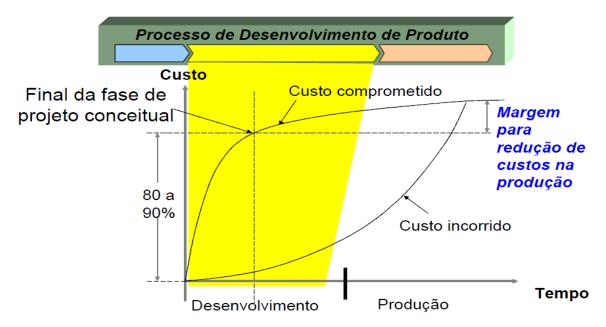


PMR 3301

Planejamento de Processos de Fabricação
 Auxiliado por Computador -

2020.1



Baseado em Pfeifer, T. Production Metrology, 2002

Ciclo de manufatura, projeto e fabricação de produtos.


Custo comprometido X custo incorrido

Planejamento de Processos e Planejamento da Produção

- Em princípio o Planejamento de Processos e Planejamento de Produção são independentes
- > A tendência é a integração de ambos, contudo...

Planejamento da Produção

 O Planejamento da Produção deve ser visto em um nível mais estratégico e deve considerar quais meios existem, quais devem adquiridos, qual o nível de investimento necessário para se atingir uma meta de produção.

Orientado ao produto

Planejamento de Processos

 O Planejamento de Processos leva em consideração questões quanto relativas as instalações disponíveis, máquinas, ferramentas, ferramentais, meios de controle, transporte, armazenamento, entre outros

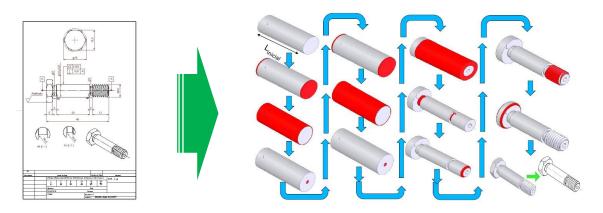
Orientado a peça

Planejamento de Processos

→ É uma atividade de engenharia que determina os procedimentos apropriados para transformar matéria-prima em um produto final tal qual especificado no projeto de engenharia.

→ Tarefa de transformar especificações de projeto (desenho detalhado) em instruções de manufatura. Esta tarefa inclui a identificação de máquinas, ferramentas, dispositivos, operações, suas sequências e a seleção dos parâmetros do processo.

→ É determinação sistemática dos métodos de manufatura e detalhes de operação, de forma que matérias-primas possam ser transformadas em produtos acabados (peças) de forma eficiente e

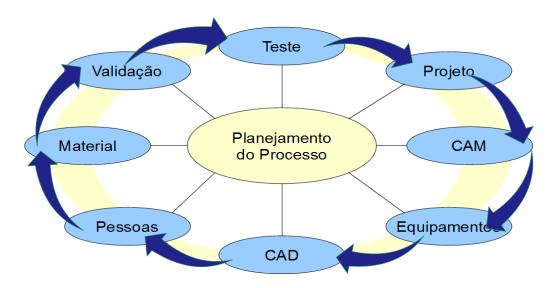


→ É a função dentro da qual um planta de produção estabelece qual processo e parâmetros devem ser utilizados, assim como quais as máquinas são capazes de executar estes processo, de forma a converter peças (ou matéria prima) de sua situação inicial em final conforme as especificações contidas em um desenho técnico.

→ É relacionado com a preparação da lista de instruções contendo a sequências de operações e centros de trabalho necessários a produção de um produto e seus componentes

Relação entre Sistemas CAPP, CAD e CAM

É a interface entre o processo de projeto e o processo de manufatura



A sinergia do sistema CAM pode ser alcançada pela integração com o sistema CAD através da conecção estabelecida entre os dois pelo CAPP

Entradas e recursos

Elementos essenciais ao Planejamento do Processo

Porque planejar o processo?

- → Racionalização
- → Padronização
- → Aumento da produtividade
- → Aumento da eficiência dos processistas
- → Melhoria da qualidade
- → Interação e integração com outros aplicativos de controle do processo

Como fazer isto?

- Apesar de sua importância o Planejamento do Processo, não existe uma metodologia formal que pode ser utilizada no treinamento de novos processistas ou mesmo utilizada por estes.
- O Planejamento do Processo depende da experiência, do conhecimento profundo de processos de fabricação e metrologia e intuição.

Como fazer isto?

Todos CAPP dependem de especialistas para preparar regras ou o plano mestre de produção e operador habilitado para analisar os planos gerados.

Contudo o Planejamento do Processo, pode ser sistematizado e implementado em sistemas computacionais..

Divisão dos processos de fabricação

Processos primários - alteram as matérias primas , transformando-as em geometrias e formas básicas. Ex. fundição, laminação, forjamento

Onde aplicar o CAPP?

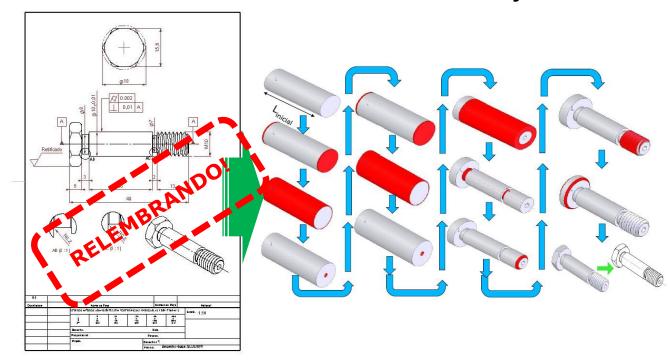
Foco do CAPP esta nos processos de usinagem

Classificação dos Sistemas de Planejamento do Processo

- → Manuais
- → Auxiliados por computador

Classificação quanto a formulação

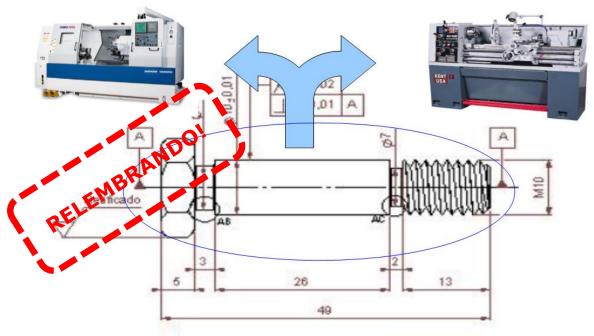
- → Variantes
- → Generativos


Planejamento do Processo - usinagem -

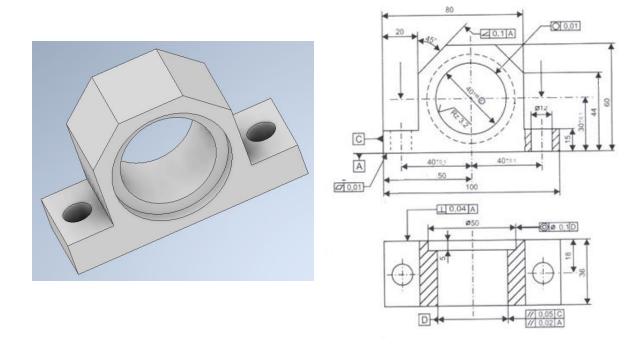
Essa sequência inicia-se com o estudo do desenho de fabricação da peça a usinar, observando-se:

- > Processo posterior a usinagem
- > Tamanho do lote
- > Prazo do lote
- > Máquinas, ferramentas e ferramental disponíveis
- > Qualificação da mão de obra
- > Custo máximo aceitável
- > Instrumentos de medição disponíveis

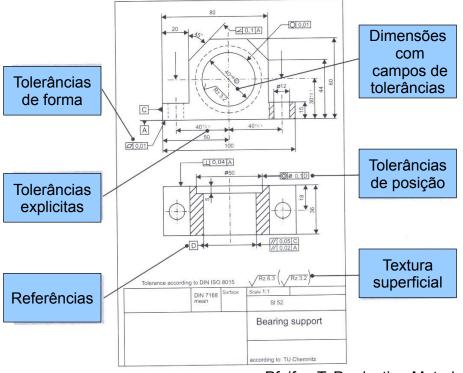
Análise dos desenhos de fabricação



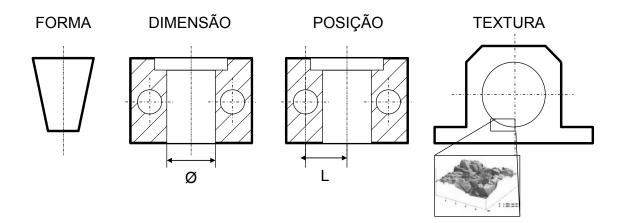
PMR-3301 23


Análise dos desenhos de fabricação

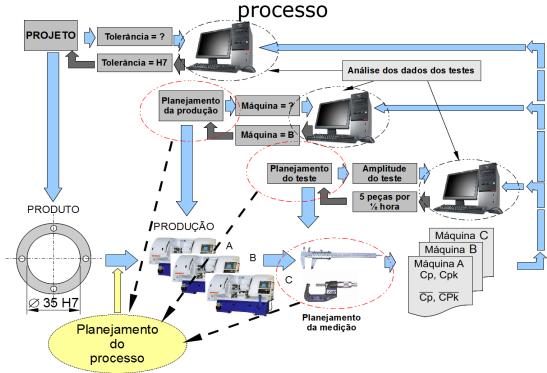
- Tamanho do Lote -


Informações constantes em um desenho de produção

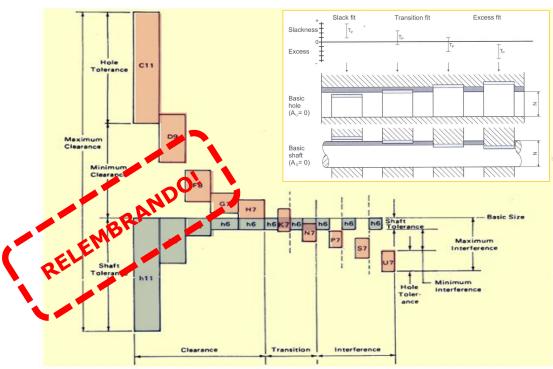
Pfeifer, T. Production Metrology, 2002


Informações constantes em um desenho de produção

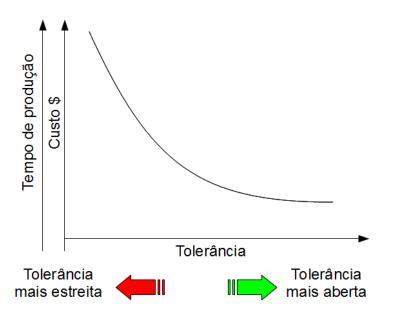
Pfeifer, T. Production Metrology, 2002


Análise Geométrica

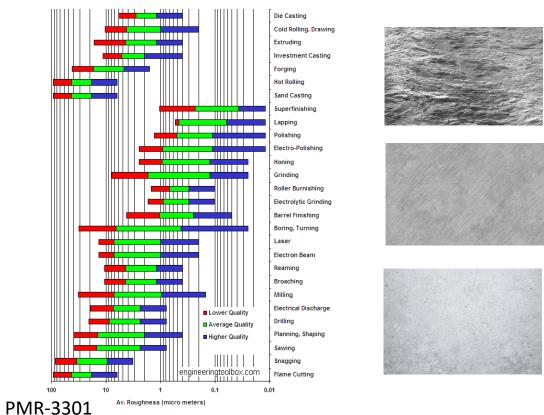
Pfeifer, T. Production Metrology, 2002


Controle do processo e medição no planejamento do

Adaptado de Pfeifer, T. Production Metrology, 2002



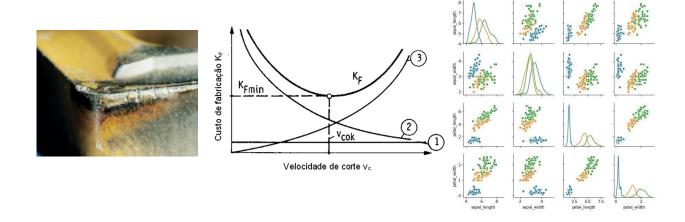
Seleção de tolerâncias

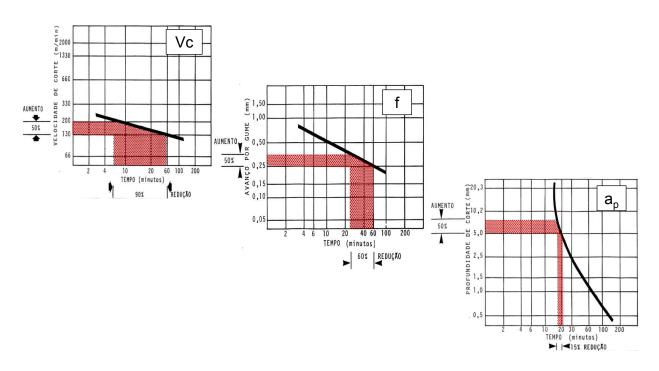


Relação entre custo de fabricação e tolerâncias

Seleção em função da textura superficial

Otimização das condições de corte


→ **Definição:** Procedimento cujo objetivo é definir da melhor maneira possível, o valor mais adequado à operação em curso, em função de valores que podem ser pré-determinados ou conhecidos


Otimização das condições de corte

→ Otimização exige conhecimento de leis de desgaste da ferramenta, de métodos de otimização, de formação de custo e de estatística

Influência dos parâmetros de corte na Vida da Ferramenta

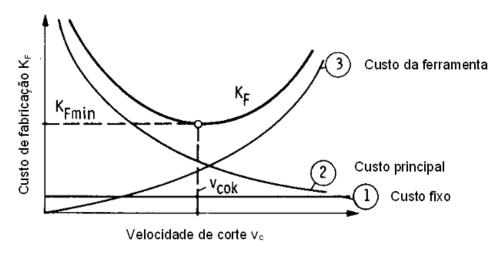
Formação de custo

Custos de fabricação

Composição dos custos de usinagem

Máquina-ferramenta

- ✓ Ferramentas
- ✓ Mão de obra
- → Custos indiretos
 - ✓ Impostos
 - Amortizações
 - √ outros


Consequências dos custos de salário / máquinas

- Atualmente o custo de salário e máquinas é maior que o custo com ferramentas e trocas de ferramentas
- A tendência de menores custos ocorre para maiores velocidades de corte e menores vidas das ferramentas

Custos de Fabricação

- Custos de fabricação por peça (K_F) [\$/peça]
 - 1 Custos de preparação e secundários (custo fixo);
 - 2 Custos de máquina e operador (principal);
 - 3 Custos de ferramenta

Custos da Fabricação

$$K_F = K_{ML} \left(\frac{t_r}{m} + t_n\right) + K_{ML} \cdot t_h + \underbrace{\frac{t_h}{T} \cdot \left(K_{ML} \cdot t_W + K_{WT}\right)}_{\mathbf{3}}$$
 Custos secundários (custos fixos) Custos de máquina e operador (principal)

- ✓ K_F custo de fabricação por peça [\$/peça]
- √ K_{ML} custo de máquina e operador por hora [\$/min]
- √ K_{wT} custo de ferramenta por vida [\$]
- √ t_r tempo de preparação [min]
- ✓ m tamanho do lote

Tempo de Fabricação por Peça

$$t_e = \underbrace{\frac{t_r}{m} + t_n}_{1} + \underbrace{t_h}_{2} + \underbrace{\frac{t_h}{T} \cdot t_w}_{3}$$

- 1 tempo de preparação e secundário
- 2 tempo principal
- 3 tempo de troca de

ferramenta

- √ t_r tempo de preparação [min]
- √ m tamanho do lote
- √ t_n tempos secundários [min]
- √ t_h tempo principal [min]
- √ t_w tempo de troca da ferramenta [min]
- ✓ T vida da ferramenta [min]PMR-3301

Otimização do Custo de Fabricação por Peça

$$K_F = K_{ML} \left(\frac{t_r}{m} + t_n \right) + K_{ML} \cdot t_h + \frac{t_h}{T} \cdot \left(K_{ML} \cdot t_W + K_{WT} \right)$$

$$t_h = \frac{d \cdot \pi \cdot l_f}{f \cdot v_c} \quad [min] \qquad t_h = \frac{V_z}{a_p \cdot f \cdot v_c} \quad [min]$$

V_z = volume usinado por peça ▶ Equação do Custo de Fabricação por Peça:

$$K_F = K_{ML} \left(\frac{t_r}{m} + t_n \right) + \frac{K_{ML} \cdot V_Z}{a_n \cdot f \cdot v_c} + \frac{V_Z}{a_n \cdot f \cdot C_V \cdot v_c^{k+1}} \cdot \left(K_{ML} \cdot t_W + K_{WT} \right)$$

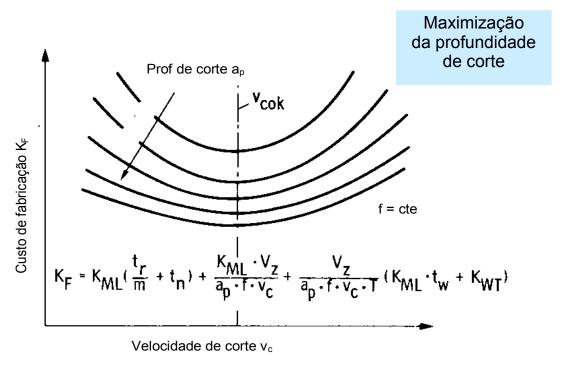
Equação do Tempo de Fabricação por Peça:

$$t_e = \frac{t_r}{m} + t_n + \frac{V_Z}{a_p \cdot f \cdot v_c} + \frac{V_Z}{a_p \cdot f \cdot C_V \cdot v_c^{k+1}} \cdot t_w$$

Velocidade de corte ótima

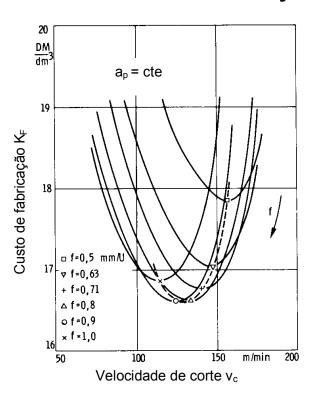
> Para determinar a velocidade de corte de mínimo custo:

$$\frac{dK_F}{dv_c} = 0 \qquad \Longrightarrow \qquad v_{cok} = \sqrt[k]{-(k+1) \cdot \frac{\left(t_w + \frac{K_{WT}}{K_{ML}}\right)}{C_V}}$$


> Para determinar a velocidade de corte de mínimo tempo:

$$\frac{dt_e}{dv_c} = 0 \qquad \Longrightarrow \qquad v_{coz} = \sqrt[k]{-(k+1) \cdot \frac{t_w}{C_V}}$$

OBS: O equacionamento da vida para ótimo custo e para ótimo tempo são identicos



Efeito da profundidade de corte

Efeito do avanço

Maximização do avanço

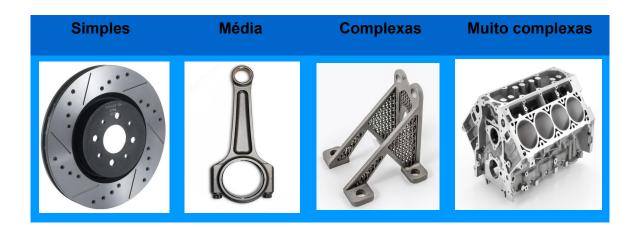
Escolha dos parâmetros de usinagem

Na escolha dos parâmetros é indispensável observar:

- → Limites do conjunto ferramenta-peça-máquina;
- → Potência da máquina-ferramenta;
- → Tamanho do inserto (largura máxima de usinagem)
- → Forças de corte

Seleção dos Processos

Regras Gerais Seleção dos Processos


Considerar os seguintes aspectos:

- → Quantidade
- → Complexidade do formato
- → Natureza do material
- → Tamanho da peça
- → Espessuras de parede
- → Exatidão dimensional
- → Custo da matéria-prima, defeitos e taxa de refugo
- → Processos anteriores e posteriores
- → Custo máquina

Complexidade do formato

Classificação quanto a complexidade

Classificação dos processos por critério econômico

Grande quantidade (2000+)

- 1. Conformado a partir de sólido por deformação
 - 2. A partir de líquido
 - 3. Junção de peças
 - 4. A partir de sólido por remoção de material.
- 5. Por montagem.

Classificação dos processos por critério econômico

Pequena quantidade (até 150)

- 00
- 1. A partir de sólido por remoção
- 2. Junção de peças
- 3. A partir de sólido por deformação
- 4. Por montagem
- 5. Por adição de material

50

Seleção critério econômico X quantidade e complexidade

A: líquido; B: sólido por deformação; C: sólido por remoção; D: junção; E: montagem; F:adição de material

_	Mono	Aberto		Complexo		Muito Complexo		
	< 150	> 1000	< 150	>2000	<50	>1500	< 100	>1000
	D	В	С	В	С	Α	Е	В
	Е	Е	D	Α	D	В	D	D
	В	D	В	D	В	С	С	Е
\	С	С	Е	С	Е	D	Α	С
	Α	Α	F	Е	F	E	В	Α
0 0			Α		Α		F	F

Mapas de Seleção do processo

Process Information Maps - PRIMAS

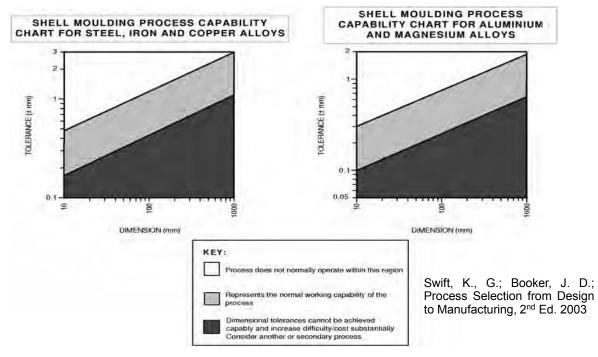
- → Formam uma base de conhecimento para a seleção do processo.
- → PRIMAs apresentam o conhecimento e dados em áreas que incluem: adequação do material, considerações de projeto, aspectos de qualidade, econômicos, fundamentos de processo e variações de processo.

53

Process Information Maps - PRIMAS

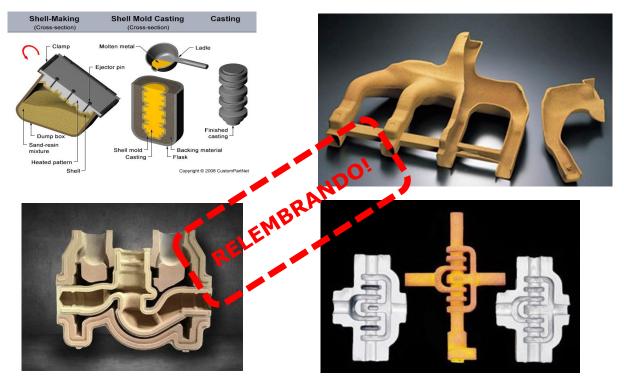
Cada PRIMA é dividido em sete categorias

- 1. **Descrição do processo**: fundamentos do processo
- Materiais: descrição dos materiais adequados aos processos dados
- 3. Variações do processo
- 4. Considerações econômicas: lista dos pontos importantes, incluindo taxa da produção, lote mínimo, custo de ferramental, custo de mão de obra, tempos mortos, entre outros pontos de importância

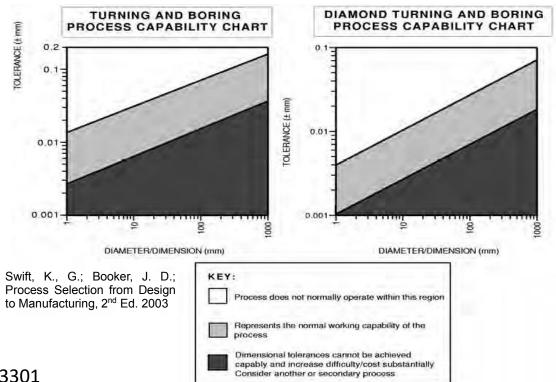

Process Information Maps - PRIMAS

- Aplicações típicas: lista de componentes clássicos fabricados pelo processo
- 6. Aspectos de projeto: pontos de oportunidade, limitações que são relevantes, recomendações normalizadas, etc.
- 7. Aspectos de qualidade: informações padrão, capabilidade do processo (quando relevante), acabamento superficial típico, etc.

55

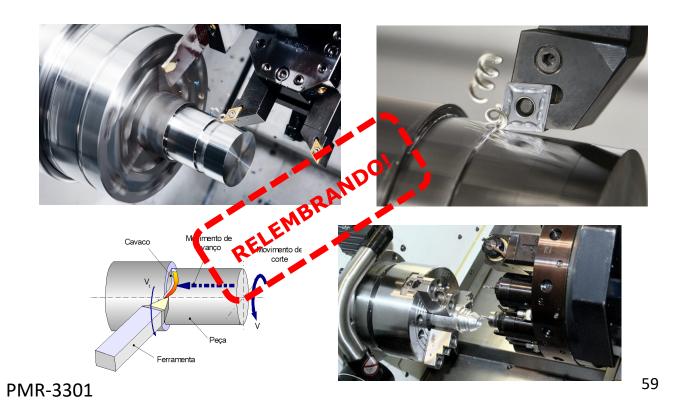


Exemplo do mapa para fundição em casca


Fundição em casca

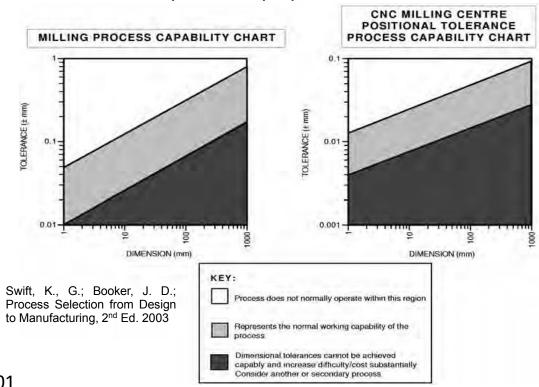
PMR-3301 57

Exemplo do mapa para torneamento



PMR-3301

58



Exemplos de Torneamento

Exemplo do mapa para fresamento

PMR-3301

Exemplos de fresamento

PMR-3301 61

Seleção Detalhada do Método de Produção

PMR-3301 62

Seleção – O Planejamento do Processo é uma sequência lógica de tomada de decisões cujo o objetivo é essencialmente econômico.

Parâmetros a considerar:

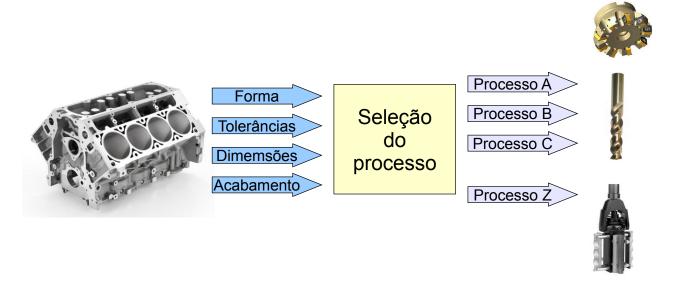
- → Geometria da peça
- → Matéria prima
- → Exatidão dimensional
- → Qualidade superficial (textura inclusive)
- → Tolerâncias geométricas
- → Tratamentos superficiais
- → Volume de produção

Restrições:

- → Especificação da peça
- → Resistência da peça
- → Propriedades mecânicas do material
- → Máquinas disponíveis
- → Ferramentas disponíveis
- → Dispositivos e ferramental disponível
- → Tecnologias disponíveis

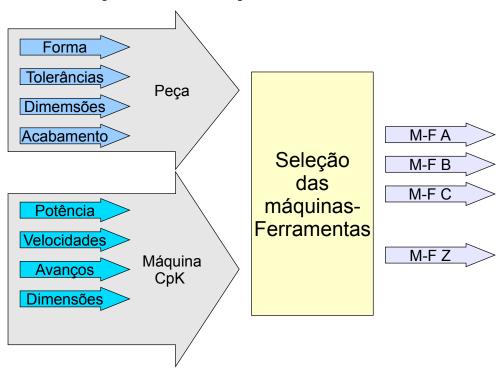
Critérios de otimização:

- → Máxima produção
- → Mínimo custo
- → Máximo lucro em um período de tempo préestabelecido


Decisões:

- → Selecionar tipo processo de fabricaçãoremoção do material
- → Selecionar máquina (máquina-ferramenta)
- → Selecionar sistema de fixação e sua localização
- → Selecionar ferramental e sua localização
- → Definir detalhes operacionais
- → Caminho para cada operação
- → Parâmetros de fabricação (usinagem)

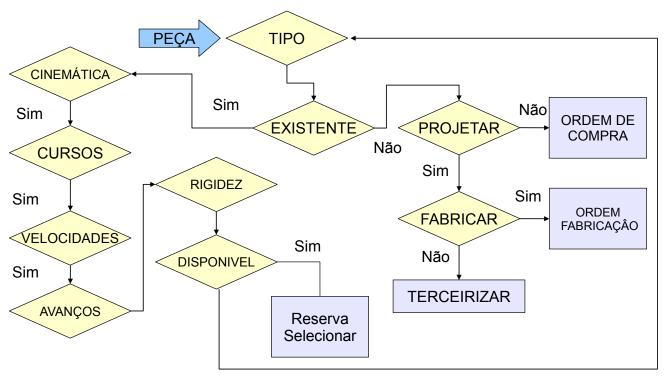
A escolha de uma sequência errada de decisões pode resultar em restrições artificiais, que podem ser eliminadas com a escolha de uma diferente


Seleção do processo de fabricação-remoção do material

PMR-3301 66

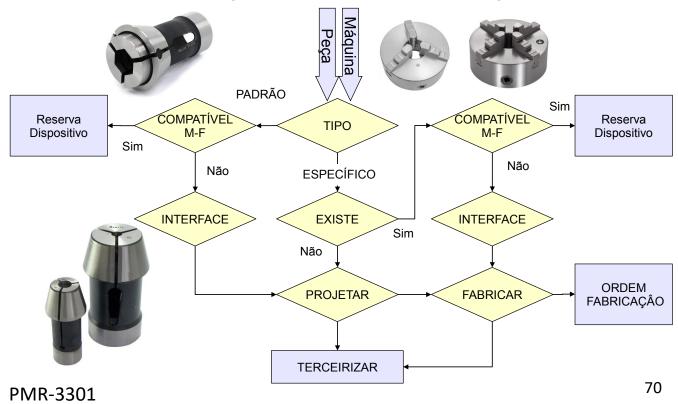
Seleção das máquinas-ferramentas

67

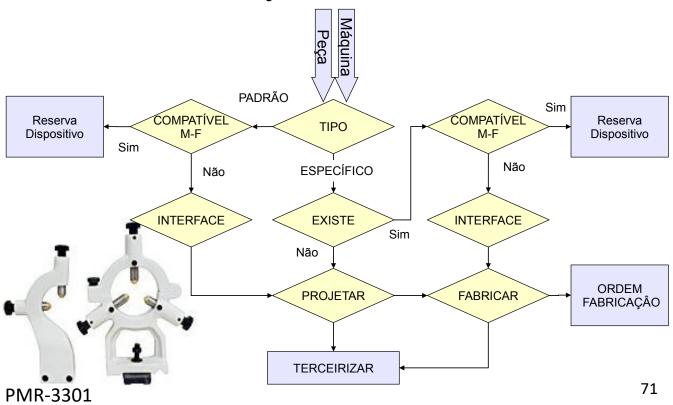

Seleção das máquinas-ferramentas

- Relações geométricas (Ex;.: L/D)
- Geometria
- · Material da peça
- · Tamanho do lote
- Prazo do lote
- Grau de complexidade
- Grau de desbalanceamento
- Quantidade de operações
- Quantidade de ferramentas necessárias
- Dispositivos e acessórios disponíveis

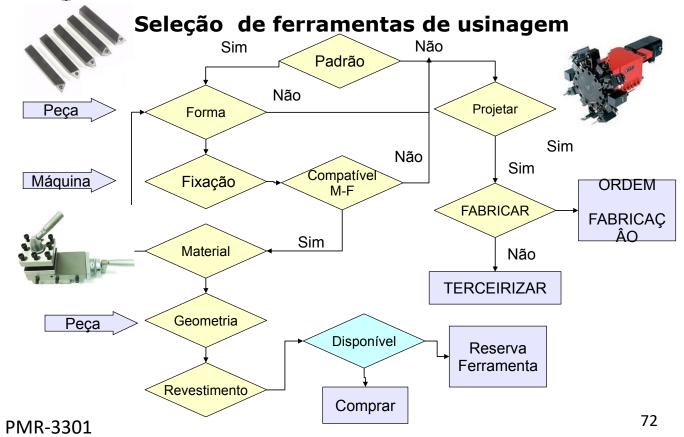
68


Seleção das máquinas-ferramentas

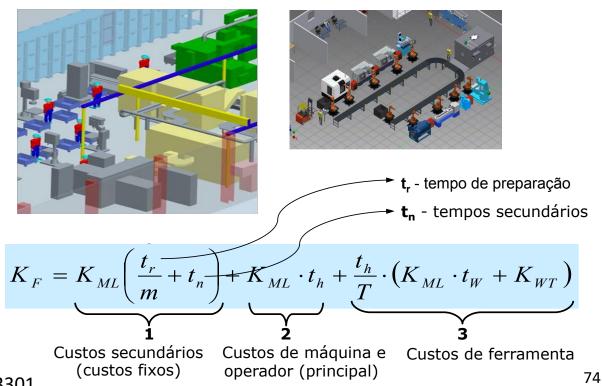
PMR-5217



Seleção do sistema de fixação



Seleção do ferramental


Seleção dos parâmetros de usinagem

Vc = f (material peça, material da ferramenta, operação (desbaste-acabamento), processo (torneamento, fresamento ...))

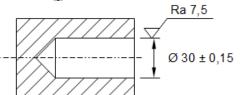
Material	Material designation	Strength	V _c				f					a _p								Cooling lubricant		
group			[m/min]			[mm/rev.]				[mm]					0°		7°					
																		Туре	Chip	Туре	Chip	
		[N/mm ²]	Min.		Start		Max.	Min.		Start		Max.	Min.		Start		Max.		breaker		breaker	
13.0	Stainless steel, sulphured	< 700	180	-	220	-	260	0.10	-	0.20	-	0.30	1.50	-	2.20	-	3.00	HB 7120	VS			dry
			140	-	180	-	220	0.15	-	0.25	-	0.30	1.50	-	2.20	-	3.00	HB 7135	VS	HB 7135	VM	dry
13.1	Stainless steel, austenitic	< 700	180	-	220	-	260	0.10	-	0.20	-	0.30	1.50	-	2.20	-	3.00	HB 7120	VS			dry
			140	-	180	-	220	0.15	-	0.25	-	0.30	1.50	-	2.20	-	3.00	HB 7135	VS	HB 7135	VM	dry
13.2	Stainless steel, austenitic	< 850	140	-	180	-	220	0.10	-	0.20	-	0.30	1.20	-	1.80	-	3.00	HB 7120	VS			Emulsion
			120	-	150	-	200	0.15	-	0.25	-	0.30	1.50	-	2.20	-	3.00	HB 7135	VS	HB 7135	VM	Emulsion
13.3	Stainless steel,	< 1100	140	-	180	-	220	0.10	-	0.20	-	0.30	1.20	-	1.80	-	3.00	HB 7120	VS			Emulsion
	martensitic		120	-	150	-	200	0.15	-	0.25	-	0.30	1.50	-	2.20	-	3.00	HB 7135	VS	HB 7135	VM	Emulsion
14.0	Special alloys	< 1200	30	-	50	-	80	0.10	-	0.20	-	0.30	0.70	-	1.50	-	2.00	HB 7120	VS	HB 7135	VM	Emulsion
			20	-	30	-	40	0.15	-	0.18	-	0.22	1.50	-	2.00	-	2.50			HU 70AL	ALX	Emulsion
15.0	Cast iron (GG)	< 180 HB	200	-	250	-	320	0.12	-	0.20	-	0.30	0.50	-	1.50	-	2.20	CU 7033	SS	CU 7033	SS	dry
			300	-	400	-	700	0.05	-	0.15	-	0.30	0.05	-	0.15	-	0.50	CBN 725	G			dry
15.1	Cast iron (GG)	> 180 HB	170	-	200	-	280	0.12	-	0.20	-	0.30	0.50	-	1.50	-	2.20	CU 7033	SS	CU 7033	SS	dry
			300	-	400	-	700	0.05	-	0.15	-	0.30	0.05	-	0.15	_	0.50	CBN 725	G			dry
15.2	Cast iron (GGG, GT)	> 180 HB	170	-	200	-	280	0.12	-	0.20	-	0.30	0.50	-	1.50	-	2.20	CU 7033	SS	CU 7033	SS	dry
			300	-	400	-	700	0.05	-	0.15	-	0.30	0.05	-	0.15	-	0.50	CBN 725	G			dry
15.3	Cast iron (GGG, GT)	> 260 HB	150	-	180	-	250	0.12	-	0.20	-	0.30	0.50	-	1.50	-	2.20	CU 7033	SS	CU 7033	SS	dry
			300	-	400	-	700	0.05	-	0.15	-	0.30	0.05	-	0.15	_	0.50	CBN 725	G			dry
16.0	Titanium, titanium alloys	< 850	30	-	50	-	80	0.10	-	0.20	-	0.30	0.70	-	1.50	-	2.00	HB 7120	VS	HB 7135	VM	Emulsion
			20	-	30	-	40	0.15	-	0.18	-	0.22	1.50	-	2.00	-	2.50			HU 70AL	ALX	Emulsion
16.1	Titanium, titanium alloys	850 – 1200	30	-	50	-	80	0.10	-	0.20	-	0.30	0.70	-	1.50	-	2.00	HB 7120	VS	HB 7135	VM	Emulsion
			20	-	30	-	40	0.15	-	0.18	-	0.22	1.50	-	2.00	-	2.50			HU 70AL	ALX	Emulsion

Seleção dos caminho para cada operação

PMR-3301

Células de manufatura Frederick W Taylor Menry Ford Sistemalización Productivo de la constanción d

PMR-3301 75


Tecnologia de Grupo

Técnica e filosofia de aumento da eficiência da produção através do agrupamento de peças variadas. O agrupamento pode ser feito por semelhanças de forma, dimensões ou rota de processo, ou qualquer combinação destas.

Proporciona o efeito de produção em massa em pequenos e médios lotes.

Esta técnica é extremamente eficiente em processos produtivos que envolvam grande variedade de produtos e ou na produção de pequenos lotes.

Exemplo de planejamento

!	2	3	4	5	6
Broca Ø 30	Broca Ø 28	Broca Ø 20	Broca Ø 15	Broca Ø 10	Broca Ø 5
B10Ca Ø 30	Broca Ø 30	Broca Ø 30	Broca Ø 30	Broca Ø 30	Broca Ø 30
Tmf. = 0.38s	Tmf. = 0,44s	Tmf. = 0.76s	Tmf. = 0,81s	Tmf. = 0.78	Tmf. = 0.81
7	8	9	10	11	12
Broca Ø 8	Broca Ø 8	Broca Ø 10	Broca Ø 10	Broca Ø 10	Broca Ø 5
Broca Ø 28	Broca Ø 18	Broca Ø 20	Broca Ø 28	Broca Ø 20	Broca Ø 13
Broca Ø 30	Broca Ø 30	Broca Ø 30	Alarg Ø 30	Broca Ø 28	Broca Ø 22
					- ~
				Alarg Ø 30	Broca Ø 30

- Abordagem Variante -

Sistemas CAPP Variantes (Retrieval CAPP systems, Variant CAPP)

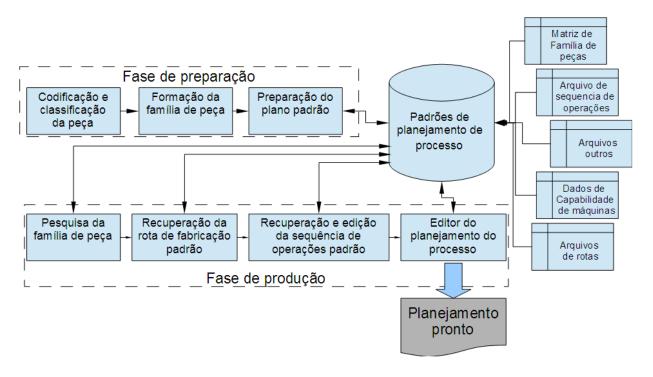
– Os sistemas Variantes assemelham-se ao processo de tradicional de planejamento de processo, realizado manualmente. Neste um processo para uma peça nova é criado a partir da identificação de um processo existente já existente para uma semelhante, seguindo-se as modificações e adaptações necessárias.

Sistemas CAPP Variantes

– Geralmente é baseado na tecnologia de grupo, na qual as peças são classificadas e codificadas segundo semelhanças geométrica, de processo, entre outras. Esta codificação permite ao sistema CAPP selecionar um plano de processo base que consiga satisfazer cerca de 90% das peças de uma família. Os 10% restantes são satisfeitos alterando-se o processo base.

Sistemas CAPP Variantes

 Se a classificação da peça nova não tiver uma correspondente semelhante já armazenado, um novo planejamento deve ser iniciado a partir do zero. Este contudo servirá de base para futuras peças semelhantes.



Vantagens e limitações dos sistemas CAPP variantes

- O investimento relativamente baixo em hardware e software
- O sistema permite um baixo tempo de desenvolvimento e necessita de poucos recursos em termos homens/hora
- É confiável e de exequível de implementar na prática, para pequenas e médias empresas
- A qualidade do processo gerado depende do conhecimento e experiência dos processistas

Sistemas CAPP Variantes - Fluxograma.

Abordagem Generativa

- Nos sistemas CAPP generativos o planejamento do processo é gerado por meio de decisões lógicas, algoritmos, fórmulas e dados geométricos armazenados em bancos de dados que são estruturados de forma a alimentar as entradas do sistema.
- Formas de entradas
 - → Interativa, através de textos
 - → Gráfica, a partir de modelos CAD

- Primeiro passo: desenvolver uma estrutura de decisões apropriadas para a peça a ser processada.
 As regras devem ser especificadas utilizando árvores de decisão, lógica de decisões com por exemplo *ifthen-else*, inteligência artificial, com programação orientada objeto
- Segundo passo: alimentar as bases de dados relacionadas a peça para executar o planejamento.
 Sistemas CAPP generativos simples podem ser baseados na codificação da Tecnologia de Grupo.

 PMR-3301

Um sistema CAPP Generativo puro é capaz de gerar um plano de processo completo a partir da classificação da peça em conjunto com outros dados do desenho sem necessitar nenhuma modificação posterior ou interação manual

Nestes sistemas informações relativas a peça em bruto devem ser definidas inicialmente.

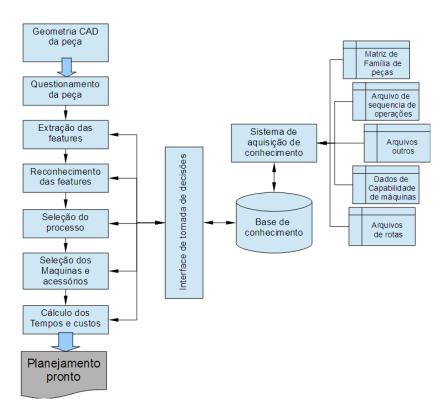
O planejamento pode ser feito no sentido da peça bruta a peça final (*Foward planing*) ou no sentido inverso Da peça final até a peça bruta (*Backward planing*). Estratégia semelhante pode ser observada no desenvolvimento do desenho nos sistemas CAD.

Independente do sentido do planejamento ambos os devem ser similares, mas exercem diferentes efeitos sobre a programação

O planejamento *Foward* sofre de um problema condicionante, o resultado do um setup afeta o posterior.

No planejamento *Backward* o problema condicionante é eliminado pois o setup é estabelecido para atender somente os requisitos iniciais.

Os sistemas CAPP Generativos englobam todas as vantagem dos sistemas Variantes, com a vantagem adicional de serem totalmente automáticos



Os sistemas Generativos necessitam de revisões profundas se um novo equipamento, processo ou capabilidade de um processo for incorporado a produção.

O desenvolvimento inicial é difícil.

Sistemas CAPP Generativos - Fluxograma.

Planejamento de Processos de Fabricação Auxiliado por Computador

JUSTIFICATIVA: A nova realidade do *i_manufac-turing* trouxe novas exigências para o planejamento do processo, o que tornou o CAPP uma ferramenta chave para a competitividade.

Planejamento de Processos de Fabricação Auxiliado por Computador

O termo Industria 4.0 é um temo que está fortemente associado Smart Factory, Smart Manufacturing, Big Data, Tecnologia da Informação (TI), Internet das coisas (IoT - Internet of Things), etc.

Como essas associações afetam o CAPP?

Questionamentos finais

Planejamento do processo

- O que é Planejamento do Processo?
- Porque planejar o processo?
- Como fazer isto?
- Onde aplicar?
- Entradas e recursos?
- Como os sistemas CAD CAM se relacionam com o Planejamento do processo?
- Como o CAPP se integra a Industria 4.0/5G?
- Como a montagem pode ser considerada em um CAPP?
- Como a inspeção/medição pode ser considerada em um CAPP?
- Como a Tecnologia de Grupo afeta o planejamento do processo?

Fim da aula