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Power Dividers and
Directional Couplers

7.1

Power dividers and directional couplers are passive microwave components used for power
division or power combining, as illustrated in Figure 7.1. In power division, an input signal is
divided into two (or more) output signals of lesser power, while a power combiner accepts
two or more input signals and combines them at an output port. The coupler or divider may
have three ports, four ports, or more, and may be (ideally) lossless. Three-port networks take
the form of T-junctions and other power dividers, while four-port networks take the form of
directional couplers and hybrids. Power dividers usually provide in-phase output signals with
an equal power division ratio (3 dB), but unequal power division ratios are also possible. Di-
rectional couplers can be designed for arbitrary power division, while hybrid junctions usually
have equal power division. Hybrid junctions have either a 90° or a 180° phase shift between the
output ports.

A wide variety of waveguide couplers and power dividers were invented and characterized
at the MIT Radiation Laboratory in the 1940s. These included E- and H-plane waveguide
T-junctions, the Bethe hole coupler, multihole directional couplers, the Schwinger coupler,
the waveguide magic-T, and various types of couplers using coaxial probes. In the mid-1950s
through the 1960s, many of these couplers were reinvented to use stripline or microstrip tech-
nology. The increasing use of planar lines also led to the development of new types of couplers
and dividers, such as the Wilkinson divider, the branch line hybrid, and the coupled line direc-
tional coupler.

We will first discuss some of the general properties of three- and four-port networks, and
then treat the analysis and design of several of the most common types of power dividers,
couplers, and hybrids.

BASIC PROPERTIES OF DIVIDERS AND DOUPLERS

In this section we will use properties of the scattering matrix developed in Section 4.3 to de-
rive some of the basic characteristics of three- and four-port networks. We will also define
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Divider [——> P,=aP, P, =P,+Ps| Divider [*——P,

P — or ~— or
coupler |——5 Py=(1-a)P, coupler S S

(@) (b)

FIGURE 7.1 Power division and combining. (a) Power division. (b) Power combining.

isolation, coupling, and directivity, which are important quantities for the characterization
of couplers and hybrids.

Three-Port Networks (T-Junctions)

The simplest type of power divider is a 7-junction, which is a three-port network with two
inputs and one output. The scattering matrix of an arbitrary three-port network has nine

independent elements:
St Sz Si3
[S1=1| 821 S22 823 |- (7.1)

S31 832 833

If the device is passive and contains no anisotropic materials, then it must be reciprocal
and its scattering matrix will be symmetric (S;; = §;;). Usually, to avoid power loss, we
would like to have a junction that is lossless and matched at all ports. We can easily show,
however, that it is impossible to construct such a three-port lossless reciprocal network that

is matched at all ports.
If all ports are matched, then S;; = 0, and if the network is reciprocal, the scattering
matrix of (7.1) reduces to
0 Si2 Si3
[S]= |:S12 0 523}- (7.2)
Si3 83 0

If the network is also lossless, then energy conservation requires that the scattering matrix
satisfy the unitary properties of (4.53), which leads to the following conditions [1, 2]:

1S + 1S3> = 1, (7.3a)
S + |S31* = 1, (7.3b)
1S1312 + 1523 1% = 1, (7.3¢)
S13823 =0, (7.3d)
833812 =0, (7.3¢)
81813 = 0. (7.3

Equations (7.3d)—(7.3f) show that at least two of the three parameters (512, S13, $23) must
be zero. However, this condition will always be inconsistent with one of equations (7.3a)—
(7.3c), implying that a three-port network cannot be simultaneously lossless, reciprocal,
and matched at all ports. If any one of these three conditions is relaxed, then a physically
realizable device is possible.

If the three-port network is nonreciprocal, then S;; # §;;, and the conditions of input
matching at all ports and energy conservation can be satisfied. Such a device is known as a
circulator, and generally relies on an anisotropic material, such as ferrite, to achieve non-
reciprocal behavior. Ferrite circulators will be discussed in more detail in Chapter 9, but
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we can demonstrate here that any matched lossless three-port network must be nonrecip-
rocal and, thus, a circulator. The scattering matrix of a matched three-port network has the

following form:
0 S Si3
[ST=1| 81 0 83| (7.4)

S31 S22 0

If the network is lossless, [S] must be unitary, which implies the following conditions:

831832 =0, (7.5a)
S51823 =0, (7.5b)
S1,S13 =0, (7.5¢)
1S121* + 181317 = 1, (7.5d)
15211 + IS = 1, (7.5¢)
153117 + |83 = 1. (7.59)

These equations can be satisfied in one of two ways. Either

Sip=583=51=0, [Si]=I[81=I[S3]=1, (7.6a)
or

$1=582=813=0, [Si2] =1[S3=1[Su|=1 (7.6b)

These results shows that §;; # S;; for i # j, which implies that the device must be non-
reciprocal. The scattering matrices for the two solutions of (7.6) are shown in Figure 7.2,
together with the symbols for the two possible types of circulators. The only difference
between the two cases is in the direction of power flow between the ports: solution (7.6a)
corresponds to a circulator that allows power flow only from port 1 to 2, or port 2 to 3, or
port 3 to 1, while solution (7.6b) corresponds to a circulator with the opposite direction of
power flow.

Alternatively, a lossless and reciprocal three-port network can be physically realized
if only two of its ports are matched [1]. If ports1and 2 are the matched ports, then the
scattering matrix can be written as

0 Si2 813
[SI=|S2 0 83 | (7.7)
Si3 Sz 833
00 1 @ 01 0 @
[S]=] 1 0 0 @ S]=10 0 1 @
010 100
©) ©)

(@ (b)

FIGURE 7.2  Two types of circulators and their scattering matrices. (a) Clockwise circulation.

(b) Counterclockwise circulation. The phase references for the ports are arbitrary.
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FIGURE 7.3 A reciprocal lossless three-port network matched at ports 1 and 2.

To be lossless, the following unitarity conditions must be satisfied:

S1383 =0, (7.8a)

STS813 + 853533 = 0, (7.8b)
S33812 + 853513 = 0, (7.8¢)

ISl + 8137 = 1, (7.8d)

Sl + 1S = 1, (7.8¢)

1S131% + 1823 % + |S331* = L. (7.89)

Equations (7.8d) and (7.8¢) show that | S13| = |S23], so (7.8a) leads to the result that Sj3 =
S$23 = 0. Then, |S12| = |S33] = 1. The scattering matrix and corresponding signal flow
graph for this network are shown in Figure 7.3, where it is seen that the network actu-
ally degenerates into two separate components—one a matched two-port line and the other
a totally mismatched one-port.

Finally, if the three-port network is allowed to be lossy, it can be reciprocal and
matched at all ports; this is the case of the resistive divider, which will be discussed in
Section 7.2. In addition, a lossy three-port network can be made to have isolation between
its output ports (e.g., $r3 = S32 = 0).

Four-Part N ks (Direetionat-Souptersy—

The scattering matrix of a reciprocal four-port network matched at all ports has the follow-
ing form:

0 S Si3 Sis
S22 0 53 Su
Si3 823 0 Sy
Si4 S4 S 0

[S1= (7.9)

If the network is lossless, 10 equations result from the unitarity, or energy conservation,
condition [1, 2]. Consider the multiplication of row 1 and row 2, and the multiplication of
row 4 and row 3:

S13823 + 814824 =0, (7.10a)
STaS13 + 854823 = 0. (7.10b)
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Multiply (7.10a) by S3,, and (7.10b) by S7;, and subtract to obtain
Sia (18131 = 15241 = 0. (7.11)

Similarly, the multiplication of row 1 and row 3, and the multiplication of row 4 and row
2, gives

S%5823 + Sty S34 = 0, (7.12a)
S%,S12 + S5453 = 0. (7.12b)

Multiply (7.12a) by S12, and (7.12b) by S34, and subtract to obtain
S23(1S12)* = [S341%) = 0. (7.13)

One way for (7.11) and (7.13) to be satisfied is if S14 = S>3 = 0, which results in a direc-
tional coupler. Then the self-products of the rows of the unitary scattering matrix of (7.9)
yield the following equations:

1S1l> + 181317 = 1, (7.14a)
1S121* + 1504l* = 1, (7.14b)
51312 + 1S54 = 1, (7.14c)
15241 + |S34* = 1, (7.14d)

which imply that |S13] = [Sz4| [using (7.14a) and (7.14b)], and that |S12| = |S34| [using
(7.14b) and (7.14d)].

Further simplification can be made by choosing the phase references on three of the
four ports. Thus, we choose S12 = S34 = a, S13 = Be’/?, and S>4 = Be/?, where o and B
are real, and 6 and ¢ are phase constants to be determined (one of which we are still free
to choose). The dot product of rows 2 and 3 gives

which yields a relation between the remaining phase constants as
0+¢=m+2nm. (7.16)

If we ignore integer multiples of 27, there are two particular choices that commonly occur
in practice:

1. A Symmetric Coupler: & = ¢ = m/2. The phases of the terms having amplitude g
are chosen equal. Then the scattering matrix has the following form:
0 o jB O
a 0 0 JB
jB 0 0 «
0 jB o O

[S]= (7.17)

2. An Antisymmetric Coupler: & = 0, ¢ = m. The phases of the terms having ampli-
tude S are chosen to be 180° apart. Then the scattering matrix has the following

form:
0 o B 0
[S] = ; 8 8 _f . (7.18)
0 —B a« 0
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Input @ @ Through
Igolated @ @ Couple'd
Input @ @ Through
p g
I‘solated @ @ Couple'd

FIGURE 7.4  Two commonly used symbols for directional couplers, and power flow conventions.

Note that these two couplers differ only in the choice of reference planes. In addition,
the amplitudes « and S are not independent, as (7.14a) requires that

o’ 4+ B2 =1. (7.19)

Thus, apart from phase references, an ideal four-port directional coupler has only one de-
gree of freedom, leading to two possible configurations.

Another way for (7.11) and (7.13) to be satisfied is if |S13| = |S24| and |S12| = |S34].
If we choose phase references, however, such that Sj3 = So4 = o and S12 = S34 = jB
[which satisfies (7.16)], then (7.10a) yields (S>3 + S}4) = 0, and (7.12a) yields B(S], —
S$73) = 0. These two equations have two possible solutions. First, S14 = S>3 = 0, which is
the same as the above solution for the directional coupler. The other solution occurs for
o = B = 0, which implies that S12 = S13 = S24 = S34 = 0. This is the degenerate case of
two decoupled two-port networks (between ports 1 and 4, and ports 2 and 3), which is of
trivial interest and will not be considered further. We are thus left with the conclusion that
any reciprocal, lossless, matched four-port network is a directional coupler.

The basic operation of a directional coupler can be illustrated with the aid of Figure 7.4,
which shows two commonly used symbols for a directional coupler and the port definitions.
Power supplied to port 1 is coupled to port 3 (the coupled port) with the coupling factor
|S13]> = B2, while the remainder of the input power is delivered to port 2 (the through
port) with the coefficient |S15|> = &> = 1 — 2. In an ideal directional coupler, no power
is delivered to port 4 (the isolated port).

The following quantities are commonly used to characterize a directional coupler:

P
Coupling = C = 101og Fl — —20log 8 dB, (7.20a)
3
L P; B
Directivity = D = 10log — = 20log —— dB, (7.20b)
Py |S14]
) P
Isolation = 7 = 10 log B = —20log |S14| dB, (7.20c)
A
) P
Insertion loss = L = 10log 5= —201log |S12| dB. (7.20d)
P

The coupling factor indicates the fraction of the input power that is coupled to the out-
put port. The directivity is a measure of the coupler’s ability to isolate forward and back-
ward waves (or the coupled and uncoupled ports). The isolation is a measure of the power
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delivered to the uncoupled port. These quantities are related as
I =D+ CdB. (7.21)

The insertion loss accounts for the input power delivered to the through port, diminished by
power delivered to the coupled and isolated ports. The ideal coupler has infinite directivity
and isolation (S14 = 0). Then both « and B can be determined from the coupling factor, C.

Hybrid couplers are special cases of directional couplers, where the coupling factor is
3 dB, which implies that « = 8 = 1/+/2. There are two types of hybrids. The quadrature
hybrid has a 90° phase shift between ports 2 and 3 (6§ = ¢ = 7/2) when fed at port 1, and
is an example of a symmetric coupler. Its scattering matrix has the following form:

01 j 0
1|1 00 j

[S]_f P00 (7.22)
0 j 10

The magic-T hybrid and the rat-race hybrid have a 180° phase difference between ports
2 and 3 when fed at port 4, and are examples of an antisymmetric coupler. Its scattering
matrix has the following form:

0 1 1 0
1 1 0 0 -1

[S]= % 1 0 0 1 (7.23)
0 -1 1 0

POINT OF INTEREST: Measuring Coupler Directivity

The directivity of a directional coupler is a measure of the coupler’s ability to separate forward
and reverse wave components, and applications of directional couplers often require high (35 dB
or greater) directivity. Poor directivity will limit the accuracy of a reflectometer, and can cause
variations in the coupled power level from a coupler when there is even a small mismatch on
the through line.

The directivity of a coupler generally cannot be measured directly because it involves a
low-level signal that can be masked by coupled power from a reflected wave on the through
arm. For example, if a coupler has C = 20 dB and D = 35 dB, with a load having a return loss
RL = 30 dB, the signal level through the directivity path will be D + C = 55 dB below the
input power, but the reflected power through the coupled arm will only be RL + C = 50 dB
below the input power.

One way to measure coupler directivity uses a sliding matched load, as follows. First, the
coupler is connected to a source and a matched load, as shown in the accompanying left-hand
figure, and the coupled output power is measured. If we assume an input power P;, this power
will be P. = C2P;, where C = 10(=CdB)/20 ig the numerical voltage coupling factor of the
coupler. Next, the position of the coupler is reversed, and the through line is terminated with a
sliding load, as shown in the right-hand figure.

Pc VO (Pmax’ Pmin)
Sliding
C Load ¢ f load

@ ) é o _%/ ~_|c 4_%_>
W = T %

Changing the position of the sliding load introduces a variable phase shift in the signal re-
flected from the load and coupled to the output port. The voltage at the output port can be
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7.2

written as
C .
L@=n<5+cww1§,

where V; is the input voltage, D = 10(P dB)/20 > 1 is the numerical value of the directivity, |I'|
is the reflection coefficient magnitude of the load, and 6 is the path length difference between
the directivity and reflected signals. Moving the sliding load changes 6, so the two signals will
combine to trace out a circular locus, as shown in the following figure.

Im VO A
v, CrV,
0 0 Vmax
mew ReV,
D 1

The minimum and maximum output powers are given by

C 2 c 2
@m=a<5—cm>, &m=3<5+qm>.

Let M and m be defined in terms of these powers as follows:

v e _( D )2 m_Pmax_<1+|r|D)2
Prax 1+|F|D ' Prin L =D .

These ratios can be accurately measured directly by using a variable attenuator between the
source and coupler. The coupler directivity (numerical) can then be found as

(wt7)
D=M|——).
m+1

This method requires that [I'| < 1/D or, in dB, RL > D.

Reference: M. Sucher and J. Fox, eds., Handbook of Microwave Measurements, 3rd edition, Volume II, Polytech-
nic Press, New York, 1963.

THE T-JUNCTION POWER DIVIDER

The T-junction power divider is a simple three-port network that can be used for power
division or power combining, and it can be implemented in virtually any type of transmis-
sion line medium. Figure 7.5 shows some commonly used T-junctions in waveguide and
microstrip line or stripline form. The junctions shown here are, in the absence of transmis-
sion line loss, lossless junctions. Thus, as discussed in the preceding section, such junctions
cannot be matched simultaneously at all ports. We will analyze the T-junction divider be-
low, followed by a discussion of the resistive power divider, which can be matched at all
ports but is not lossless.

Lossless Divider

The lossless T-junction dividers of Figure 7.5 can all be modeled as a junction of three
transmission lines, as shown in Figure 7.6 [3]. In general, there may be fringing fields and
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T N—s ]

(a) (b)

(c)
FIGURE 7.5 Various T-junction power dividers. (a) E-plane waveguide T. (b) H-plane wave-

guide T. (c) Microstrip line T-junction divider.

higher order modes associated with the discontinuity at such a junction, leading to stored
energy that can be accounted for by a lumped susceptance, B. In order for the divider to be
matched to the input line of characteristic impedance Zy, we must have
Y~—'B—|—1—|-1—1 (7.24)
n=J Zy  Zy  Zo '
If the transmission lines are assumed to be lossless (or of low loss), then the characteristic
impedances are real. If we also assume B = 0, then (7.24) reduces to

1 n 11
Zy Z, Zy
In practice, if B is not negligible, some type of discontinuity compensation or a reac-

tive tuning element can usually be used to cancel this susceptance, at least over a narrow
frequency range.

(7.25)

FIGURE 7.6  Transmission line model of a lossless T-junction divider.
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The output line impedances, Z; and Z,, can be selected to provide various power
division ratios. Thus, for a 50 €2 input line, a 3 dB (equal split) power divider can be made
by using two 100 2 output lines. If necessary, quarter-wave transformers can be used to
bring the output line impedances back to the desired levels. If the output lines are matched,
then the input line will be matched. There will be no isolation between the two output
ports, however, and there will be a mismatch looking into the output ports.

EXAMPLE 7.1 THE T-JUNCTION POWER DIVIDER

A lossless T-junction power divider has a source impedance of 50 2. Find the out-
put characteristic impedances so that the output powers are in a 2:1 ratio. Compute
the reflection coefficients seen looking into the output ports.

Solution
If the voltage at the junction is V, as shown in Figure 7.6, the input power to the
matched divider is

1V
Pin=__,
2 7o
while the output powers are

g 1

P=-2C_—_p.,

1 27, 3 in

b G2

2 = 5 7 = 3 in-

These results yield the characteristic impedances as
Z1=3Zy =150 Q,

37
Zz:T =75Q.

The input impedance to the junction is
Zin = 75||150 = 50 2,

so that the input is matched to the 50 €2 source.

Looking into the 150 €2 output line, we see an impedance of 50 || 75 = 30 €,
while at the 75 Q output line we see an impedance of 50 || 150 = 37.5 Q2. The
reflection coefficients seen looking into these ports are

30 — 150

=2 — _0.666,
30 + 150
37.5—175
r=>""" _ 0333,
2T 375475 n

Resistive Divider

If a three-port divider contains lossy components, it can be made to be matched at all ports,
although the two output ports may not be isolated [3]. The circuit for such a divider is
illustrated in Figure 7.7, using lumped-eclement resistors. An equal-split (—3 dB) divider is
shown, but unequal power division ratios are also possible.
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FIGURE 7.7  An equal-split three-port resistive power divider.

The resistive divider of Figure 7.7 can easily be analyzed using circuit theory. Assum-
ing that all ports are terminated in the characteristic impedance Zj, the impedance Z, seen
looking into the Z(/3 resistor followed by a terminated output line, is

z=20 7,- 250 (7.26)
T '
Then the input impedance of the divider is
Zo 27y
Lin = 3 + 3 = Z, (7.27)

which shows that the input is matched to the feed line. Because the network is symmetric
from all three ports, the output ports are also matched. Thus, S1;1 = S22 = S33 = 0.

If the voltage at port 1 is V3, then by voltage division the voltage V' at the center of the
junction is

270/3 2
Y Z0/3+220/3 3

i, (7.28)

and the output voltages are, again by voltage division,

A 3 1
N=V3=V——"—"7—=-V=-V]. (7.29)
Zo+ Zo/3 4 2

Thus, $21 = S31 = S23 = 1/2, so the output powers are 6 dB below the input power level.
The network is reciprocal, so the scattering matrix is symmetric, and it can be written as

T0 11
[S]:—[l 0 1]. (7.30)
2111 o

The reader may verify that this is not a unitary matrix.
The power delivered to the input of the divider is

1V}

Pp=—-——, 7.31
=57 (7.31)
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7.3

while the output powers are

1(/2r)?  1VvE 1
S RULA Ay (732)

P,=P -
2T T 87, 4

which shows that half of the supplied power is dissipated in the resistors.

THE WILKINSON POWER DIVIDER

The lossless T-junction divider suffers from the disadvantage of not being matched at all
ports, and it does not have isolation between output ports. The resistive divider can be
matched at all ports, but even though it is not lossless, isolation is still not achieved. From
the discussion in Section 7.1, however, we know that a lossy three-port network can be
made having all ports matched, with isolation between output ports. The Wilkinson power
divider [4] is such a network, with the useful property of appearing lossless when the output
ports are matched; that is, only reflected power from the output ports is dissipated.

The Wilkinson power divider can be made with arbitrary power division, but we will
first consider the equal-split (3 dB) case. This divider is often made in microstrip line or
stripline form, as depicted in Figure 7.8a; the corresponding transmission line circuit is
given in Figure 7.8b. We will analyze this circuit by reducing it to two simpler circuits
driven by symmetric and antisymmetric sources at the output ports. This “even-odd” mode
analysis technique [5] will also be useful for other networks that we will study in later
sections.

Even-Odd Mode Analysis

For simplicity, we can normalize all impedances to the characteristic impedance Zj, and
redraw the circuit of Figure 7.8b with voltage generators at the output ports as shown in
Figure 7.9. This network has been drawn in a form that is symmetric across the midplane;
the two source resistors of normalized value 2 combine in parallel to give a resistor of
normalized value 1, representing the impedance of a matched source. The quarter-wave
lines have a normalized characteristic impedance Z, and the shunt resistor has a normalized
value of r; we shall show that, for the equal-split power divider, these values should be
Z = /2 and r = 2, as given in Figure 7.8.

(a) (b)
FIGURE 7.8 The Wilkinson power divider. (a) An equal-split Wilkinson power divider in mi-

crostrip line form. (b) Equivalent transmission line circuit.
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FIGURE 7.9 The Wilkinson power divider circuit in normalized and symmetric form.

Now define two separate modes of excitation for the circuit of Figure 7.9: the even
mode, where Vg = Vg3 = 2V}, and the odd mode, where Vg = —V,y3 = 2V). Superpo-
sition of these two modes effectively produces an excitation of Vgy = 4V and Vg3 = 0,
from which we can find the scattering parameters of the network. We now treat these two
modes separately.

Even mode: For even-mode excitation, Ver = Vg3 = 2V, so Vy = V5, and therefore no
current flows through the »/2 resistors or the short circuit between the inputs of the two
transmission lines at port 1. We can then bisect the network of Figure 7.9 with open circuits
at these points to obtain the network of Figure 7.10a (the grounded side of the 1 /4 line is
not shown). Then, looking into port 2, we see an impedance

ZZ

Port 2

+V4 / '

P{).:'L 1

(a)

(h)

FIGURE 7.10  Bisection of the circuit of Figure 7.9. (a) Even-mode excitation. (b) Odd-mode

excitation.
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since the transmission line looks like a quarter-wave transformer. Thus, if Z = /2, port 2
will be matched for even-mode excitation; then V3 = V; since Z{ = 1. The r/2 resistor
is superfluous in this case since one end is open-circuited. Next, we find V' from the
transmission line equations. If we let x = 0 at port 1 and x = —A /4 at port 2, we can write
the voltage on the transmission line section as

V(x) = V(e /P* 4 re/fr).
Then

Vs =V(=i/4) =jVT(1=T) =W, (7.34a)

+1
r—1

Vi=VO)=Vta+T) =l (7.34b)

The reflection coefficient I is that seen at port 1 looking toward the resistor of normalized

value 2, so
r-2- V2
2+ V2
and
Ve =—jVov2. (7.35)
Odd mode: For odd-mode excitation, Vg» = —Vy3 = 2Vp, and so V' = — V7, and there is

a voltage null along the middle of the circuit in Figure 7.9. We can then bisect this circuit
by grounding it at two points on its midplane to give the network of Figure 7.10b. Looking
into port 2, we see an impedance of 7/2 since the parallel-connected transmission line is
A /4 long and shorted at port 1, and so looks like an open circuit at port 2. Thus, port 2 will
be matched for odd-mode excitation if we select » = 2. Then V = Vp and V' = 0; for
this mode of excitation all power is delivered to the r/2 resistors, with none going to port 1.
Finally, we must find the input impedance at port 1 of the Wilkinson divider when
ports 2 and 3 are terminated in matched loads. The resulting circuit is shown in Figure
7.11a, where it is seen that this is similar to an even mode of excitation since V, = V3.
No current flows through the resistor of normalized value 2, so it can be removed, leav-
ing the circuit of Figure 7.11b. We then have the parallel connection of two quarter-wave
transformers terminated in loads of unity (normalized). The input impedance is

1
Zin=5(V2)" =1. (7.36)
In summary, we can establish the following scattering parameters for the Wilkinson
divider:
S11=0 (Zin = 1L atport 1)
S =833=0 (ports 2 and 3 matched for even and odd modes)
Vi+ vy , . .
S2=81=—%—=—J/ V2 (symmetry due to reciprocity)
Vy + V5
Si3 =831 =—j/v2 (symmetry of ports 2 and 3)

S3 =83, =0 (due to short or open at bisection)
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Port 2

Port 2

(b)
FIGURE 7.11  Analysis of the Wilkinson divider to find S;. (a) The terminated Wilkinson di-

vider. (b) Bisection of the circuit in (a).

The preceding formula for Sj2 applies because all ports are matched when terminated
with matched loads. Note that when the divider is driven at port 1 and the outputs are
matched, no power is dissipated in the resistor. Thus the divider is lossless when the outputs
are matched; only reflected power from ports 2 or 3 is dissipated in the resistor. Because
Sh3 = S32 = 0, ports 2 and 3 are isolated.

EXAMPLE 7.2 DESIGN AND PERFORMANCE OF A WILKINSON DIVIDER

Design an equal-split Wilkinson power divider for a 50 © system impedance at
frequency fo, and plot the return loss (S11), insertion loss (S2; = S31), and isola-
tion (S>3 = S32) versus frequency from 0.5 fo to 1.5 fp.

Solution
From Figure 7.8 and the above derivation, we have that the quarter-wave trans-
mission lines in the divider should have a characteristic impedance of

7 = \/EZO =70.7 2,
and the shunt resistor a value of
R =27Zy=100 Q.

The transmission lines are A /4 long at the frequency fy. Using a computer-aided
design tool for the analysis of microwave circuits, the scattering parameter mag-
nitudes were calculated and plotted in Figure 7.12. [ |
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FIGURE 7.12  Frequency response of an equal-split Wilkinson power divider. Port 1 is the input
port; ports 2 and 3 are the output ports.

Unequal Power Division and N-Way Wilkinson Dividers

Wilkinson-type power dividers can also be made with unequal power splits; a microstrip
line version is shown in Figure 7.13. If the power ratio between ports 2 and 3 is
K? = P3/P,, then the following design equations apply:

[1+K?2
Zoz = 2o —['_( , (7.37a)

Zoo = K*Zop3 = ZovV K (1 + K2), (7.37b)
1

Note that the above results reduce to the equal-split case for K =1. Also observe that the
output lines are matched to the impedances R» = ZoK and R3 = Zy/K, as opposed to the
impedance Z(; matching transformers can be used to transform these output impedances.

The Wilkinson divider can also be generalized to an N-way divider or combiner [4],
as shown in Figure 7.14. This circuit can be matched at all ports, with isolation between all
ports. A disadvantage, however, is the fact that the divider requires crossovers for the re-
sistors for N > 3, which makes fabrication difficult in planar form. The Wilkinson divider
can also be made with stepped multiple sections, for increased bandwidth. A photograph
of a four-way Wilkinson divider network is shown in Figure 7.15.

Ry=Z)K

R3 :Z()/K

FIGURE 7.13 A Wilkinson power divider in microstrip form having unequal power division.
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FIGURE 7.14  An N-way, equal-split Wilkinson power divider.

7.4

WAVEGUIDE DIRECTIONAL COUPLERS

We now turn our attention to directional couplers, which are four-port devices with the
characteristics discussed in Section 7.1. To review the basic operation, consider the direc-
tional coupler schematic symbols shown in Figure 7.4. Power incident at port 1 will couple
to port 2 (the through port) and to port 3 (the coupled port), but not to port 4 (the isolated
port). Similarly, power incident in port 2 will couple to ports 1 and 4, but not 3. Thus,
ports 1 and 4 are decoupled, as are ports 2 and 3. The fraction of power coupled from port
1 to port 3 is given by C, the coupling coefficient, as defined in (7.20a), and the leakage
of power from port 1 to port 4 is given by /, the isolation, as defined in (7.20c). Another
quantity that characterizes a coupler is the directivity, D = I — C (dB), which is the ratio

e ‘b' .
¥

FIGURE 7.15 Photograph of a four-way corporate power divider network using three microstrip

Wilkinson power dividers. Note the isolation chip resistors.
Courtesy of M. D. Abouzahra, MIT Lincoln Laboratory, Lexington, Mass.



