_12) /i3
if lwy—11 — 2| > NORM then set NORM = |w,_,; — z|;
set w11 = 2.

Step 17 1f NORM < TOL then do Steps 18 and 19.

Step 18 Fori=1,....n—1
forj=1,....,m — 1 OUTPUT (x;, y;, w;;).

Step 19 STOP. (The procedure was successful.)
Step 20 Setl =1+ 1.

Step 21 OUTPUT (*Maximum number of iterations exceeded’);

(The procedure was unsuccessful.)
STOP. |



Example 2

Use the Poisson finite-difference method with n = 6 . m = 5. and a tolerance of 10~'? to

approximate the solution to

3%u 3 u
— (X, ¥) 4+ —
dy-

232 (x,y)=xe’, D=x<2, 0=y<l,
X

with the boundary conditions

eX
u(0,v) =0, u(2,y) = 2&‘/3 =v=1,
=< 2,

wx,0)=x, wulx,1)=ex, 0<x

and compare the results with the exact solution u(x, v) = xe*.



Solution Using Algorithm 12.1 with a maximum number of iterations set at N = 100 gives
the results in Table 12.2. The stopping criterion for the Gauss-Seidel method in Step 17

requires that

(1) (I=1) —10
‘w!}- — Wy =< 1077,

foreachi =1,..., Sandj = 1,...,4. The solution to the difference equation was accurately
obtained, and the procedure stopped at [ = 61. The results, along with the correct values,
are presented in Table 12.2. O



Table 12.2

I J X; Vi wr-[j-'l} u(x;, yj) u(x;, yi) — w[?”
1 1 0.3333 0.2000 0.40726 0.40713 1.30 x 10~
1 2 0.3333 0.4000 0.49748 0.49727 2.08 x 104
1 3 0.3333 0.6000 0.60760 0.60737 223 x 10
1 4 0.3333 0.8000 0.74201 0.74185 1.60 x 10~
2 1 0.6667 0.2000 0.81452 0.81427 2.55 x 107*
2 2 0.6667 0.4000 0.99496 0.99455 4.08 x 10~
2 3 0.6667 0.6000 1.2152 1.2147 4.37 x 10~
2 4 0.6667 0.8000 1.4840 1.4837 3.15 x 107
3 1 1.0000 0.2000 1.2218 1.2214 3.64 x 107*
3 2 1.0000 0.4000 1.4924 1.4918 5.80 x 10~
3 3 1.0000 0.6000 1.8227 1.8221 6.24 x 10~
3 4 1.0000 0.8000 2.2260 2.2255 451 x 1074
4 1 1.3333 0.2000 1.6290 1.6285 427 x 10~
4 2 1.3333 0.4000 1.9898 1.9891 6.79 x 10—
4 3 1.3333 0.6000 2.4302 2.4295 7.35 x 107
4 4 1.3333 0.8000 2.9679 2.9674 5.40 x 1074
5 1 1.6667 0.2000 2.0360 2.0357 3.71 x 10
5 2 1.6667 0.4000 24870 2.4864 5.84 x 10
5 3 1.6667 0.6000 3.0375 3.0369 6.41 x 10~
5 4 1.6667 0.8000 3.7007 3.7002 489 x 10°*
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