PRODUTOS BIOLÓGICOS EMPREGADOS NA AGRICULTURA

FERNANDO DINI ANDREOTE

Escola Superior de Agricultura "Luiz de Queiroz"

Universidade de São Paulo

Departamento de Ciência do Solo

O Mercado de Produtos Biológicos na Agricultura

Legislação

O Mercado de Produtos Biológicos na Agricultura

Biofertilizantes

Inoculantes

Biopesticidas

Legislação

O Mercado de Produtos Biológicos na Agricultura

Biofertilizantes

Inoculantes

Biopesticidas

Organominerais

Condicionadores

Fertilizantes Orgânicos Funções?

Efeitos?

Mensurações?

Consistência?

O Mercado de Produtos Biológicos na Agricultura

Posicionamento?

Inoculantes

Biodefensivos

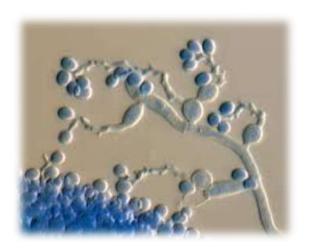
O Mercado de Produtos Biológicos na Agricultura

Ativadores

Repositores

Inoculantes

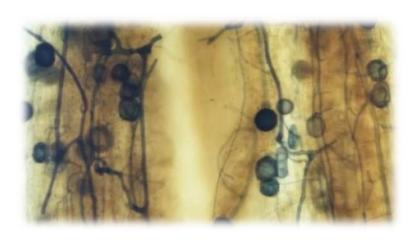
Biodefensivos

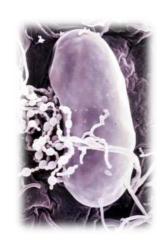

Suprimento nutricional das plantas

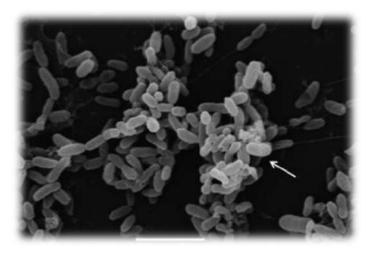
Defesa das plantas contra pragas e patógenos

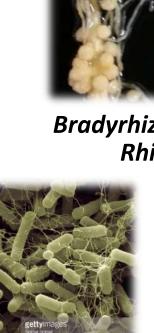
Uso de recursos microbianos específicos


Trichoderma spp.


Beauveria bassiana

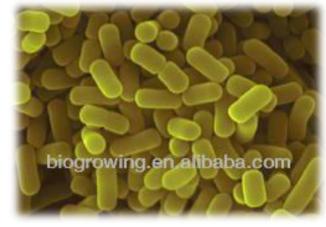

Purpureocillium lilacinum


Metarhizium anisopliae


Rhizophagus intraradices

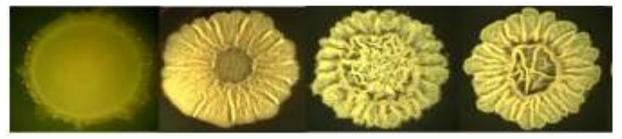
Pochonia chlamydosporia


Azospirillum brasilense Nitrospirillum amazonese

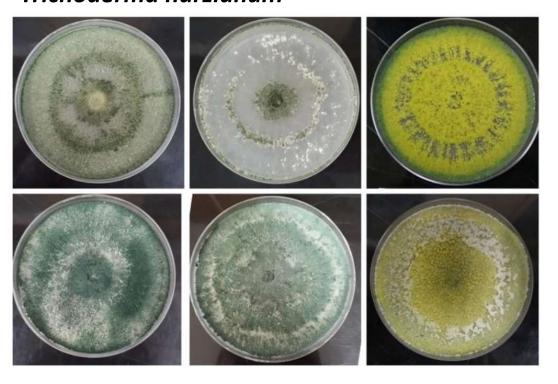

Bacillus amyloliquefaciens

Bradyrhizobium japonicum Rhizobium spp.

Bacillus subtilis



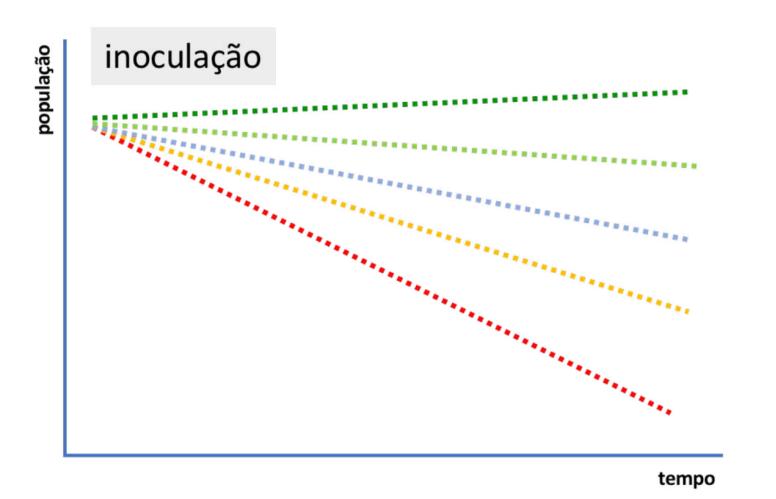
Bacillus licheniformis
Bacillus methylotrophicus
Bacillus firmus
etc...


Importância da linhagem/cepa

Diversidade intra-específica: potencial e características

Bacillus subtilis

Trichoderma harzianum



Quanto aplicamos nas áreas?

- √ Concentrações de produtos (10⁷ a 10¹¹ UFC/mL ou g)
- ✓ Dosagens de 0,1 a 2L/ha ou kg/ha
- √ Média de 10⁹ células/mL e dosagem de 1L/ha
 - ✓ Considere 1ha e profundidade de 10cm
 - √ 10³ células/g de solo

Compare com a comunidade nativa do solo!

O que ocorre com os grupos inoculados?

Estabilidade genética microbiana

Ativadores

Repositores

Estímulo aos organismos presentes no solo

Inoculação/reposição da biodiversidade do solo

Reorganização e funcionalidade do microbioma do solo

Como funciona um ativador?

- ✓ Indução de atividade inespecífica
 - ✓ Ativadores diretos
 - √ Ativadores indiretos
- ✓ Ativadores diretos
 - ✓ Suplementação nutricional (comumente carbono)
 - ✓ Complexos enzimáticos
- ✓ Ativadores indiretos
 - √ Condicionadores ambientais
 - ✓ Relacionados a fisiologia das plantas
 - ✓ Enraizadores (AH, AF, etc)

Como funciona um repositor?

- ✓ Reposição de biodiversidade
- ✓ Eficiência por probabilidade
 - ✓ Solo como agente seletivo
- ✓ Produção comum por processos fermentativos
 - √ Vários princípios
- ✓ Podem ter papel ativador
 - ✓ Diversidade de moléculas
 - ✓ Compostos secundários

Inoculantes

Biodefensivos

O Mercado de Produtos Biológicos na Agricultura

Ativadores

Repositores

AVALIAÇÃO DA QUALIDADE BIOLÓGICA DO SOLO

FERNANDO DINI ANDREOTE

Escola Superior de Agricultura "Luiz de Queiroz"

Universidade de São Paulo

Departamento de Ciência do Solo

Como sabemos que está funcionando?

Indicadores práticos de melhoria da biologia do solo

Melhor produtividade (quantidade e qualidade)

Melhor enraizamento das plantas (sanidade e exuberância)

Melhor degradação de defensivos

Melhor estruturação dos solos

Melhor ciclagem de nutrientes

Menor incidência de doenças e pragas em solos

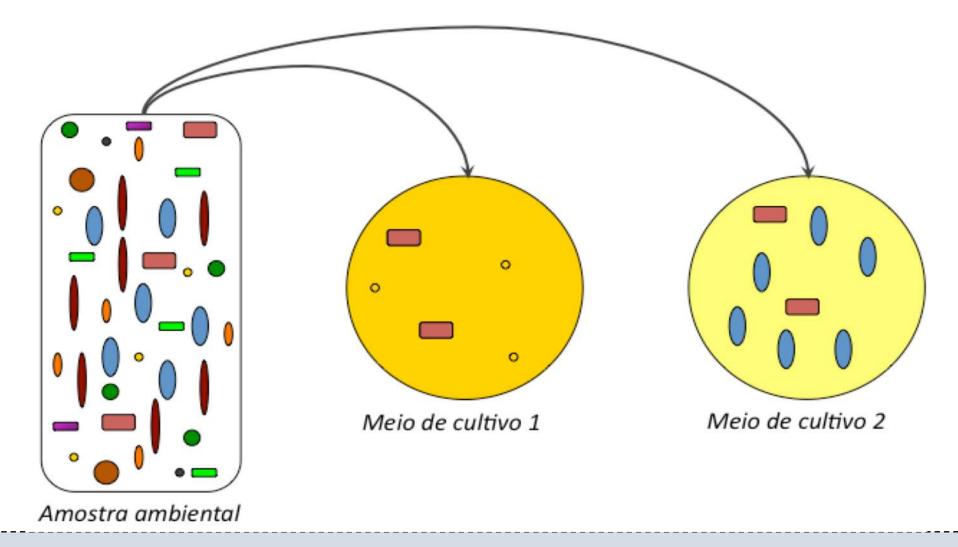
Análises microbianas

- ✓ Análises tradicionais de cultivo, gerais e seletivos
- ✓ Quantificações no solo
 - ✓ Biomassa, respiração, enzimas
- √ Análises na planta
 - ✓ Micorrização
 - ✓ Nodulação
- ✓ Análises moleculares (quantificação, sequenciamento)

Métodos de cultivo microbiano

Meios de cultivo não seletivos

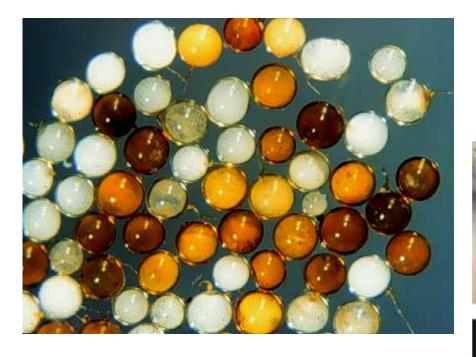
- **√** Fungos
- ✓ Bactérias


Meios de cultivo específicos

- ✓ Bactérias específicas
- ✓ Fungos específicos
- ✓ Amplo uso clínico e fitopatológico

Meios de cultivo seletivos

- √ Fixadores de N
- ✓ Solubilizadores de P
- ✓ Produtores de enzimas

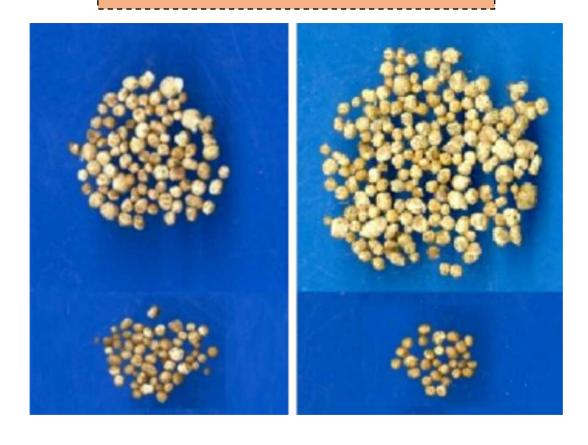


- ✓ A grande maioria (>99%) dos organismos do solo não são cultivados
- ✓ Importância dos métodos independentes de cultivo
- ✓ Conhecimento mais amplo da biodiversidade microbiana

Análise de micorrização

Quantificação e diversidade de esporos

Colonização de raízes



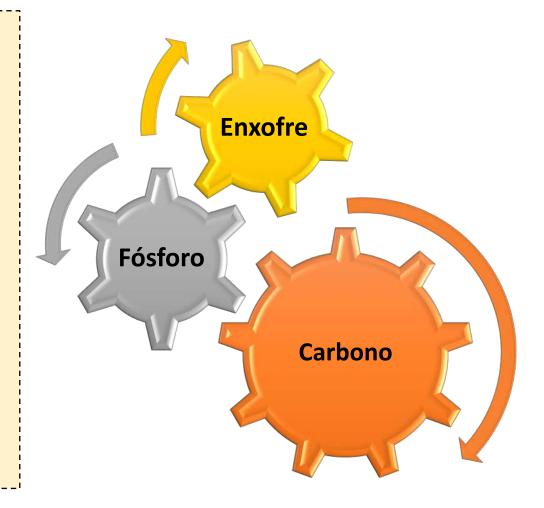
Análise de nodulação

Número de nódulos

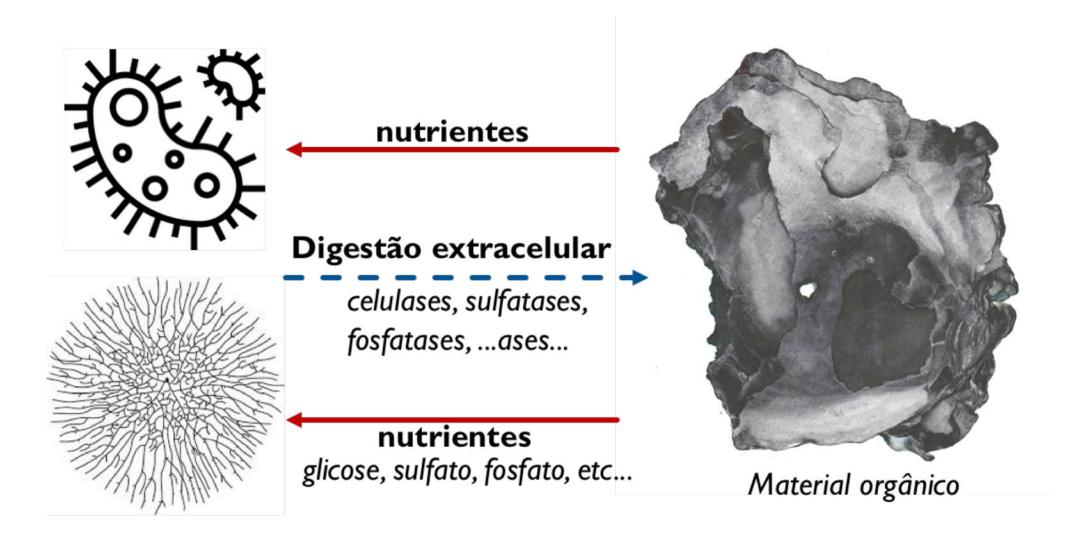
Biomassa de nódulos

Quantificações no solo – biomassa (C, N, P)

- ✓ Quantificação de biomassa
- ✓ Componente do complexo da MOS
- ✓ Determinação dos principais constituintes
 - ✓ Carbono
 - ✓ Nitrogênio
 - **√** Fósforo


Quantificações no solo – respirometria

- ✓ Indicador de atividade metabólica
- √ Foco nos aeróbios
- ✓ Indicadora de atividade/toxicidade/estresse
 - ✓ Respiração basal
 - ✓ Respiração induzida
 - ✓ Quociente metabólico


Quantificações no solo – enzimas

- ✓ Enzimas com atividade extracelular
- ✓ Atividade sobre ciclagem de nutrientes
- ✓ Atuantes na decomposição de resíduos
 - √ Celulases
 - √ Fosfatases
 - ✓ Sulfatases
 - ✓ Urease

Estas enzimas não estão diretamente relacionadas com o desenvolvimento vegetal

Quantificações no solo – enzimas

Estas enzimas não estão diretamente relacionadas com o desenvolvimento vegetal

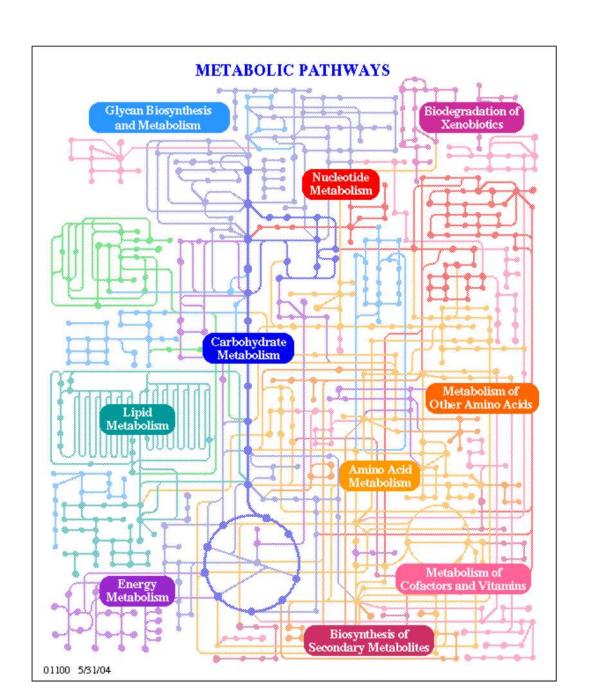
Quantificações de enzimas – BioAs Embrapa

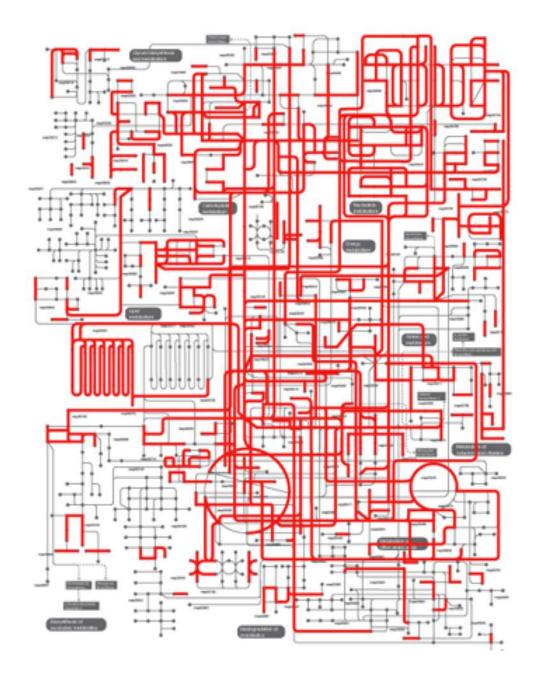
Table 5. Interpretative classes for microbial indicators in a clayey Red Latosol of the Cerrado region (0- to 10-cm depth) as a function of the soil organic C (SOC) content.

Microbial indicator		Interpretative classes as a function of SOC†			
		Moderate	Adequate		
Microbial biomass C, mg C kg ⁻¹ soil	≤2 0 5	206-405	>405		
Basal respiration, mg C kg ⁻¹ soil	≤40	41–100	>100		
Cellulase, mg glucose kg ⁻¹ soil d ⁻¹	≤70	71–115	>115		
β-Glucosidase, mg p -nitrophenol kg ⁻¹ soil h ⁻¹	<u>≤</u> 60	61–140	>140		
Acid phosphatase, mg p -nitrophenol kg ⁻¹ soil h ⁻¹	≤640	641–1150	>1150		
Arylsulfatase, mg p -nitrophenol kg ⁻¹ soil h ⁻¹	<35	36–90	>90		

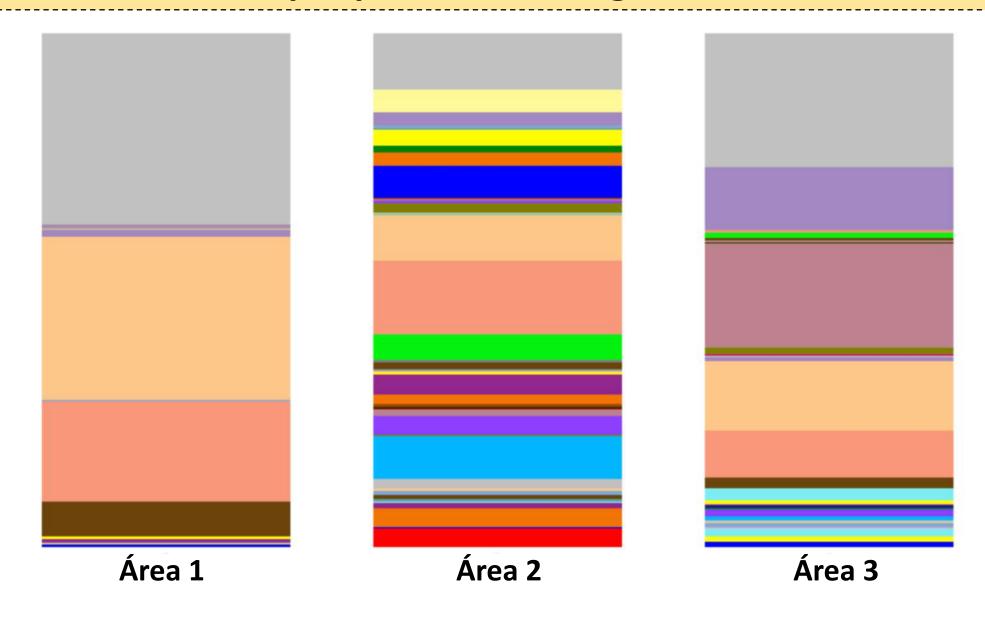
[†] Interpretative classes for SOC are: ≤ 15.2 g kg $^{-1}$: low; 15.3 $^{-1}$ 8.2 g kg $^{-1}$: moderate; and > 18.2 g kg $^{-1}$: adequate.

Quantificações de enzimas – BioAs Embrapa




Quantificações no solo – análises moleculares

- ✓ Quantificação microbiana (geral e específica) qPCR
- ✓ Sequenciamento de genes marcadores
 - ✓ Identificação
 - ✓ Estrutura de comunidades
 - ✓ Correlações
- ✓ Metagenomas
 - ✓ Identificação
 - ✓ Determinação de rotas metabólicas

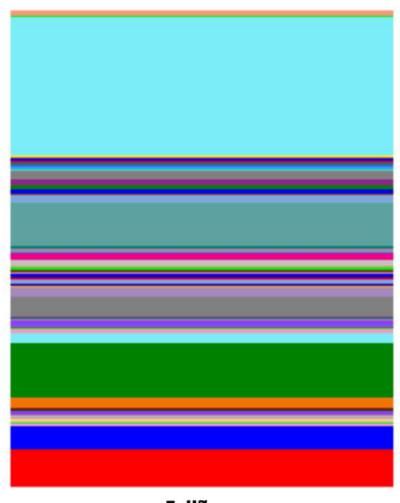


Desulfobacca Ralstonia Granulicatella Erysipelotrichac, OTU146 Burkholderia Rhodobacterac, OTU117 WCHB1-05 Burkholderial OT U198 Burkholderiales OT U197 Rhodobacter B-proteob. 09U196 Alloiococcus Oxalobacterac OTU212 Rhodobacteriles_OTU176 Clostridiac.OTU144 Novosphingobium Gemellac OTU101 Trabulsiella Desulfobulbac, OTU226 Cand, Methanoregula Herbaspirillum Sphingomonas TM7-3 OTU262 Comamonas Methanobacteriac, OTU 276 Anaerolinac, SI Leptothrix Caulobacter Peptococcac, OTU122 Firmicutes OTU86 MCG_OTU270 G-proteob OTU233 Curvibacter Anaerovorax Bacteroidetes_OTU57 TM6_SJA-4 Burkholderiac.OTU199 TMEG_OTU285 KD3-145 Pelomonas Cupriavidus Sphaerochaetaceae Rickettsial.OTU186 Christensenellaceae Paracoccus Comamonadac.OTU201 Acetobacterac.OTU184 OD1 ABY1 Syntrophus Caldilineac. OTU75 Acholeplasmatal.0TU265 Desulfitobacter ANME-1 OTU273 Actinomyces OT U8 Acidaminobacterac, OTU132 Anaerobrancac, KF-Gitt2-16 Actinob. OPB41 Dethiobacter Thermoanaerob. OTU145 SAGMEG-1

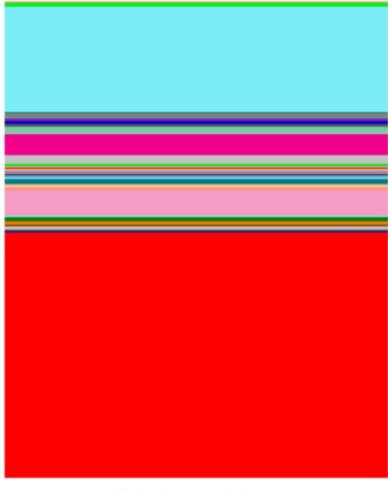
Exemplo prático 1 – fungos do solo

Exemplo prático 2 – nematóides

Amostras	Arilsulfatase	Fosfatase ácida	Beta-glicosidase
Amostras	μg PNS. g-1 solo. hora-1	μg PNF. g ⁻¹ solo. hora ⁻¹	μg PNG. g-1 solo. hora-1
Milho	84,5	272,7	85,7
Milho reboleira	60,0	260,6	59,2
Feijão	113,5	449,6	73,2
Feijão reboleira	56,8	270,3	53,1



Exemplo prático 2 – nematóides


Amostras	Bactérias		Fungos	
	Nº Espécies	Diversidade	Nº Espécies	Diversidade
Feijão	1.834	8,27	628	6,05
Feijão reboleira	1.463	7,96	489	3,85

Exemplo prático 2 – nematóides



Feijão

Feijão Reboleira

Obrigado!!!

Fernando D. Andreote fdandreo@gmail.com

... Plantar, criar e conservar, a ESALQ existe pra ensinar ...