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Summary points

Meta-analysis is a Two-stage process involving the calculation of an
appropriate summary statistic for each of a set of studies followed by the
combination of these statistics into a weighted average.

Methods are available for combining odds ratios, risk ratios and risk
differences for binary data, and hazard ratios for time to event data.
Continuous data can be combined either as differences in means, or as
standardised differences in means when a mixture of measurement scales
has been used.

Fixed effect models average the summary statistics, weighting them
according to a measure of the quantity of information they contain.
Several methods are available (inverse variance, Mantel-Haenszel and
Peto) which differ mainly in the computations used to calculate the
individual study weights.

Random effects models incorporate an estimate of between study
variation (heterogeneity) into the calculation of the common effect. One
simple method is readily available (DerSimonian and Laird); other
methods require more complex statistical computations.

Selection of a meta-analysis method for a particular analysis should
reflect the data type, choice of summary statistic (considering the consis-
tency of the effect and ease of interpretation of the statistic), observed
heterogeneity, and the known limitations of the computational methods.
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An important step in a systematic review is the thoughtful consideration of
whether it is appropriate to combine all (or perhaps some) of the studies in
a meta-analysis, to yield an overall statistic (together with its confidence
mterval). that summarises the effectiveness of the treatment (see Chapter
2). Statistical investigation of the degree of variation between individual
study results, which is known as heterogeneity, can often contribute to
making decisions regarding the “combinability” of results. In this chapter
we consider the general principles of meta-analysis, and introduce the most
commonly used methods for performing meta-analysis and examining
he.terogeneity. We shall focus on meta-analysis of randomised trials evalu-
ating therapies, but much the same principles apply to other comparative
studies, notably case-control and cohort studies.

Meta-analysis

General principles

. Meta-analysis is a two-stage process. In the first stage a summary statistic
is calculated for each study. For controlled trials, these values describe the
treatment effect observed in each individual trial. The summary statistics
are usually. risk ratios, odds ratos or risk differences for event data
differences in means for continuous data, or hazard ratios for survival timé
dat‘a. In the second stage the overall treatment effect is calculated as a
weighted average of these summary statistics. The weights are chosen to
reﬁ_ect the amount of information that each trial contains. In practice the
weights are often the inverse of the variance (the square of the standard
err01t).of the treatment effect, which relates closely to sample size. The
precision (confidence interval) and statistical significance of the overall
estimate are also calculated. It is also possible to weight additionally by
study quality, although this is not generally recommended (see Chapter 5).
All commonly used methods of meta-analysis follow these basic principles.
There are, however, some other aspects that vary between alternative
methods, as described below.

In a meta-analysis we do not combine the data from all of the trials as if
they were from a single large trial. Such an approach is inappropriate for
several.rt.easons and can give misleading results, especially when the number
of participants in each group is not balanced within trials.!

Assessing heterogeneity

An unportant component of a systematic review is the investigation of
th_e consistency of the treatment effect across the primary studies. As the
tn.als will not have been conducted according to a common protocol, there
will usually be variations in patient groups, clinical settings, concor’nitant
care and the methods of delivery of the intervention. Whilst some
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divergence of trial results from the overall estimate is always expected
purely by chance, the effectiveness of the treatment may also vary
according to individual trial characteristics, which will increase the
variability of results. The possibility of excess variability between the results
of the different trials is examined by the test of homogeneity (occasionally
described as a test for heterogeneity).

Consistency of trial results with a common effect despite variation in trial
characteristics provides important and powerful corroboration of the
generalisation of the treatment effect, so that a greater degree of certainty
can be placed on its application to wider clinical practice.> However, the
test of homogeneity has low power to detect excess variation, especially
when there are not many studies, so the possibility of a type II (false
negative) error must always be considered. By contrast, if the test of
homogeneity is statistically significant, the between trial variability is more
than expected by chance alone. In these situations it is still possible for a
treatment to be shown to have a real, if not constant, benefit. In particular,
the extra variation can be incorporated into the analysis using a random
effects model (see below).

Where the heterogeneity is considerable, the reviewer ought to consider
an investigation of reasons for the differences berween trial results (see
Chapters 8-11)° or not reporting a pooled estimate. Stratified meta-
analysis (described below) and special statistical methods of meta-
regression (see Chapters 9 and 11, and STATA command metareg in
Chapter 18) can be used to test and examine potential associations between
study factors and the estimated treatment effect.

Formulae for estimates of effect from individual studies

We assume here that the meta-analysis is being carried out on summary
information obtained from published papers. The case of individual patient
data (see Chapter 6) is considered briefly.

Individual study estimates of treatment effect: binary outcomes

For studies with a binary outcome the results can be presented in a
2 X 2 table (Table 15.1) giving the numbers of people who do or do not
experience the event in each of the two groups (here called intervention and

control).

Table 15.1 Summary information when outcome is binary.

Study ¢ Event No event Group size
Intervention a, b, ny;
Control c d, n,,
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For the i study we denote the cell counts as in Table 15.1, with N, = n, +
n,. Zero cells cause problems with computation of the standard errors o
0.5 is usually added to each cell (a, b, ¢, d) for such studies.*

The treatment effect can be expressed as either a relative or absolute

effect. Measures of relative effect (odds ratios and risk ratios) are usually

combined on the log scale. Hence we give the standard error for the log
ratio measure.

The odds ratio® for each study is given by
OR, = %4:
! bc; ’

the standard error of the log odds ratio being

SE[In(OR)] =

where In denotes logarithms to base e (natural logarithms).
The risk ratio® for each study is given by

a;/n,
RR =% Thi

c; /ny

the standard error of the log risk ratio being

SE[In(RR)] = JL+ 11 1

a; ¢ nli "z:‘

The risk difference® for each study is given by

with standard error
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For the Peto odds ratio method’ (see below) the individual odds ratios are
given by

a —E[a,-])

OR, =exp (

with standard error

SE{In(OR)]=+1/7v,,

where Efa] = n, (a;,+ ¢) / N, (the expected number of events in the inter-
vention group under the null hypothesis of no treatment effect) and

i (a; +¢;)(b; +d;)
Y, =
Nxz(Nx _1)

3

the hypergeomertric variance of a,.

Individual study estimates of treatment effect: continuous outcomes

If the outcome is a continuous measure, we require the number of
participants, the mean response and its standard deviation, for intervention
and control groups (Table 15.2).

Table 15.2 Summary information when outcome is continuous.

Study ¢ Mean response Standard deviation Group size
Intervention m;, SD,; n,;
Control m,, SD,, n,,

We let N, = n,; + n,, be the total number of participants in study ¢, and

o |0n —DSD +(n, ~1)SD%,
' N, -2

be the pooled standard deviation of the two groups.

There are two summary statistics used for meta-analysis of continuous
data. The difference in means can be used when outcome measurements in
all trials are made on the same scale. The meta-analysis computes a
weighted average of these differences in means, but is confusingly termed
the weighted mean difference (WMD) method.
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The standardised difference is used when the trials all assess the same out-
come, but measure it in a variety of ways (for example, all trials measure
depression but they use different psychometric scales). In this circumstance
it is necessary to standardise the results of the trials to a uniform scale
before they can be combined. The standardised mean difference method
expresses the size of the treatment effect in each trial (again in reality a
difference in means and not a mean difference) relative to the variability
observed in that trial. The method assumes that the differences in standard
deviations between trials reflect differences in measurement scales and not
real differences in variability between trial populations. This assumption
may be problematic in some circumstances where pragmatic and explana-
tory trials (which may differ in the risk of poor outcomes) are combined in
the same review. The overall treatment effect can also be difficult to
interpret as it is reported in units of standard deviation rather than in units
of any of the measurement scales used in the review.

For a particular study the difference in means (denoted MD)? is given by

MD{ =y — My,
with standard error
2 2
SE(MD,) = |3Ds , SDa
; ny;

There are three popular formulations of effect size used in the standard-
ised mean difference method. These formulations differ with respect to the
standard deviation used in calculations and whether or not a correction for
small sample bias is included. In statistics small sample bias is defined as the
difference between the expected value of an estimate given a small sample
and the expected value if the sample is infinite. Simulations show that the
standardised mean difference tends to be overestimated with finite samples
but the bias is substantial only if total sample size is very small (less than
10).°

Cohen’s d 1° is given by

with standard error

2
SE@d)= |-Ni ,__di
Mty 2(N;-2)
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Hedges’ adjusted g' is very similar to Cohen’s d but inc]udgs an adjust-
ment to correct for the small sample bias mentioned above. It is defined as

My T 3
s (l 4N; —9}

with standard error

N; g.'z )
SE(e:) = \/;.n,i TN, -3.98)

Finally, Glass’s A" takes the standard deviation from the control group
as the scaling factor, giving

with standard error

This method is preferable when the intervention alters the observed
ili i i lue.
varijability as well as potentially changing the mean val '

Both the weighted mean difference and standarcyse:d mean c'hﬁerence
methods assume that the outcome measurements within each trial have a
Normal distribution. When these distributions are ske\_aved or severely
non-Normal, the results of these methods may be misleading.

Formulae for deriving a summary (poqled) estimate
of the treatment effect by combining trial results
(meta-analysis)

The methods of meta-analysis described below all combine Fhe individ-
ual study summary statistics described above, denoted generically by 6,
each given a weight w, which is usually related to.SE(é.’,.). All the methods
described are available in the Stata routines descnbgd in C_hapter 1§. The
summation notation indicates summation of the 7 trials included in the

analysis.
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Fixed effect and random effects methods

In fixed effect meta-analysis it is assumed that the true effect of treatment
is the same value in each study, or fixed, the differences between study
results being due solely to the play of chance. The assumption of a fixed
effect can be tested using a test of homogeneity (see below).

In a random effects meta-analysis the treatment effects for the individual
studies are assumed to vary around some overall average treatment effect.
Usually the effect sizes 6, are assumed have a Normal distribution with
mean 6 and variance 72, In essence the test of homogeneity described below
tests whether 77 is zero. The smaller the value of 72 the more similar are the
fixed and random effects analyses.

Peto describes his method for obtaining a summary odds ratio as
assumption free,’ arguing that it does not assume that all the studies are
estimating the same treatment effect, but it is generally considered to be
most similar to a fixed effect method.

There is no consensus about whether to use fixed or random effects
models.'? All of the methods given below are fixed effect approaches except
the DerSimonian and Laird method.

Inverse variance method

Inverse variance methods may be used to pool either binary or
continuous data. In the general formula below, the effect size, denoted 0,
could be the log odds ratio, log relative risk, risk difference, difference in
means or standardised mean difference from the ith trial.

The effect sizes are combined to give a pooled estimate by calculating a
werghted average of the treatment effects from the individual trials:

0 E wﬂi
v
E,w:‘

The weights are the reciprocals of the squared standard errors:

-1
SE@®,)?*’

i

Thus larger studies, which have smaller standard errors, are given more

weight than smaller studies, which have larger standard errors. This choice

of weight minimises the variability of the pooled treatment effect O
The standard error of 6, is given by

1

SE@)= T
w;
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The heterogeneity statistic is given by

Q= wa(e.' ‘91\’)2-

The strength of this approach is its wide applicabil_iry. It can be? used to
combine any estimates that have standard errors avgllable. Thus. it can be
used for estimates from many types of study, including stapdardlsed mor-
tality ratios, diagnostic test indices (Chapter 14), hazard_ratlos '(ChapFer 6),
and estimates from cross-over trials and cluster-randomised trials. I.t is also
possible to use this method when crude 2 X 2 tables cannot be ob.talned for
each study, but treatment effects and confidence intervals are available (see
Stata commands meta and metan in Chapter 18).

Mantel-Haenszel methods -

When data are sparse, both in terms of event rates being low and trials
being small, the estimates of the standard errors of the treatment effects
that are used in the inverse variance meth9ds may be poor.
Mantel-Haenszel methods use an alternative weighting scheme, and have
been shown to be more robust when data are sparse, anf:l may therefore 'be
preferable to the inverse variance method. In other s1ruat10ns. they give
similar estimates to the inverse variance method.. They are available only
for binary outcomes (see Stata command met.an in Cljlapter 1.8). ‘

For each study, the effect size from each trial 6, is given ‘welght'wl. in the
analysis. The overall estimate of the pooled effect, 6, is given by:

Y wp

0y = S,

Unlike with inverse variance methods, relative effect measures are com-
bined in their natural scale, although their standard errors (and confidence
intervals) are still computed on the log scale. o _

For combining odds ratios, each study’sOR is given weigh

t13,14
1

b.c;
W, = ——
N’

and the logarithm of OR,,, has standard error given by”

1(E _F+G_ H
SE[n(ORw)]= 2| e ¥ Rxs T2
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where

_vad. g Vb
_ZN,-’S—ZN,’

E= Z(a +d)ad. Z(a +d)bc_

G-= Z(b +;[)a L H = Z(b+c)bc.

For combining risk ratios, each study’s RR is given weight'®

. = SiThi

i N.

3

and the logarithm of RR,,;, has standard error given by

SE[In(RR, )] = /R_i’?

where

N?

1

P;Z(’H.’”zi(ai +Ci)_aiCiNi); R=Z.‘%; S =2%

For risk differences, each study’s RD has the weight'®

— M

i N.

3
and RD,,, has standard error given by

SE(RDyy) =+ 7/ K2,

where

g= Z[aib{ngi +c,dn } K _ 2[%]

mny N, iz
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However, the test of homogeneity is based upon the inverse variance
weights and not the Mantel-Haenszel weights. The heterogeneity statistic
is given by

=Y w,(6, -0 )’
where 6 is the log odds ratio, log relative risk or risk difference.

Peto’s odds ratio method

An alternative to the Mantel-Haenszel method is a method due to Peto
(sometimes attributed to Yusuf, or to Yusuf and Peto).” The overall odds
ratio is given by

Zw In(OR,)

5 )

where the odds ratio OR, is calculated using the apprommate Peto method

described in the md1v1dua1 trial section, and the weight w, is equal to the

hypergeometric variance of the event count in the intervention group, v,
The logarithm of the odds ratio has standard error

OR,.. = exp

Peto

1

)

SE{In(ORy,,, )] =

The heterogeneity statistic is given by
0= v,(nOR, ~1nORp,)".

The approximation upon which Peto’s method relies has shown to fail

when treatment effects are very large, and when the sizes of the arms of the
trials are seriously unbalanced.”” Severe imbalance, with, for example, four
or more times as many participants in one group than the other, would
rarely occur in randomised trials. In other circurnstances, including when
event rates are very low, the method performs well.”® Corrections for zero
cell counts are not necessary for this method (see Stata command metan in
Chapter 18).

Extending the Peto method for pooling time-to-event data

Pooling of time-to-event outcomes can be achieved either by computing
hazard ratios for each trial and pooling them using the inverse variance
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method (as explained above), or by exploiting a link between the log rank
test statistic and the Peto method, as follows.
For each trial, the calcu

lation of a log rank statistic involves dividing the
follow-up period into a s

eries of discrete time intervals. For each interval
bserved in the treated group O,j, the number of
xpected in the treatment group under the nul]
hypothesis E',.j and its variance v, are calculated (for formulae, see for
example Altman'). The expected count and its variance are computed
taking into account the number still at risk of the event within each time
period. The log-rank test for the 7th trial is computed from ZO,;, ZE,j and
v; summed over all the time periods, ;.

Following the same format as the Peto odds ratio method, an estimate of
the hazard ratio in each trial is given by*

HR, =exp ZO'JZ— ZEﬁ 5
v;

with standard error

SEln(HR)]=\I/Y o,.

The overall hazard ratio i

S given by the weighted average of the log
hazard ratios

HR,, . = exp % 5
w;

where the weights w, are equal to the variance

'UU

S computed from the trials,

The logarithm of the overall hazard ratio has standard error

SE[In(HR, 1

Peto )] = .

Computatio_n of the components of the log-rank statistic ZO,I, EEr)‘ and
v;; is straightforward if individual patient data are available. Methods
have been proposed for indirectly estimating the log hazard ratio and its

variance from graphical and numerical summaries commonly published in
reports of randomised controlled trials.”
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DerSimonian and Laird random effects mod"jls rreat.
Under the random effects model, the assumption ;’; a Conll\;n:rl]al dis
. i -are assumed have a No -
ment effect is relaxed, and the effect 2512';'; 6, a:ual DerSimonian and I aird®
. ; d variance 7. eu
tribution with mean an

estimate of 72 is given by

oo O-G-D
S
zwi_ Zwi

isti i if Q <k-1, and
where Q is the heterogeneity statstic, W{th 72 set to zero if Qtimate (;f d
Iculated as in the inverse variance method. T he: es '
i et i be taken as the inverse variance
combined effect for the heterogeneity may . ; o e
timate, although the Mantel-Haenszel estimate may be pre ™ .na »
ES odds’ ratios and risk ratios, the effect size is taken as e ; tur:
r . - .
logarithm of the OR and RR. Each study’s effect size is given weigh
o

1
w; =W-

The pooled effect size is given by

zw;ei

with standard error

SE(@pL) ==

~
.

Note that when 72 = 0, i.e. where the heterogeneity §tatistic Qis :tas :}rlr:)z:l:
as orosmaller than its degrees of freedom (k- 1), the weights reduce to

i i e variance method. _ ) ]
gle;nt}?y t}sl:ig:tirsof 7? is greater than zero then the weights in ‘rar%;:iontmo

: Zdels (', = 1/(SE(8)* + 7°)) will be smaller and more suzm ?I{hi X
eﬁelitzger than the weights in fixed effect models (w, = 1/315((:9;1i 1}, i
e will be more conserv:
random-effects meta-analyses vat

ncl)ila;;eiinintervals will be wider) than fixed effect analyses® since the
C

jance of the pooled effect is the inverse of the sum of the weights. It also
- vari

297



wavaasasae noYICWD LN HEALIH CARE

me;r.ls t:;lat random effects models give relatively more weight to smaller
studies than the fixed effect model. This may not al i
a1 y always be desirable (see
Tl‘1e DerSimc_)nian and Laird method has the same wide applicability as
the inverse variance method, and can be used to combine any type of

esumates provided standard errors are available (see Stata commands
meta and metan in Chapter 18).

Confidence interval for overall effect

The 100(1 - )% confidence interval for the overall estimate @is given by
6 - (2,4, X SE@)) 10 0 + (2102 X SE®)),

w-here @ is the log o.dds ratio, log relative risk, risk difference, mean
difference or standardised mean difference, and z is the standard Normal

f:leviate. For example, if o = 0.05, then 2, .» = 1.96 and the 95% confidence
interval is given by

6- (1 .96 x SE(e)) 06+ (1 .96 x SE(e)).

Confidence .intervals for log odds ratios and log risk ratios are exponenti-
ated to provide confidence intervals for the pooled OR or RR.

Test statistic for overall effect

11-1 all cases a test statistic for the overall difference between groups is
derived as

0

Z=
SE@©)

(where the odds ratio or risk ratio is again considered on the log scale)
Under the null hypothesis that there is no treatment effect, z will follow z;
standard Normal distribution. ’

For odds ratios an alternative test statistic is given by comparing the
nmber of observed and expected events in the treatment group given no
difference is present between the groups. This test is given by

Y (a, - Ela,)y?
. 3

=
Yo,
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where E[a] and v, are as defined above. Under the null hypothesis of no
treatment effect, this statistic follows a chi-squared distribution on one
degree of freedom.

Test statistics of homogeneity

For a formal test of homogeneity, the statistic Q will follow a chi-squared
distribution on k — 1 degrees of freedom under the null hypothesis that the
true treatment effect is the same for all trials.

Breslow and Day proposed an alternative test of the homogeneity of odds
ratios, based upon a comparison of the observed number of events in the
intervention groups of each trial (@), with those expected when the
common treatment effect OR is applied (calculation of these expected
values involves solving quadratic expressions). The test statistic is given by

Opp = Z(ai ~Ele _—I OR]}

.

where each trial’s variance v, is computed using the fitted cell counts

v = ! + 1 — + 1 .
Ela,|OR] E[b,|OR] E[c;|OR) El4,|OR]

Under the null hypothesis of homogeneity Qg also has a chi-squared
distribution on & — 1 degrees of freedom.

Use of stratified analyses for investigating sources of
heterogeneity

In a stratified analysis the trials are grouped according to a particular
feature or characteristic and a separate meta-analysis carried out of the
trials within each subgroup. The overall summaries calculated within each
subgroup can then be inspected for evidence of variation in the effect of the
intervention, which would suggest that the stratifying characteristic is an
important source of heterogeneity and may moderate treatment efficacy.

Stratified analysis can be used when the trials can be grouped into a small
number of categories according to the study characteristic; meta-regression
(see Chapter 9) can be used when the characteristic is a continuous measure.

An inference that the treatment effect differs between two or more
subsets of the trials should be based on a formal test of statistical
significance. There are three methods to assess statistical significance.
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Consider first a stratified analysis with the trials grouped into . sub-
groups. By performing separate meta-analyses within each subgroup, we
obtain for the kth subgroup:

6,, an estimate of the overall effect within each group,

SE(6,), the standard error of these estimates,

Q,, the heterogeneity observed within each group.

If there are only 2 groups, the significance of the difference between the
two groups can be examined by comparing the z statistic

2= 6,-6,
JISE@,)F* +[SE®,)F

with critical values of the Normal distribution.

An alternative test, which can be used regardless of the number of sub-
groups, involves explicitly partitioning the overall heterogeneity into that
which can be explained by differences between subgroups, and that which
remains unexplained within the subgroups. If the heterogeneity of the over-
all unstratified analysis is Q,, the heterogeneity explained by differences
between subgroups, Q,, is given by:

QB=QT_2Q)::

which can be compared with critical values of the chi-squared distribution
with £-1 degrees of freedom.

The problem can also be formulated as a meta-regression (see Chapter
9), using 4-1 dummy variables to indicate membership of the % subgroups,
in the standard manner used in multiple regression. The meta-regression
will also produce estimates of the differences between a baseline reference
subgroup and each of the other subgroups. If the categories are ordered,
meta-regression should be used to perform a test for trend by denoting
group membership by a single variable indicating the ranked order of each
subgroup.

The interpretation of comparisons between subgroups should be
undertaken cautiously, as significant differences can easily arise by chance
(a type I error), or are explicable by other factors. Even when the studies in
the meta-analysis are randomised controlled trials, the investigation of
differences between subgroups is a non-randomised comparison, and is
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prone to all of the difficulties in inferring causality in observational studies
(see Chapter 12). Where multiple possible sources of heterogeneity are
investigated, the chance of one of them being found to be statistically
significant increases, so the number of factors considered should be
restricted. Pre-specification (in a protocol) of possible sources of hetero-
geneity increases the credibility of any statistically significant findings, as
there is evidence that the findings are not data-derived. Examples of
stratified meta-analyses are shown in the Case studies 1 and 3 below.

Often the stratifying factor is the type of intervention. For example, a
systematic review may include placebo controlled trials of several drugs, all
for the same condition. The meta-analysis will be stratified by drug, and
will provide estimates of treatment effect for each drug. Here a test of
differences between subgroups is effectively an indirect comparison of the
effects of the drugs. Although such a test can provide indirect evidence of
relative treatment effects, it is much less reliable than evidence from
randomised controlled trials which compare the drugs directly (head-to-
head comparisons). Similar situations also arise with non-pharmacological
interventions. Such indirect comparisons are considered by Bucher ez al.”
and Song er al.*

Meta-analysis with individual patient data

The same basic approaches and meta-analysis methods are used for
meta-analyses of individual patient data (APD)* (see Chapter 6). However,
there are two principal differences between IPD analyses and those based
on published summary statistics. Firstly, the IPD meta-analyst calculates
the summary tables or statistics for each study, and therefore can ensure
all data are complete and up-to-date, and that the same method of
analysis is used for all trials. Secondly, summary statistics can be calcu-
lated for specific groups of participants enabling full intention-to-treat
(see below) and subgroup analyses to be produced. Additionally, it is
worth noting that IPD meta-analyses often combine time-to-event data
rather than binary or continuous outcomes, the meta-analyst calculating
the required components of the log rank statistic in the same manner for
each of the trials.

Additional analyses

Additional analyses undertaken after the main meta-analysis investigate
influence, robustness and bias. Influence and robustness can be assessed in
sensitivity analyses by repeating the meta-analysis on subsets of the original
dataset (see Chapter 2 for an example). The influence of each study can be
estimated by deleting each in turn from the analysis and noting the degree
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to which the size and significance of the treatment effect changes (see Stata
command metainf in Chapter 18). Other sensitivity analyses can assess
robustness to uncertainties and assumptions by removing or adding sets of
trials, or by changing the data for individual trials. Situations where these
may be considered include when some of the trials are of poorer quality
(Chapter 5), when it is unclear whether some trials meet the inclusion
criteria, or when the results of trials in the published reports are ambiguous
and assumptions are made when extracting data. Methods for investigating
bias, including publication bias, are described in detail in Chapter 11 (see
also Stara command metabiag in Chapter 18).

Some practical issues

Although it is desirable to include trial results from intention to treat
analyses, this is not always possible given the data provided in published
reports. Reports commonly omit participants who do not comply, receive
the wrong treatment, or who drop out of the study. All of these individuals
can easily be included in intention to treat analyses if follow-up data are
available, and it is most important that they are included if the reasons for
exclusion relate to the treatment that they received (such as drop-outs due
to side-effects and poor tolerability of treatment). Occasionally full details
of the outcomes of those excluded during the trial may be mentioned in the
text of the report, but in many situations assumptions must be made
regarding their fate. By inventive use of sensitivity analysis (using zworsz case,
best case and most likely case scenarios for every trial) it is possible to assess
the influence of these excluded cases on the final results. The issue is more
problematic for continuous outcomes, where there is a continuum of
possible scenarios for every excluded participant.

Other problems can occur when trials have no events in one or both
arms. In these situations inverse variance, Mantel-Haenszel and
DerSimonian and Laird methods require the addition of a small quantity
(usually 0.5) to the cell counts to avoid division by zero errors. (Many soft-
ware implementations of these methods automatically add this correction
to all cell counts regardless of whether it is strictly needed.) When both
groups have event rates of zero (there being no events in either arm) odds
ratios and relative risks are undefined, and such trials must be excluded
from the analysis. The risk difference in such situations is zero, so the trials
will still contribute to the analysis. However, both inverse variance and
Mantel~-Haenszel methods perform poorly when event rates are very low,
underestimating both treatment effects and statistical significance.'® Peto’s
odds ratio method gives more accurate estimates of the treatment effects
and their confidence intervals providing the sample sizes of the arms in the
trials are not severely unbalanced.
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Other methods of meta-analysis

The meta-analytical methods described above are stracliglﬁtforwg(r:ga;:i
isti t pa .
i i tical software and spreadshee :
to implement in most statis : : '
gitsli,er moxi complex methods exist, and are implemented in Ssggcu;l:lsc;
statistical software packages, such as Stata (see' Chapte_:r lii), > 10, and
StatXact (see Box 17.1 in Chapter 17). Maximum hkel1 (;ios - glwin
i erform fixed effect meta-analysis,
egression can also be used to p : : i
;i\i similar answers to the Mantel-Haenszel and 1nv§r§1e“vlaglan§e 2;}:;(1
i i Maximum likelihoo andr
vided sample sizes are large. ‘ ‘
pr:a.)xirnum likI::Iihood (REML) estimation techniques als:o enabled .b.ett:
Iettimation of the between trial variance 7%, and can e§t1mate t;ddm?:ee
f 727 Bayesian methods
h as the standard error o _
P ior 1 ion fr ther sources, such as is
i or information from o s .
Chapter 2) can incorporate pri : e alensing
i itati ch,® whilst exact methods
available from qualitative research, '
permutation algorithms to compute treatment effects and P values

Case study 1 : support from caregivers during childbirth -
Descriptive studies of women’s childbirth experiences have §uggeste 1 that
women appreciate advice and information from their careg:;celri; co! for
ible assistance to cope with labour,
easures and other forms of tangi _ . '
Ee continuous presence of a sympathenc. person. A systemaft;g HrleC\::Z
included studies that evaluated the effects of mé:raplartumliup;::;t(:hos()dalb :
ildbi ical as well as .

i a variety of childbirth outcomes, medica . _
g::rsozrtlco;e inZluded in the review was the use of epidural gnaest;e512
during delivery. Six trials reported this outcome, four from Amerltclflae i\r} al;wﬂy

ix trials husbands, partmers or o

m Europe. In four of the six tria IS y
fxr:z:mbers \frere also usually present. The person prowdlngdth; si?:s)e
intervention was variously described in the tpals as a mi “'; %19_ o 3,
monizrice and a doula. The results of the six studies atr;:i glvle;n 1:; k ; o c.m;

i described in this chap

Ten alternative methods have been :

be uZed to perform a meta-analysis of these data. The results are shown in

Table 15.4.

Table 15.3 Rares of use of epidural anaesthesia in trials of caregiver support.

i Standard Care

ot g;;;fr:z ;’Irs o Epidurals / N

5 62/131
Bréart 1992 (France) 55/133 s
Bréart 1992 (Belgium) 281/656 190
Gagnon 1997 (Canada) 139/209 oy
Hodnertt 1989 (Canada) 30/72 it
Kennell 1991 (USA) 24/2121 o0
Langer 1998 (Mexico) 205/3
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Table 15.4 Results of meta-analyses of epidural rates from trials of caregiver

support.
Method Estimate of effect Significance of Test for
(95% CI) effect heterogeneity
Odds ratio
Peto 0-59 (0-51 to 0:69) z=7-05, P <0-0001 x =385, P < 0-001
Mantel-Haenszel 0-59 (0-51 to 0-69) z =698, P < 0-0001 x2 =389, P < 0-001
Inverse variance 0-60 (0-52 to 0-70) 2z =670, P <0-0001 xI=38-8, P < 0-001
DerSimonian
and Laird 0-54 (0-34 to0 0-85) z=2-64, P =0-008
Risk rato
Mantel-Haenszel 0-79 (0-74 to 0-85) z =695, P < 0-:0001 x2=29-8, P < 0-001
Inverse variance 0-80 (0-75 to 0-85) z=1714,P <0-0001 x2=29-7, P < 0-001
DerSimonian
and Laird 0-77 (0-64 10 0-92) z =2-93, P =0-003
Risk difference

Mantel-Haenszel -0-117 (-0-149 t0 —-0-085) z = 713, P < 0-0001 xZ=33-1, P < 0-001
Inverse variance -0-127 (-0-158 to —0-095) z = 7-86, P < 0-0001 X2 =327, P < 0-001
DerSimonian

and Laird -0-124 (-0-211 10 -0-038) z = 2-81, P = 0-005

There are some notable patterns in the results in Table 15.4. First, there
is substantial agreement between Peto, Mantel-Haenszel and inverse
variance methods for odds ratios and for risk ratios, indicating that in this
instance, where trials are large and event rates reasonably high, the choice
of the fixed effect weighting method makes little difference to the results.
Secondly, there are substantial differences between treatment effects
expressed as odds ratios and risk ratios. Considering the Mantel-Haenszel
results, the reduction in the odds of having an epidural with additional
caregiver support is 41% (100 X (1 ~ 0-59)), whilst the relative risk reduc-
tionis 21% (100 X (1 - 0-79)), only around half the size. Where events are
common (around half the women in the standard care groups received
epidurals) odds and risks are very different, and care must be taken to
ensure that a reader of the review is not misled into believing that benefits
of intervention are larger than is truly the case.®

The tests of homogeneity were also -statistically significant for odds
ratios, risk ratios and risk differences. As a result the confidence intervals
for the DerSimonian and Laird random effects estimates are wider than
those calculated from fixed effect models. The estimates of the benefit of
treatment expressed as relative risks and odds rarios also increase as the
random effects model attributes proportionally greater weight to the small-
est trials, which in this example report larger relative benefits of treatment.

The report mentions that the benefit of the intervention may be expected
to be greater when partners or other family members are absent at the birth,
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which could explain the significant heterogeneity. Stratifying the an'alysis
into ‘accompanied’ and ‘unaccompanied’ trials (partners were absent in the
Kennell and Langer trials) does explain a large p.ropomon of the hetero-
geneity. The relative risk reduction in the four tr1a1§ where pa_l:tners wer—e
also present is 11% (95% CI: 3 to 18%; heterogeneity Fe§t X3 = 2-920, P =
0-4), whilst in the two trials where partners were absent itis 36% §95 % CI:
29 to 43%; heterogeneity test X3 = 5-39, P = 0-.02). The dxfferenc.es
between the subgroups is highly statistically significant (heterogeneity
explained by the subgroups X2 =29-8-(2:92+ 5-39) =21-5: P < _0-00_01).

The conclusion of the analysis is that the presence o.f a caregiver is of
benefit in reducing the use of epidural analgesia in all situations, but that
the benefit seems much greater in situations were partners are usually

absent.

Case study 2 : Assertive community treatment for severe mental

disorders o
Assertive community treatment (ACT) is a n}ult_idlsaplmary team basefi
approach to care for the severely meliltally il in the cgmmumty. It is
assertive in that it continues to offer services to uncogperatwfe and relgctan;
people, and places emphasis on treaum?nt compha.nce with the au:; od
improving mental state. A systematic review comparing AC'I“ 10 stanfrar
care (which consists of outpatient appointments and assistance orri
community mental health teams) found three ma1§ that assessed menta
state at around 12 months.?® The results are shown in Table 15.5.

Table 15.5 Trials comparing mental state at 12 months between ACT and standard
care.

Trial ACT Standard care Assessment scale
N Mean(SD) N  Mean (SD)

i . . . Brief psychiatric rating scale
i don 30 41-4(140) 28 42:3(12 4) 1 C

ﬁltﬁ-lsl: ((;;0 Eouis% 37 0-95(0-76) 35 0-89 (0-65) Brief symptom mvegt(:jry
Lehman (Baltimore) 67 4-10 (0-83) 58 3-80(0-87) Colorado symptom index

All three trials have used different scoring systems SO the mal' results
require standardisation to a common scale before t.hey can b.e combined. In
addition, high scores on the Colorado symptom index indicate good otl.lllt-
comes, whilst high scores on the other two scales are poor outcomes, so the
direction of the results for Lehman must be reversgd before the data can ‘t?e
combined (this is easily accomplished by multiplying t.he means by -1). Sl.x
alternative models for combining the data were described above, and their

results are given in Table 15.6. N
In this situation, the differences between the analyses are minimal.
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Table 15.6 Results of meta-analyses of mental status from trials of ACT.

Method Estimate of effect Significance of Test for
(95% CI) effect heterogeneity

Fixed effect models
Cohen’s d -0-16 (-0-41 t0 0-08) =z=1-29,P=0-20 X; = 2-34, P =0-31
Hedges’ adjusted g -0-16 (-0-41 10 0-08) =z =129, P=020 x:=231,P=032
Glass’s A ~0-16 (-0-40 10 0-09) z=1-24,P =021 X; = 228, P=032

Random effects models

Cohen’s d -0-15 (04210 0-12) =z=1-12,P=026
Hedges® adjusted g ~0-15 (04210 0-11) =z = 1-12, P =0-26
Glass’s A ~0-15 (-0-42 10 0-12) =z=1-10, P =027

Cohen’s d and Hedges’ adjusted g will only differ in very small samples.
Glass’s A will differ when the standard deviations vary substantially
between treatment and control groups, which was not the case here. Very
little heterogeneity was observed, so random and fixed effects analyses are
very similar. The analysis can conclude that although all trials favoured
ACT no significant change in mental status at 12 months was found with
ACT. Also benefits of ACT larger than 0-5 standard deviations or more can
probably be excluded as they are outside the lower limit of the confidence
interval. To express the findings in a more accessible way consider the
standard deviations from each of the trials. A change of 0-5 standard
deviations can be estimated to be 67 points on the brief psychiatric rating
scale, 0-45-0-5 points on the brief symptom inventory and 0-4-0-45 points
on the Colorado symptom index.

Case study 3 : effect of reduced dietary sodium on blood pressure

Restricting the intake of salt in diet has been proposed as a method of
lowering blood pressure, both in hypertensives and people with normal
blood pressure. A systematic review of randomised studies of dietary
sodium restrictions compared to control included 56 trials comparing salt
lowering diets with control diets.* Only trials which assessed salt reduction
through measurement of sodium excretion were included. Twenty-eight of
the studies recruited hypertensive participants, and 28 recruited normoten-
sive participants; 41 studies used a cross-over design, whilst 15 used a par-
allel group design.

The focus of interest in these trials is the difference in mean blood
pressure (both diastolic and systolic) between the salt reducing diet and
the control diet. As all measurements are in the same units (mmHg) the
difference in means can be used directly as a summary statistic in the
meta-analysis. The trials estimated this difference in mean blood pressure
in four different ways:

306

OD1MAL1I10 . 0UNAL, (YL L LISty & Rras mamermEmes e r e T

(i) in a parallel group trial, as the difference in mean final blood pressure
between those receiving the salt lowering diet and the control diet

(i) in a parallel group trial, as the difference in mean change in blood
pressure whilst on the diets, between those on the salt lowering diet and
those on the control diet

(ii1) in a cross-over trial, as the mean within person difference between final
blood pressure at the end of the salt lowering diet and at the end of the
control diet

(iv) in a cross-over trial, as the mean within person difference in the change
in blood pressure whilst on the salt lowering diet compared to the
control diet.

Results from these four different designs all estimate the same summary
measure. However, it is likely that trials that use within person changes
are more efficient than those that use final values, and that those which
use cross-over designs are more efficient than those recruiting parallel
groups. These differences are encapsulated in the standard errors of the
estimates in differences in mean blood pressure between the two diets,
provided appropriate consideration is given to the within person pairing
of the data for change scores and cross-over trials in the analysis of those
trials. As the standard inverse variance approach to combining trials uses
weights inversely proportional to the square of these standard errors, it
copes naturally with data of these different formats, so that the trials are
given appropriate weightings according to the relative efficiency of their
designs.

The authors of the review reported that they had had to use a variety of
techniques to estimate these standard errors, as they were not always
available in the original reports. If necessary standard errors can be derived
directly from standard deviations, confidence intervals, ¢ values and exact P
values. However, when paired data (both for change scores and cross-over
trials) are used itis occasionally necessary to make an assumption about the
within participant correlation between two time-points if the analysis
presented mistakenly ignores the pairings. Similarly, when results are
reported simply either as significant or non-significant, particular P values
must be assumed from which the standard errors can be derived. Such
problems are common in meta-analyses of continuous data due to the use
of inappropriate analyses and the poor standard of presentation commonly
encountered in published trial reports.

Meta-analyses were undertaken separately for the trials in normotensive
and hypertensive groups, and for systolic and diastolic blood pressure. The
results are given in the Table 15.7.

The analysis shows statistically significant reductions of around 56
mmHg in systolic blood pressure in hypertensive participants, with a
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Table 15.7 Impact of salt lowering diets on systolic and diastolic blood pressure.

Method Estimated Test of Test for
difference in overall effect heterogeneity
blood pressure '
reduction
(95% CI)
(diet—controtl)
(mmHg)
Normotensive trials
Systolic
Inverse variance -1-2 (-1-6 10 -0-8) z = 6-4 »P <0001 x,=751,P<0-001
DerSimonian
and Laird ~17(-2-410-09) z=4-2,P <0001
Diastolic
Inverse variance —0-7 (-1-0t0-0-3) 2=3-4 »P=0001 x%,=561,P=0-001
DerSimonian

and Laird -0-5(-1-2100'1) 2z=1-63,P=010

Hypertensive trials

Systolic
Inverse variance -5-4 (63 t0 —4-5) z=12-0, P < 0-001 X%, =99-2, P <0-001
DerSimonian
and Laird -59(-7810—4'1) z=64,P <0-001
Diastolic
Inverse variance —3-5 (4-0 t0-2:9) z= 11-6, P < 0-001 X;, =57-3, P =0-001
DerSimonian
and Laird -3-8(4-8t0-2-9) 2=80, P <0-001

smaller reduction in diastolic blood pressure. The size of the reductions
observed in normotensive participants was much smaller, the differences
between the hypertensive and normotensive subgroups being statistically
significant for both systolic (z = 4:12: P < 0-0001) and diastolic (z = 5-61:
P < 0:0001) measurements. The confidence intervals for the DerSimonian
and Laird random effects analyses for all reductions are much wider than
those of the inverse variance fixed effect analyses, reflecting the significant
heterogeneity detected in all analyses. The authors investigated this further
using methods of meta-regression (see Chapters 9 and 11 and Stata
command metareg in Chapter 18) and showed that the heterogeneity
between trials could in part be explained by a relationship between the
reduction in blood pressure and the reduction in salt intake achieved in
each trial. This regression analysis, and the possible presence of bias, is
discussed in Chapter 11.

On the basis of these analyses the authors concluded that salt-lowering
diets may have some worthwhile impact on blood pressure for hypertensive

people but not for normotensive people, contrary to current recommenda-
tions for universal dietary salt reduction.
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Discussion

‘0(7 ] ]. ] - f ] ] E ] .. 1 E
- - . . - .

method for a particular meta-analysis: identifying the data type (binary,

continuous, time to event), choosing an appropriate summary statistic, and
3

selecting a weighting method for combining the studies, as summarised
o an'd ::Illez'(l); rlescl.xii.red from a summary statistic i‘s _tl_lat itis as stablelas
W'};:t p er the trials in the meta-analysis and subdivisions .of the popu t;
P_0551 . (;:ich the treatment will be applied. The more consmtenf it is, 1e
oreator it the justification for expressing the effect of treatment in a su‘lg'z
B iy nurrllber » A second consideration is that th.e summary statxls:nr
Sﬁmuf;': r‘ge easily ﬁnderstood and applied by those using the ‘re\tr:e;:.in :11
}sair(l)ary data the choice is not straightforward, and nlo. mg;lsurtee;sme
i i in detail in Chap .
Circums?nce:).f'rsl:ler;irlxsa?;ess::teis(;(i)ctLSI?c?:eiontinuous 'data is princili)alliyf
def::ncitrllzg by whether trials all report the outcome using the same scale.

Box 15.1 Considerations in choosing a method of meta-
analysis

isti ds upon:
ice of summary statistic depen_ _ : i3
((:al)mthe type of data being analysed (bnary, conunuo;;, t::n;ec-rtoo;:v;ia 1)s =
(b) the consistency of estimates of the treatment eilec

subgroups g o]
(c) the ease of interpretation of the summary staustic

Choice of weighting method depends up;m:. LA
(2) the reliability of the method ?vhen sample sxzcsme

(b) the reliability of the method if events are very s
(c) the degree of jmbalance in allocaton ratuos m !

i i f heterogeneity can affect: . '
?()m:::rt;e?o: (:neta-analysis should be considered, depending on the
a

irnilart jal characteristics : ) :
:vhethertyazf;}erall summary can have a sensible mcm t;lependmg on
¢ ks g Ol:;:;dwe'd b::lvet? aizzzlf:):s:}::a between-
ther a random effects me is used Iz 5
& :;?:1 vcariation and to modify the significance and precision O
imate of overall effect =
(d) :vs}t::t]l:er 2he impact of other factors on the treatment effect can

investigated using stratified analyses and methods of meta-regression.
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this is not the case use of a weighted mean difference method would be
erroneous. However, the standardised mean difference method can be used
for either circumstance. Differences in results between these two methods
can reflect differences in both the treatment effects calculated for each
study, and the study weights. Interpretation of a weighted mean difference
is easier than that of a standardised mean difference as it is expressed in
natural units of measurement rather than standard deviations.

For all types of outcome, the choice of weighting scheme involves
deciding between random and fixed effect models, and for fixed effect
analyses of binary outcome measures, between inverse variance,
Mantel-Haenszel and Peto methods. There is no consensus regarding the
choice of fixed or random effects models, although they differ only in the
presence of heterogeneity, when the random effects result will usually be
more conservative. It is important to be aware of circumstances in which
Mantel-Haenszel, inverse variance and Peto methods give erroneous
results when deciding between them. Inverse variance methods are poor
when trials are small and are rarely preferable to Mantel-Haenszel
methods. Both Mantel-Haenszel and inverse variance methods are poor
when event rates are very low, and Peto’s method can be misleading when
treatment effects are large, and when there are severely unequal numbers of
participants in treatment and control groups in some or all of the trials."”
Some of these points are illustrated in the case studies discussed above.

It is important to note that none of the analyses described can compen-
sate for any publication bias (see Chapter 11), nor can they account for bias
introduced through poor trial design and execution.
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