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Summary of topics

@ 20/10: Introduction & Kinetic Theory
@ 27/10: Lattice Boltzmann & Hands-On
@ 03/11: Dense Fluids & Hands-On



Brief review



na(rk+ea5t7t+5t) :na(rkh )+Q (I'k, )




na(rk+ea5t7t+5t) :na(rkh )+Q (rk7 )

o Q. (ry,t) = —i(na(rk,t) )



Na(rr + €0t t + 0t) = ng(rg, t) + Qo (r, 1)

o Q. (ry,t) = —i(na(rk,t) )
o gu(rs,t) = n(ry, t)[l + 3(575/02)(7 — %)(ea —uy) - gk}



na(rk+ea5t7t+5t) :na(rkh )+Q (rk7 )

o () (I‘k, ) = _j_(na(rkat) - ga(rkvtD

o gu(rs,t) = n(ry, t)[l + 3(575/02)(7 — %)(ea —uy) - gk}

Wa Pk 3(eq-up) (e, -up)? 3wl
“U(ry, 1) = 1 -
o n(re 1) m [ + c2 + 2c4 202}




na(rk + eaétpt + 5t) - na(rkh ) + Q (rk7 )

Qu(rp, 1) = —i(na(rk,t) ot )

Ga(rr, t) = n(ry, t){l + 3(575/02)(7 — %)(ea —uy) - gk}

. Wa Pk 3(eq-up) (e, -up)? 3wl
! (v, t) = m [1 + c2 + 2c4 22
v = %CQ&f(T — %), p= %C2p, Cs = c/\/§

}



na(rk + eaétpt + 5t) - ’I'La(rk, ) + Q (rk7 )

Qu(rp, 1) = —i(na(rk,t) ot )

Ga(rr, t) = n(ry, t){l + 3(575/02)(7 — %)(ea —uy) - gk}

3(eq - uy) 4 9(eq - up)?

2
Juy,

WaPk
“Urg,t) = ——|1
ng (I‘k, ) m [ + 2 94

V= %02675(7' —1), p= %c2p, cs =c/V3

D2Q9-isothermal Lattice Boltzmann model

92

}



Na(Tp +eq,t+ 1)

= no(rk, t) + Qo(ry, t)




Na(Tk + €a,t + 1) = na(rp, 1) + Qa(re, 1)

o« O (rpt) = —i(na(rk,t) ~ galri, 1))



Na(Tr + €a,t + 1) = ng (v, t) + Qo(ry, 1)

o« O (rpt) = —i(na(rk,t) ~ galri, 1))

o galr,t) =n(ry, )1+ 3(1 — L) (ea — wp) - g



Na(Tk + €a,t + 1) = na(rp, 1) + Qa(re, 1)

o« O (rpt) = —i(na(rk,t) ~ galri, 1))
o galr,t) =n(ry, )1+ 3(1 — L) (ea — wp) - g

o nyl(ry,t) = wapk[l + 3(eq - ug) + g(ea : uk)2 — %ui]



Na(Tp +eq,t+ 1)

= no(rk, t) + Qo(ry, t)

1
Qa(rk7t) - _;<na(rk7t) - ga(rk‘ut))
Ga(rp, t) = ni(ry, t)[l + 3(7 — %)(ea —ug) - gk}
nid(ry, t) = wapk[l + 3(eq - ug) + g(ea cuy)? —
v =Yr—1), p=1p (ideal gas), c,=1/v3

3
5U

2
k

}



Na(Tp +eq,t+ 1)

= Na(Tk, 1) + Qa(rh, 1)

Qulris ) = = (a{ri 1

ga(rka t) =

- ga(rk‘7 t))

ned(r, t)[l + 3(7 — %)(ea —ug) - gk}

nid(ry, t) = wapk[l + 3(eq - ug) + g(ea cuy)? —

1 1

v=73(T—3), P:%P

p = Znaa pu = Znaea
« a

(ideal gas),

+ 308

cs=1/V3

3
5U

2
k

}



Thermodynamic Foundations of Kinetic Theory and
Lattice Boltzmann Models for Multiphase Flows

Xiaoyi He!? and Gary D. Doolen!

Received January 16, 2001; accepted October 18, 2001

@ Mean-field treatment of long-range
intermolecular forces

@ Lattice models for non-ideal fluids



Part 3:
Dense fluids

0 Non-ideal gases: long-range forces
@ Shan-Chen models

@ Phase separation

@ Cohesion-adhesion model

@ Hands-on tutorial



Non-ideal gases:
(ii) long-range forces



Neutral plasmas are usually described as a gas of electrons
moving in the presence of an uniform positive background
charge, with density en [Bhatnagar, Gross, Krook (1954)]

The velocity distribution of electrons f(r, &,t)
obeys the Boltzmann equation:

of of ¢E of

6t+£'8r_m.(‘9£_9(f)

where the electric field is found by

eV -E(r,t) = e[n+ — /déf(r,é,t)]
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In gases and liquids
@ RDF is uniform at sufficiently long ranges™

@ Long-range forces can be interpreted as if
caused by a continuum mass distribution

@ Molecules can be treated as test particles
moving in a mean-field

@ Mean-field implemented as external force per
unit mass: g

@ * ‘long-range’ compared to molecular sizes



Energy due to pairwise forces (molecule-level)

E = % > Ulry,rp)
a#b



Energy due to pairwise forces (continuum)
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Energy due to pairwise forces (mean-field)

Npairs (X', 1) — n()n(r) (if ' —r| = )
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Energy due to pairwise forces (mean-field)
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Energy due to pairwise forces (mean-field)

E =&1/0§3+%/[ /AU(r,r')- n(r')dr’ |n(r)dr

C

The potential energy per unit mass at r is
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[U(r,r")] = [energy]



Energy due to pairwise forces (mean-field)

E =&1/0§3+%/[ /AU(r,r')- n(r')dr’ |n(r)dr

C

The potential energy per unit mass at r is
pr,t) = [o(r,r)p(r', t)dr’
[v(r,r") = U(r,1r’)/m?] = [energy/mass?]

The force per unit mass at r is

g(r,t)a = —Vyp(r,t)



Energy due to pairwise forces (mean-field)
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(appears in the transport equation)



Energy due to pairwise forces (mean-field)

E :&@4—%/[ /AU(I',I")- n(r')dr’ |n(r)dr

C

The potential energy per unit mass at r is

o(r,t) = /U(r,r')p(r',t)dr'
[v(r,r") = U(r,1r’)/m?] = [energy/mass?]
The force per unit volume at r is
p(r,0)g(r,0)a = —p(r, 1) [ [Veo(r,t))]p(r', t)dr’

(appears in the Navier-Stokes equations)
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and (b) over the interaction range the following
approximation is valid
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A much more convenient expression can be obtained
under two assumptions: (a) isotropic interactions

v(r,ry=v(R), R=r"—r

and (b) over the interaction range the following
approximation is valid

o(r,t) = /A v(R)p(r + R, t)dR



A much more convenient expression can be obtained
under two assumptions: (a) isotropic interactions

v(r,ry=v(R), R=r"—r

and (b) over the interaction range the following
approximation is valid

o(r,t) = /A v(R)p(r + R, t)dR

and inside the integral we take:

p(r+R,t) = p(r,t)+R-Vp(r,t)+3RR : VVp(r, 1)



The resulting expression can then be organized as
o(r,t) = —2ap(r,t) — kVp(r, 1)
with coefficients
a=—1 /A v(R) dR
k=—¢ [ R°0(R) dR

(not independent)



The resulting expression can then be organized as
o(r,t) = —2ap(r,t) — kVp(r, 1)
with coefficients
a=—1 /A v(R) dR
k=—¢ [ R°0(R) dR
(not independent)

Then, the mean-field force per unit mass at r is

gr=—Vo =V (2ap+ /inp)



The transport equation becomes
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The transport equation becomes
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A new force per unit volume appears in the
momentum equation, which can be written as

pgr = pV (2ap + kV?p) = V - (ap®1) + V - 11,



The transport equation becomes
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A new force per unit volume appears in the
momentum equation, which can be written as

pgr = pV (2ap + kV?p) =V - (ap®1) + V - 11,
where I1, is known as Korteweg's capillarity tensor
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(k controls surface tension)



The transport equation becomes

of . of _ of
ar T8 ar T8 e

A new force per unit volume appears in the
momentum equation, which can be written as

= Q(f)

pgr = pV (2ap + kV?p) = V - (ap®I) + V - TI,,
where I1, is known as Korteweg's capillarity tensor
I, = k(pV?p + 5|V ) T -k Vp Vp

(k controls surface tension)



Momentum equation:
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Organizing terms:
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Momentum equation:
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Momentum equation:

Du  Ou

Dt ~ ot
Organizing terms:
Du
Dt

+p(u-Viu=pg—-V-P

=pgr— VP
=V -ap’l+V -TI, — V- (pRTT — 2 V)
= -V - (pRT — ap®)1 + V - (2uV1) + V - II,,



Momentum equation:

Du  Ou

Dt ~ ot
Organizing terms:
Du
"Dt

+p(u-Viu=pg—-V-P

=pgr— VP

=V -ap’l+V -TI, — V- (pRTT — 2 V)
= -V - (pRT — ap®)1 + V - (2uV1) + V - II,,
= —V(pRT —ap®) + V - (2uVid) + V - TI,



Momentum equation:

Du  Ou

Dt ~ ot
Organizing terms:
Du
"Dt

+p(u-Viu=pg—-V- P

=pgr— VP

=V -ap’l+V -TI, — V- (pRTT — 2 V)
= -V - (pRT — ap®)1 + V - (2uV1) + V - II,,
= —V(pRT —ap®) + V - (2uVid) + V - TI,
-—-  Vn + V- (2uVa)+ V-II,

hydrostatic pressure viscous surface tension



In summary, inclusion of mean-field intermolecular
interactions yields (i) a non-ideal equation of state

pe = pRT — ap

and (i) a description of surface tension effects via
Korteweg stresses

I, = k(pVZp+ §|Vp|*) I -k Vp Vp

or, equivalently, Korteweg forces

V -1, = pV(kV?)p)




Remark: the balance equation for the total internal
energy per unit mass cyptal = € + %gp, can also be
derived:

Dgtotal 2
= \V“T -V - ce
Dt pv-u

- (Hviscous + ﬁVpr) :Vu -
+ Vu: [ffV(pr) — 3kV - (pr)I}

where
p=pe—kpVip—36Vp-Vp

e consistent with free-energy formulation [He-Doolen (2002)]



How the mean-field description can be incorporated into a
lattice-based framework?

Potential per unit mass:
pr,t) = [ dR v(R)p(r + R, 1)

Force per unit volume:

o(r, t)g(r, t)a r.t) [ dR[- ;82 = B)) eim, R

e seek lattice versions of these formulas



Shan-Chen models



LB forcing style: shifted velocity
R Q= uat(r - D

Shan-Chen-type models implement an impulse per
unit volume, J = pgot, at each point of the fluid.
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LB forcing style: shifted velocity
R 8= ot - g
Then
pu = pu + pot(1 — %)g
where
pu=> meyn, + %&pg

Shan-Chen-type models implement an impulse per
unit volume, J = pgot, at each point of the fluid.



LB forcing style: shifted velocity
R Q= uat(r - D

Then

pu = pu + pot(1 — %)g
where

pu=> meyn, + %&pg
thus

pa = > meyn, + 7(pgdt)
«

Shan-Chen-type models implement an impulse per
unit volume, J = pgot, at each point of the fluid.



The general form of the forcing term is
J=—G(r,t) > wa(r + dte,, t)e,

where ¥ (r,t) = ¢ (p(r,t)) is an effective density.
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where ¥ (r,t) = ¢ (p(r,t)) is an effective density.
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X. Shan, H. Chen (1994)




The general form of the forcing term is
J=—G(r,t) > wa(r + dte,, t)e,

where ¥ (r,t) = ¢ (p(r,t)) is an effective density.

pu(r,t) =3 meyng — TGY(r, 1) > wath(r 4 dte,, t)e,

X. Shan, H. Chen (1994)

obs: compare with:

ol Dgle, 1 = —p(r.1) [ R~ R R




J==GY(r,t) Y watb(r + dte,, t)e,



J==GY(r,t) Y watb(r + dte,, t)e,

The functional ¥(p) is adjustable, but it should
reduce to p in the low-density limit — a popular
model is

W(p) = po(1 — exp(—p/po))

e this functional defines the equation of state



The force per unit volume associated with
J=-G w(r, t) Zwaw(r + 5tea7 t)ea

depends on density gradients. The sign of G
determines whether the force is cohesive or
anti-cohesive.

from: T. Kriiger et. al., The Lattice Boltzmann Method (Springer, 2017)



One way to interpret the Shan-Chen force term is to
look at it as resulting from a mean-field force per
unit volume computed with the effective density

1 9u(
pg = —(r.t) [ dR[~ - gR)]w(rJrR,t)R

The lattice expression is recovered by quadrature if

we let
R2

v(R) = —12G(2my?) " Ze 22

with a characteristic range of

v = cot = (62)/V/3



Then we can show that
pg = —1GAYVY — LGP (02)*(D/3)yV (V)

and the model’'s mean-field coefficients, a and &,
can be identified.



Then we can show that

pg = —5GYVY — 3G (62)*(D/3)UV (V)

and the model’s mean—fleld coefficients, a and k&,
can be identified.

e The equation of state of the model is

p = 5pc® + §GE[(p))?

e The Korteweg coefficient is

k= —£Gc*(0x)*(D/3)



Then we can show that
pg = —3GAYVY — G (02)*(D/3)yV (V)

and the model’'s mean-field coefficients, a and &,
can be identified.

e The equation of state of the model is

p = %p + %G[@D(p)? (lattice units)

e The Korteweg coefficient is

k=—1G(D/3) (lattice units)



Phase separation



psi

Shan-Chen density functional
12 T T T T

rho
psi
1 ________________________________
0.8 —
0.6 | —
04 b
0.2 | —
0 1 1 1 1
0 0.5 1 1.5 2 2.5

rho

Y(p) = po(1 —exp(—p/po)) (po = 1.00)



pressure

Shan-Chen model pressure vs. density
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ideal
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For a certain range of GG values there can be a
decrease in pressure with an increase in density: this
signals a phase transition.

The change in behavior is marked by an inflection of
the p vs. p curve — the critical values, G. and p,
are determined by the conditions

dp p

=0; — =0
) dpQ

dp pe,Ge

pe;,Ge

A simple calculation gives:

pe=poln2; G.= —4.00
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G = —5.00

rho (Lu.) at timestep= 100
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rho (L.u.) at timestep= 6000
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I (RIA)
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rho (L.u.) at timestep= 6000
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Cohesion-adhesion model



The Shan-Chen model can be used for modeling
multi-component fluid-fluid interactions, e.g.

JO’ — _¢0(r7 t) Z wa[z Gaa’wa’(r + 67580[)}60[



The Shan-Chen model can be used for modeling
multi-component fluid-fluid interactions, e.g.

JO’ — _¢0(r7 t) Z wa[z Gaa’wa’(r + 67560[)}60[

and also fluid-solid interactions, e.g.
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The Shan-Chen model can be used for modeling
multi-component fluid-fluid interactions, e.g.

JO’ — —1%(1'7 t) Z Wa[z Gaa’wa’(r + 5tea)}eoz

and also fluid-solid interactions, e.g.

Jg = —Gg ¢(r, t) Zwa@/J(I‘ + 5tea)ea
Jis = =G (1, 1) D waS(r + ote, e,

e GG controls surface tension (cohesion)
e (g controls wetting (adhesion)



The Shan-Chen model can be used for modeling
multi-component fluid-fluid interactions, e.g.

JO’ = _¢0(r7 t) Z UJQ[Z Gaa’wa’(r + 5tea)}ea
and also fluid-solid interactions, e.g.
Jg = —Gg(r,t) > wat(r + fte,)e,
Jis = =G (1, 1) D waS(r + ote, e,

S(r,t) =

1 at solid nodes
0 at fluid nodes



Hands-on tutorial



Hands on

LB-lab-3:
phase separation

LB-lab-4:
contact angle

LB-lab-5:
heterogeneous surfaces
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