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Objectives and references

• To introduce to basic aspects related to random vibrations;

• Focuses of the classes: Statistics, Fourier Series/Transform, frequency domain
analysis, relation between statistics and frequency domain representation;

• Examples of references

1 Thomson, W.T. & Dahleh, M.D., 2005. Theory of vibration with

application. Pearson education.
2 Meirovitch, L., 2000. Fundamentals of vibrations. McGraw-Hill.
3 Aguirre, L.A., 2015. Introdução à identi�cação de sistemas técnicas

lineares e não lineares: Teoria e Aplicação. Editora UFMG.
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Introduction

• Up to this point, focus has been placed on the deterministic dynamics, i.e., both
the structural properties and the external excitation are fully known;

• In technological applications, a number of dynamic phenomena are
non-deterministic (or, in other words, exhibit a random behavior). Examples:
seismic excitation, loads due to surface waves in o�shore structures,
aerodynamic loads associated with turbulence...

• The focus of this class is on problems characterized by random excitation, but
with deterministic structural properties. Despite interesting, random vibrations
in which the structural properties are de�ned by random variables are out of the
scope of this class.
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Introduction

• Sample: In this class, is a time-history of a certain quantity. For example, the
time-history of acceleration of a certain point of a �oating unit during one day.
It is a random variable;

• Ensemble: A collection of samples. It is a random (or stochastic) process.

(a) Sample. (b) Ensemble.

Figure: Extracted from Thomson & Daleh (2005).
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Basic statistics

• Time-averaging:

x̄(t) = lim
T→∞

1

T

∫ T

0

x(t)dt (1)

• This number coincides with the expected value of x(t)

E [x] = lim
T→∞

1

T

∫ T

0

x(t)dt (2)

• In practical applications, the time-histories are given in the form of a vector of
�nite size, containing the values of x(t) at some time instants (usually
employing a constant time-step). In this case

E [x] =
1

N

N∑
k=1

xk (3)

N being the size of the time-history (sample).

8/67
PEF 6000



Basic statistics

• Mean-square value: Average value of x2(t).

E [x2] = lim
T→∞

1

T

∫ T

0

x2(t)dt (4)

• Variance: Average value of (x(t)− E [x])2

σ2 = E [(x(t)− E [x])2] = E [x2 − 2xE [x] + E [x]2] = E [x2]− (E [x])2 (5)

• Standard deviation: positive root of σ2;

• Root-mean square (r.m.s): Square-root of the mean-square value. If the signal
has zero average value, the r.m.s matches the standard deviation.

• Correlation between two signals: E [x1(t)x2(t)].

• Auto-correlation function of a real signal R(t, τ) = E [x(t)x(t + τ)].

9/67
PEF 6000



Ergodic and stationary processes

De�nitions shown in Aguirre (2015)

• �Um processo estocástico é estacionário no sentido estrito se sua densidade de
probabilidade se mantém inalterada após a mudança na origem no tempo�;

• �Um processo estocástico é estacionário no sentido amplo (ou estacionaridade
fraca) se sua média é constante';'

• �Se um processo for estacionário no sentido amplo, então sua função de
correlação somente dependerá da diferença temporal considerada |t1 − t2| = τ �;

• If the process is stationary and if the average and the autocorrelation do not
depend on the sample, the process is ergodic. In this case R(t, τ) = R(τ).
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Probability theory

• For random variables, we are interested in de�ning the probability of this
variable assuming values larger (or smaller) than a certain value.

x(t)

t

�t1 �t2

x1

• Based on the above �gure, calculate P[x < x1].

• Answer:

P[x < x1] = P[x̄] = lim
t→∞

1

t

∑
∆tk (6)
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Probability theory

• Notice that

P[x < x1] = P[x1] =

{
1, x1 →∞
0, x1 → −∞

(7)

• P[x1] is the cummulative probability distribution function.

• Now, we want to evaluate the probability of x(t) lying between x1 and x1 + ∆x .
This is done by computing:

P[x1 + ∆x]− P[x1] (8)

• We de�ne the density probability function as:

p(x) = lim
∆x→0

P[x1 + ∆x]− P[x1]

∆x
=

dP

dx
(9)

• Hence, we can write P[x1] as function of p(x) by computing the integral

P[x1] =

∫ x1

−∞
p(x)dx (10)
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Probability theory

• Notice that P[∞] = 1 (area below the curve de�ned by p(x))

• Mean value (Centroid of the area below the curve):

x̄ =

∫ ∞
−∞

xp(x)dx (11)

• Variance (Moment of inertia around the axis de�ned by x̄)

σ2 =

∫ ∞
−∞

(x − x̄)2p(x)dx (12)

• Quadratic mean value (Moment of inertia around the axis de�ned by the
ordinate axis)

x2 =

∫ ∞
−∞

x2p(x)dx (13)
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Two important probability density functions

• Gaussian or normal for a random variable of null mean:

p(x) =
1

σ
√
2π

exp(−0.5(x/σ)2) (14)

• If we have a random variable with positive values (for example, the amplitude
A), Rayleigh's distribution is commonly found:

p(A) =
A

σ2
exp(−0.5(A/σ)2) (15)
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Two important probability density functions

(a) Normal distri-
bution.

(b) Rayleigh distribu-
tion

Figure: Extracted from Meirovitch (2000).
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De�nitions

• x(t) is said to be periodic of period T if x(t) = x(t + T ), ∀t;

• Let x(t) be a periodic signal of period T = 2π/ω. The Fourier series of this
signal is the projection of x(t) onto the set of harmonic function
[cos nωt, sin nωt], n = 1, 2, 3 . . . ,∞;

• Considering the usual inner product between two functions f (t) and g(t)

< f , g >=
∫ T
0 f (t)g(t)dt it is easy to notice that the trigonometric functions

form a orthogonal basis;
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Fourier series - Trigonometric form

• Hence

x(t) =
∞∑

n=0

[an sin(nωt) + bn cos(nωt)] =

= b0 +
∞∑

n=1

[an sin(nωt) + bn cos(nωt)] (16)

with

bn =

∫ T
0 x(t) cos(nωt)dt∫ T
0 cos2(nωt)dt

=
2

T

∫ T

0

x(t) cos(nωt)dt, n = 1, 2, . . . (17)

an =

∫ T
0 x(t) sin(nωt)dt∫ T
0 sin2(nωt)dt

=
2

T

∫ T

0

x(t) sin(nωt)dt, n = 1, 2, . . . (18)

b0 =

∫ T
0 x(t) cos(0ωt)dt∫ T
0 cos2(0ωt)dt

=
1

T

∫ T

0

x(t)dt (19)

• Notice that b0 is the mean value of the signal.
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Fourier series - exponential form

• The Fourier series can be written either in the trigonometric or in the
exponential form. In the latter case, we recall the Euler's formula
e iθ = cos θ + i sin θ and the following identities:

cos(nωt) =
e inωt + e−inωt

2
(20)

sin(nωt) =
e inωt − e−inωt

2i
=

i(e−inωt − e inωt )

2
(21)

• Substituting the above identities in Eq. 16, we have

x(t) = b0 +
∞∑

n=1

[
an

(
i(e−inωt − e inωt )

2

)
+ bn

(
e inωt + e−inωt

2

)]
=

= b0 +
∞∑

n=1

[(
bn − ian

2

)
e inωt +

(
bn + ian

2

)
e−inωt

]
=

= b0 +
∞∑

n=−∞,n 6=0

(
bn − ian

2

)
︸ ︷︷ ︸

cn

e inωt (22)
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Fourier series - exponential form

• Using the de�nitions of an and bn in Eq. 22, we obtain

cn =

(
bn − ian

2

)
=

1

2

(
2

T

∫ T

0

x(t) cos(nωt)dt − i
2

T

∫ T

0

x(t) sin(nωt)dt

)
=

=
1

T

∫ T

0

x(t)(cos(nωt)− i sin(nωt))dt =
1

T

∫ T

0

x(t)e−inωt dt (23)
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Fourier series - example

Consider the periodic function of period Tp given by:

p(t) = p0t,Tpk < t < Tp(2k + 1)/2, k = 0, 1, 2 . . . (24)

p(t) = 0,Tp(2k + 1)/2 < t < Tp(k + 1), k = 0, 1, 2, . . . (25)
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Fourier series - example

• Fundamental frequency ω̄ = 2π
Tp

• The series is truncated in N terms

• p(t) = b0 +
N∑

n=1
(bn cos(nω̄t) + an sin(nω̄t))

• b0 = 1
Tp

∫ Tp

0 p(t)dt

• bn = 2
Tp

∫ Tp

0 p(t) cos(nω̄t)

• an = 2
Tp

∫ Tp

0 p(t) sin(nω̄t)
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Fourier series - example

Considering p0 = 10 and Tp = 10, we have:
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De�nitions

• Periodic signals can be studied using the Fourier series. What can we do if the
signal is not periodic?

• We consider a non-periodic signal as a periodic one with T →∞.
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Fourier Transform

• In the complex Fourier series, the frequency discretization (i.e., the interval
between two identi�ed frequencies is ω. Here, this interval is de�ned as
∆ω = 2π

T

• Hence

x(t) = lim
T→∞

∞∑
n=−∞

1

T

(∫ T

0

x(t)e−in∆ωt dt

)
e in∆ωt (26)

• When T →∞, the interval between frequencies goes to dω. In turn, n∆ω goes
to ω as T →∞. Following, we obtain:

x(t) =

∫ ∞
−∞

(
1

2π

∫ ∞
−∞

x(t)e−iωt dt

)
dω (27)
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Fourier Transform

We de�ne

• Fourier Transform

X (ω) =

∫ ∞
−∞

x(t)e−iωt dt (28)

• Inverse Fourier Transform

x(t) =
1

2π

∫ ∞
−∞

X (ω)e iωt dω (29)

• Fourier transform exists if
∫∞
−∞ |x(t)|dt <∞, if the number of discontinuities

and extrema in x(t) are �nite and if the discontinuities are also �nite.
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Important aspects of the Fourier Transform

• Problem: Consider a 1-dof oscillator of mass m, linear damping constant c and
sti�ness k. For a known p(t), what is the Fourier Transform of the displacement
time-history u(t)?

• Equation of motion:

ü + 2ζωu + ω2u =
p(t)

m
(30)

ω =

√
k

m
, ζ =

c

2mω
(31)

• Answer: Firstly, we consider p(t) = e iω̄t . Steady-state responses are
characterized by:

u(t) = He iω̄t (32)

u̇(t) = iω̄He iω̄t (33)

ü(t) = −ω̄2He iω̄t (34)

• H = H(ω̄) is the complex frequency response function.
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Important aspects of the Fourier Transform

• Substituting into the equation of motion:

(−ω̄2 + ω2 + i2ζωω̄)H(ω̄)e iω̄t =
e iω̄t

m
(35)

H(ω̄) =
1

k
[(

1−
(
ω̄
ω

)2)
+ i2ζ ω̄

ω

] (36)

• Now, consider

p(t) =
∞∑

n=−∞
Pne inω̄t (37)

Pn = P(nω̄) (38)

• Owing to the linear character of the mathematical model:

u(t) =
∞∑

n=−∞
P(nω̄)H(nω̄)e inω̄t (39)
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Important aspects of the Fourier Transform

• If the fundamental period T̄ = 2π
ω̄
→∞ and using the same approach employed

for deriving the Fourier Transform, we obtain:

u(t) =
1

2π

∫ ∞
−∞

H(ω̄)P(ω̄)︸ ︷︷ ︸
U(ω̄)

e iω̄t dω̄ (40)

• Hence, the Fourier Transform of u(t) is U(ω̄) = H(ω̄)P(ω̄).

• Another aspect is now discussed. Consider Duhamel's integral:

u(t) =

∫ t

−∞
p(τ)h(t − τ)dτ (41)

• We consider ξ = t− τ → τ = t− ξ. If τ = −∞, ξ =∞. If τ = t, ξ = 0. Hence,

u(t) =

∫ ∞
0

f (t − ξ)h(ξ)dξ (42)
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Important aspects of the Fourier Transform

• If p(t) = e iωt

u(t) =

∫ ∞
0

e iω(t−ξ)h(ξ)dξ = e iωt
∫ ∞
0

h(ξ)e−iωξdξ︸ ︷︷ ︸
H(ω)ifh(t)=0,t<0

(43)

• Conclusion: H(ω) is the Fourier Transform of the impulsive response.

• Note: u(t) = f (t) ∗ h(t) (convolution integral). �The Fourier Transform of the
time convolution corresponds to the product in the frequency domain�.
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Properties of the Fourier Transform

• We rewrite the pair of Fourier Transform:

X (ω) =

∫ ∞
−∞

x(t)e−iωt dt (44)

x(t) =
1

2π

∫ ∞
−∞

X (ω)e iωt dω (45)

• Fourier Transform of ẋ(t):

ẋ(t) =
1

2π

∫ ∞
−∞

iωX (ω)e iωt dω (46)

Hence FT [ẋ] = iωFT [x].

• If we would like to write X (f ) (f in Hz) instead of X (ω) (ω in rad/s), we recall
that ω = 2πf and, then,

X (f ) =

∫ ∞
−∞

x(t)e−i2πft dt (47)

x(t) =

∫ ∞
−∞

X (f )e i2πft df (48)
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Parseval's theorem

• For two real signals x1(t) and x2(t)∫ ∞
−∞

x1(t)x2(t)dt =

∫ ∞
−∞

X∗1 (f )X2(f )df (49)

• Dem: ∫ ∞
−∞

x1(t)x2(t)dt =

∫ ∞
−∞

x1(t)

[∫ ∞
−∞

X2(f )e i2πft df

]
dt =∫ ∞

−∞
X2(f )

[∫ ∞
−∞

x1(t)e i2πft dt

]
df =

∫ ∞
−∞

X∗1 (f )X2(f )df =

=

∫ ∞
−∞

X1(f )X∗2 (f )df (50)
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Discrete Fourier Transform

• In practical applications (experiments or numerical simulations), time is
discretized (sampled) and, hence, the signals (for example, acceleration of a
certain point) are given in the form of a vector of �nite size;

• Focus of the class: Cases in which time is given by a vector with N points (size
of the sample), sampled at constant frequency (rate) fs (sampling frequency).
The sample period is Ts = 1/fs .

• We need to use the Discrete Fourier Transform (DFT). Fast Fourier Transform
(FFT) is an e�cient algorithm for calculating the DFT.
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Practical aspects

• Now, we discuss how to obtain the amplitude spectrum X (f ) from x(t) using
MATLAB®/Octave (and also in Julia).

• From the physical point of view, X (f ) illustrates the amplitude of each
frequency component of x(t);

• Since time is given in discrete form, the amplitude spectrum is also obtained at
discrete values of frequency;

• For the sake of illustration, consider the signal given for continuum time
x(t) = A cos(ωt), with A = 1.6 e ω = 4πrad/s
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�Continuum� time signal
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Practical aspects - sampling

• Now, we consider the discrete signal xd , obtained from an experiment with
constant sample period Ts = 0,01s.
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Ts → ∞
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Step 1

Firstly, we obtain the complex amplitude components by means of the DFT.
Following, we de�ne the vector with the frequencies in which the amplitude spectrum
will be de�ned.

• Command 1: Xs = fft(x);

• Command 2: N = size(x);

• Command 3: freq = [0 : 1 : N − 1] ∗ fs/N;
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Step 2

We obtain the amplitude associated with each frequency component. This can be
made by taking the absolute value of the complex numbers. Factor N is due to the
algorithm.

• Command 4: absXs = abs(Xs)/N;
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Result at the end of step 2
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Step 3

The spectral analysis has identi�ed two frequencies, 2Hz and 98Hz, both with half the
amplitude from the continuum time signal. Notice the symmetry with respect to fs/2.
We will see what happens....
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Time-histories
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Time-histories
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Amplitude spectrum A(f )

• We have two frequencies, the one of interest and another one of much larger
value (aliasing). Each frequency is associated with half the amplitude of the
original data;

• Aiming at obtaining a representative amplitude spectrum, we must consider only
the frequencies below fs/2. The amplitudes must be multiplied by 2;

• From this brief discussion, we can state that the largest frequency of interest of
the signal sampled at fs must be lower than fs/2 (Sampling theorem or Nyquist
theorem).
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Amplitude spectrum A(f )
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MATLAB® function

47/67
PEF 6000



Outline

1 Objectives and references

2 Introduction

3 Fourier Series

4 Fourier Transform

5 Signal analysis with MATLAB®: Practical aspects

6 Examples of application

7 Power spectrum density (PSD)

8 Response of a 1-dof system to random excitation

48/67
PEF 6000



Ex. 1 - u1(t) = ρ cos(2πft + θ)

ρ = 1m; f = 1,2Hz; θ = π/4
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Ex. 2 - u2(t) = ρe−ζωt cos(2πf
√

1− ζ2t + θ)

ρ = 1m; f = 1,2Hz; ζ = 0.02; θ = π/4
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Ex. 3 - u3(t) = ρ1 cos(2πf1t) + ρ2 cos(2πf2t)

ρ1 = 1m; f1 = 1,2Hz; ρ2 = 1.5m; f2 = 1,4Hz
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Ex. 4 - Damped and forced 1-dof oscillator

ü + 2ζωu̇ + ω2u = p0/m cos(ω̄t)
u(0) = 0m; u̇(0) = 0m/s;m = 1kg; k = 4π2N/m; ω̄ = 1.2ω; ζ =

2%
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Ex. 5 - Undamped and forced 1-dof oscillator

ü + 2ζωu̇ + ω2u = p0/m cos(ω̄t)
u(0) = 0m; u̇(0) = 0m/s;m = 1kg; k = 4π2N/m; ω̄ = 1.2ω; ζ = 0
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De�nition

• For a stationary and ergodic process, the autocorrelation function of f (t) is:

Rf (τ) = lim
T→∞

1

T

∫ T/2

−T/2
f (t)f (t + τ)dt (51)

• We de�ne the power spectrum density as the Fourier Transform of the
autocorrelation function

Sf (ω) =

∫ ∞
−∞

Rf (τ)e−iωτdτ (52)

Rf (τ) =
1

2π

∫ ∞
−∞

Sf (ω)e iωτdω (53)

• Equations 52 and 52 are known as Wiener-Khintchine relations.

• Important properties:

Rf (τ = 0) = lim
T→∞

1

T

∫ T/2

−T/2
f 2(t)dt = f 2 (54)

Rf (τ = 0) =
1

2π

∫ ∞
−∞

Sf (ω)dω =

∫ ∞
−∞

Sf (f )df = f 2 (55)
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Relation between Sf x(ω and F (ω)

• Now, we discuss the relation between the Fourier Transform X (f ) and the PSD
Sx (f ) of x(t).

• We start from Parseval's theorem and from the de�nition of the mean square
value of x(t):∫ ∞

−∞
x2(t)dt =

∫ ∞
−∞

X (f )X∗(f )df =

∫ ∞
−∞
|X (f )|2df (56)

x2 = lim
T→∞

1

T

∫ T

0

x2(t)dt = lim
T→∞

1

T

∫ ∞
−∞

x2(t)dt =

=

∫ ∞
−∞

lim
T→∞

1

T
X (f )X∗(f )df =

∫ ∞
−∞

Sx (f )df (57)

• Hence

Sx (f ) = lim
T→∞

1

T
X (f )X∗(f ) (58)
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Practical aspects

• p(t) is a real signal of null mean. Its Fourier series is

p(t) =
∞∑

n=−∞,n 6=0

cne inω0t (59)

• This Fourier series can be given in terms of the positive frequency, as follows

p(t) =
∞∑

n=1

1

2
(cne inω0t + c∗n e−inωt ) (60)

• Now, we recall the orthogonality condition to obtain

p2 = lim
T→∞

1

T

∫ T

0

p(t)dt = lim
T→∞

1

T

∫ T

0

∞∑
n=1

1

4
(cne inω0t + c∗n e−inω0t )2dt

(61)

• Due to the orthogonality condition, we have

p2 = lim
T→∞

1

T

∫ T

0

∞∑
n=1

1

4
2cnc∗n dt =

∞∑
n=1

1

2
cnc∗n (62)
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Practical aspects

• Notice that cn are the amplitude of the harmonic components;

• The power spectrum Gn = G(fn) is given by 1
2

cnc∗n ;

• The power spectrum density Sn = S(f ) is given by Gn/∆f , ∆f being the
frequency interval;

• Units: If p(t) represents the time-history of the applied force in N, [G ]=N2 and
[S]=N2s;

• If we would like to express the PSD considering the frequency in rad/s, we have:

S(f )df = S(ω)dω ↔ S(f )df = S(ω)2πdf → S(f ) = 2πS(ω) (63)

• Spectral moments of order k (mk )

mk =

∫ ∞
0

ωk S(ω)dω (64)

• Notice that the standard-deviation of the time-history is
√

m0.
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Example 1 : time-history p(t)
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Example 1 : Amplitude spectrum A(f )
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Example 1: PSD S(f )
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Example 2 : time-history η(t)

• η(t) is the free-surface elevation time-history at a particular position. Data
obtained from experiments carried out at TPN Wave Basin and kindly sent by
PhD. Pedro Mello.

• The averaged value (o�set) has been removed from data.
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Example 2 : Amplitude spectrum A(f )
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Example 2: PSD S(f )
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• Standard deviation of η(t) computed using std command: 12.4765

• Standard deviation of η(t) computed
∫∞
0 S(f )df : 12.4764
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Spectral crossing

• Consider that we have the excitation time-history p(t), its Fourier Transform
P(ω) and PSD Sp(ω);

• As already discussed U(ω) = H(ω)P(ω)→ U(f ) = H(f )P(f );

• We take the complex conjugate of both sides:

U(f )U∗(f ) = H(f )H∗(f )P(f )P∗(f ) = |H(f )|2P(f )P∗(f ) (65)

• Now, we use the de�nition:

lim
T→∞

1

T
U(f )U∗(f ) = |H(f )|2P(f )P ∗ (f )↔ Su(f ) = |H(f )|2Sp(f ) (66)

• The operation given by Equation Eq. 66 is also know as spectral crossing;

• We can obtain the statistics of the response following the approach already
developed;

• In some applications, the PSD of the excitation is given by empirical
expressions. Hence, we can estimate statistics of the response without the
numerical integration of the equations of motion in time domain.
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Other important aspects

• PSD is also obtained by Su(f ) =
A2u (f )

2df

• Notice that we can obtain the amplitude of the harmonic components of
velocity u̇ as 2πfA(f ). Then, the PSD of the velocity is written as

Su̇(f ) = (2πf )2
A2

u(f )

2df
= (2πf )2Su(f ) (67)

• Using the same approach:

Sü(f ) = (2πf )2Su̇(f ) = (2πf )4Su(f ) (68)

• If we have Su(f ), we can obtain a realization of the time-history u(t) by
computing:

u(t) =
N∑

n=1

√
2Su(f )df cos(2πfnt + φn) (69)

φn being a random phase.
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