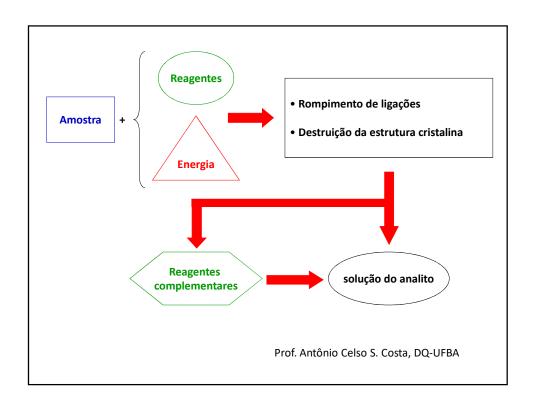

DECOMPOSIÇÃO DE MATERIAIS ORGÂNICOS POR COMBUSTÃO

Marcos Y. Kamogawa



Escolha do método de pré-tratamento depende de várias considerações:

- Solução obtida deve ser compatível com o método de determinação
- Exigências metrológicas
 - Calibrações exigidas (balança, temperatura, pipetas, balões volumétricos)
 - Homogeneidade = (massa de amostra, analitos)
 - Repetibilidade e reprodutibilidade, acurácia, seletividade e limite de detecção
- · Aspectos restritivos
 - Custo
 - Tempo disponível
 - Espaço físico
 - Competência do analista

© Francisco José Krug@cena.usp.br

Procedimento ideal para a decomposição de amostras

- · Adequadamente rápido
- Capaz de digerir completamente a amostra
- Os reagentes utilizados n\u00e3o devem interferir na determina\u00e7\u00e3o do analito
- Os reagentes deverão estar disponíveis em adequado grau de pureza
- Tanto os reagentes como a amostra não deverão atacar o recipiente no qual será conduzida a reação

© Francisco José Krug@cena.usp.br

Procedimento ideal para digestão de sólidos inorgânicos

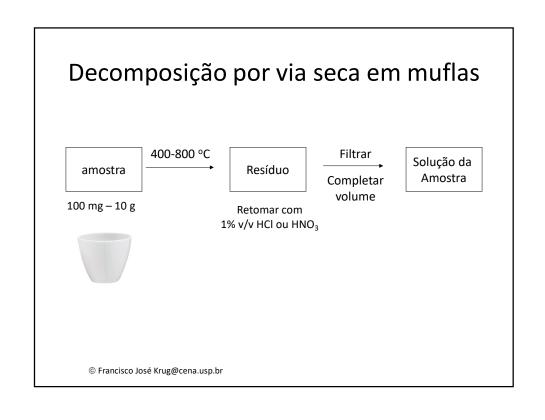
- O procedimento n\u00e3o deve apresentar riscos de insalubridade e/ou periculosidade
- A solução final deve conter todos os analitos de interesse
- Perdas dos analitos e contaminação não devem prejudicar a acurácia dos resultados
- A solução final deve representar adequadamente a amostra original
- Não deve haver geração de resíduos (química limpa)

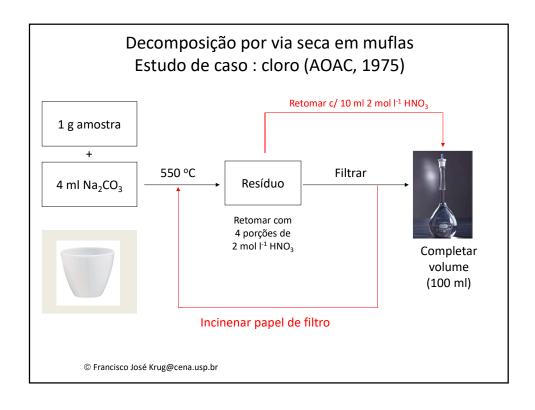
© Francisco José Krug@cena.usp.br

TÉCNICA DA COMBUSTÃO

Combustão

 É uma reação química exotérmica entre uma substância (o combustível) e um gás (o comburente), geralmente o oxigênio, para liberar calor.


$$C_aH_bO_c + (a + \frac{1}{4}b - \frac{1}{2}c)O_2 \xrightarrow{550 \text{ a}} aCO_2 + \frac{1}{2}bH2O$$


Métodos de decomposição

- Decomposição por via seca em sistemas abertos
 - Fornos tipo mufla
- Decomposição por via seca em sistemas fechados
 - Frascos de combustão de Schöniger
 - Bomba de combustão
- Decomposição em sistemas dinâmicos
 - Tubo de combustão
 - Decomposição em baixas temperaturas com plasma de oxigênio
 - Trace-o-mat
 - Wickbold

Decomposições por via seca em sistema aberto

Elemento	Matriz	Temperatura (°C)	Tempo (h)	% perdas
Ag	fígado de animal	450	?	<5
	rim de animal	450	?	<20
Al	fígado de animal	450	?	16
	rim de animal	450	?	12
As	sangue de boi (seco)	850	16	35
	sangue de boi (seco)	550	16	29
	sangue de boi (seco)	450	16	28
Ва	rim de animal	450	?	4
Ca	tecido nervoso humano	420	16	<1
	tecido nervoso humano	600	16	<1
	tecido nervoso humano	710	16	<1

Elemento	Matriz	Temperatura (°C)	Tempo (h)	% perdas
(Cd)	fígado de animal	450	?	<0,7
	fígado de rato	600	16	1,6
	fígado de rato	500	16	2
	rim de rato	500	16	4,4
Co	molusco	450	?	26
	molusco	800	?	22
Cr	açúcar refinado	450	?	0
	açúcar demerara	450	?	13
	açúcar não refinado	450	?	47
	melaço	450	?	52
	açúcar refinado	450	?	63
	açúcar demerara	450	?	62

Perdas por volatilização em muflas

Elemento	Matriz	Temperatura (°C)	Tempo (h)	% perdas
Hg	peixe (inteiro)	110	24	81,4
K	tecido nervoso humano	420	16	<1
	tecido nervoso humano	600	16	55
	tecido nervoso humano	710	16	90
Mn	Molusco metabolizado	450	?	15
	molusco metabolizado	800	?	21
Mo	rim de animal	450	?	<1,5
	figado de animal	450	?	<0,4
Na	tecido nervoso humano	420	16	<3
	tecido nervoso humano	600	16	10
	tecido nervoso humano	710	16	20

Elemento	400 °C	450 °C	500 °C	550 °C	600 °C	700 °C
Al		0	0; +			
As	+++	+++	0; +++	+++		+++
В	+++		•			
Ca	++	0	0	0	0	0
Cd	0	0	++			
Co	+; +++	0; +++	0; +++	0	0; +++	0; +++
Cr	0	0	0	0	+++	++
Cu	0	0; +++	0; ++	0; +++	0; +	0; ++
Fe	++; +++	0; +	0; +++	0; +++	•	0; +++
Hg	+++	•	+++	+++		+++
K	+++		+; +++	0; +	+	++; ++
Mg		0	o [']	•		0; +
Mn	0	0	0; +	0	0	0; ++
Mo	0	0; +++	0; +++	0		++
Na	++	0; ++	0	++		++
Ni		0	0; +	0	0	
Pb	0	0; +	0; +++	0; +	0; +	0; +++
Sb	+++	•	++	+	•	+++
Zn	0	0; ++	0; +++	0; +++	0; +	0; +++
0	nenhuma p	erda		++ 6 a 2	20 % de perda	
+	2 a 5 % de	perda	-	+++ > 20	1%	

Decomposição por via seca em forno tipo mufla

- Muito usada em empresas
- Pouco recomendada para a determinação da maioria dos elementos de interesse em vegetais (pode ser usada com precaução)
- Recomendada para determinação de cloro, boro e molibdênio

© Francisco José Krug@cena.usp.br

Decomposição de materiais orgânicos por via seca em sistemas abertos

Vantagens

- relação entre massa de amostra e volume final muito flexível
- requer pouca atenção do operador
- não requer ácidos concentrados
- não requer capelas especiais
- solução final compatível com método de determinação

Desvantagens

- perdas de elementos por volatilização
- perdas de amostra como aerossol sólido
- perdas de amostra como espuma
- alto risco de contaminação
- algumas cinzas são de difícil dissolução

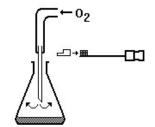
© Francisco José Krug@cena.usp.br

Decomposições por via seca em sistemas fechados

Frasco de combustão de Schöniger

Frascos de oxigênio

- Primeiro trabalho Berthelot, Hempel (1892)
- Consolidação Schöniger 1955 procedimento em micro escala.
- Aplicações: material biológico, carvão, medicamentos, combustível, polímeros, etc.


Amostras

Elemento	Amostras
F	Material biológico, compostos orgânicos, carvão, plantas
Br	Compostos orgânicos, polímeros
Cl	Material biológico, compostos orgânicos, polímeros
1	Material biológico, compostos orgânicos, urina liofilizada
S	Carvão, compostos orgânicos, petróleo, plantas
Р	Compostos orgânicos,
Se	Medicamentos, material biológico
As	Material biológico, compostos orgânicos
Hg	Carvão, material biológico, plantas, sedimentos

Método de combustão de Schöniger

1. Frasco de combustão com macho e cesta

 Frasco de combustão purgado com O₂ contendo solução absorvedora

 Ignição da amostra e absorção das espécies voláteis na solução absorvedora

Elementos determinados após decomposição em frasco de combustão de Schöniger

F	S	Ge	Со	Cd	Ca
CI	Se	В	Ni	Mg	Ва
Br	Р	Hg	Mn	Zn	Fe
	As	Cu	Ti	Al	U

Tamanhos de frasco com relação à massa de amostra

Massa de amostra	Volume do frasco
1 – 10 g	2000 – 10000 ml
500 – 1000 mg	2000 ml
100 – 150 mg	1000 ml
50 – 60 mg	500 ml
20 – 30 mg	300 ml
2 – 10 mg	300 ml
30 μg – 5 mg	25 ml
2 – 30 μg	10 ml

Soluções absorvedoras

- Não existe uma solução absorvedora única
- Específica para cada aplicação
- F água ou soluções de carbonato, solução tampão citrato
- Cl, Br, S, I peróxido de hidrogênio diluído em água, soluções de carbonato/bicarbonoato de sódio ou potássio, formiato de sódio, carbonato/bicarbonato de sódio ou potássio
- P soluções oxidantes contendo HNO₃ ou H₂O₂
- SO₂ ou SO₃ soluções oxidantes
- Metais soluções de HNO₃

Condições para a separação de alguns elementos com o frasco de combustão com oxigênio (adaptado de Bock, 1979).

Massa de amostra	Elemento	Frasco (mL)	Aditivo	Solução absorvedora
30-80 µg	F	250	1 mg KClO₃	30 mL H₂O
0,4-20 mg	F	250-500	-	5-10 mL H ₂ O
2-4 mg	CI	250	-	10 mL H₂O
10-20 mg	CI	300	-	15 mL NaOH 0,7 mol/l
2-4 mg	Br	250	-	10 mL H ₂ O ₂ (0,05%)
150 mg	S	2000	-	15 mL H ₂ O ₂ (5%)
100 mg	Se	1000	-	5 mL NaOH 0,1 mol/l
100 mg	Р	1000	-	20 mL HNO₃ (1:5)
5-10 mg	В	250	-	10 mL H₂O
1 g	Hg	2000	-	50 mL HCl 0,01 mol/l
5-10 mg	Cd, Mg, Zn	250	-	5 mL HCl 1 mol/l

Aditivos para compostos de difícil oxidação

Amostra	Aditivos
compostos halogenados	tolueno, parafina, decalina, sulfato de hidrazina, açúcar, nitrato de sódio, nitrato de potássio
compostos organofluorados	açúcar, clorato de potássio, peróxido de sódio
compostos organofosforados	parafina, persulfato de amônio
compostos organoarsênicos	nitrato de potássio
compostos organoborados	açúcar
material biológico	açúcar

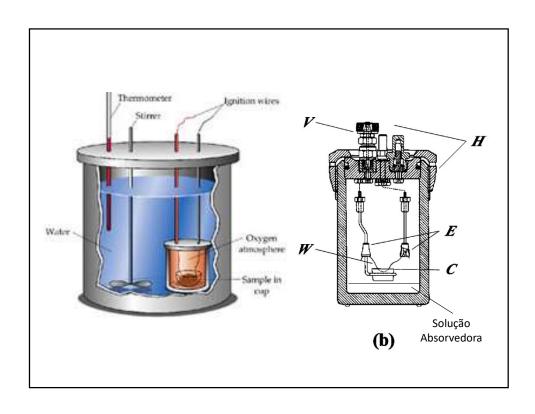
Schöniger combustion igniter

http://www.thomassci.com/product/2912

Vantagens e limitações

- Procedimento rápido
- Baixo risco de perdas e contaminação
- Simplicidade do processo
- Oxidação incompleta
- Evaporação de compostos voláteis antes de serem queimados

Bomba de Combustão


Amostras

- Amostras orgânicas
 - Material biológico
 - Polímeros
 - Carvão
 - Tecido animal e vegetal
 - Xisto
 - Óleo diesel
 - Combustíveis
 - Etc.

Princípio

- Sistema similar a bomba calorimétrica
- Bomba de aço em presença de excesso de oxigênio gasoso.

Operação

- Amostras na forma de pastilhas, 200-1000 mg
- Fio de platina ou Ni/Cr produz a ignição
- 5 a 10 mL de solução absorvedora
- 20 a 30 atm, pressão do O₂
- Aditivos como, amido, álcool, parafinas e óleos são utilizados para auxiliar a combustão.
- Aproximadamente 30 min. para resfriamento
- Carbono orgânico residual extremamente baixo

Aplicações

- As, Se, P, Hg, terras raras e metais de transição
- Halogênios
- Alguns Metais como Pb, Ca, Cr, Cu e Zn
- Soluções absorvedoras específicas para cada aplicação.

Exemplo de aplicações

- Determinação de Hg em tecido de peixe.
 - Massa de amostra 500 mg
 - -20 atm de O_2
 - Solução absorvedora − 10 mL H₂O
 - 5 min de agitação manual
 - Determinação eletroquímica voltametria cíclica.

Exemplo de aplicações

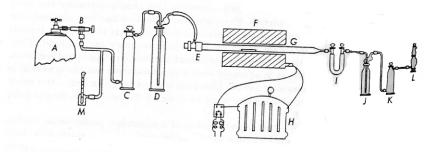
- Determinação de As e Se em plásticos.
 - Massa de amostra 600-1000 mg
 - -25 atm de O_2
 - 1-butanol como auxiliar de combustão
 - Solução absorvedora − 10 mL H₂O
 - Frasco de sílica fundida
 - 10 min de resfriamento em água fria
 - Determinação por HG AAS

Vantagens e limitações

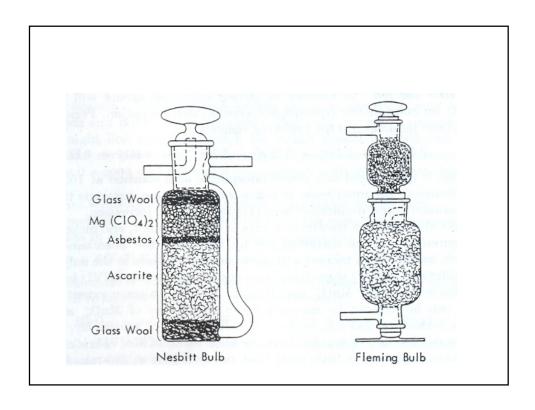
- Procedimento rápido
- Baixo risco de perdas e contaminação
- Simplicidade do processo
- Adsorção/dessorção dos elementos na parede do frasco
- Uso de ácidos limitado pela material do frasco
- Evaporação de compostos voláteis antes de serem queimados
- · Agitação manual

Decomposições em sistemas dinâmicos

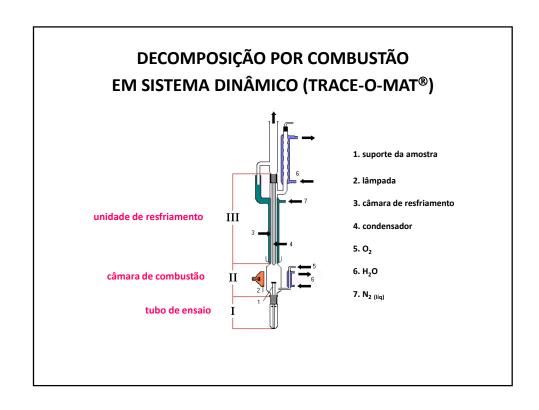
Tubo de combustão

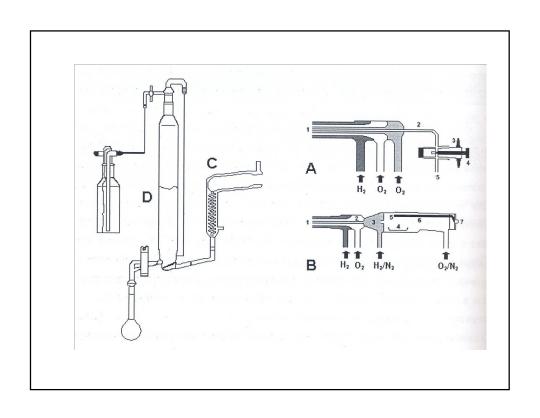

Tubo de combustão

- Principalmente empregado para a determinação de C, H, O, S e Halogênios em compostos orgânicos.
- Baseia-se na oxidação completa da amostra, convertendo os elementos a serem determinados na forma gasosa ou volátil.
- CO₂, H₂O, SO₂, N₂, Cl₂, ...


Tubo de combustão

Tubo de combustão


- a. Oxigênio livre de CO₂
- b. Válvula de controle
- c. Filtro de ascarita
- d. Filtro de ácido sulfúrico
- e. Conector
- f. Forno de aquecimento
- g. Tubo de combustão
- h. Controlador de tensão
- i. Asbeto
- j. Ácido sulfúrico saturado com ácido crômico
- k. Dissecante perclorato de magnésio
- I. Frasco de absorção do CO₂


Trace-o-mat

A PARTIALLY MECHANIZED SYSTEM FOR THE COMBUSTION OF ORGANIC-SAMPLES IN A STREAM OF OXYGEN WITH QUANTITATIVE RECOVERY OF THE TRACE-ELEMENTS

KNAPP G, RAPTIS SE, KAISER G, TOLG G, SCHRAMEL P, SCHREIBER B FRESENIUS ZEITSCHRIFT FUR ANALYTISCHE CHEMIE 308 (2); 97-103; 1981

Método de decomposição Wickbold

