

Exemplos de estatísticas:

- \Leftrightarrow Média da amostra: $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$
- ♦ Proporção de elementos da amostra com determinada característica: P
- \Rightarrow Variância da amostra: $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i \bar{X})^2$
- \Leftrightarrow Menor valor da amostra: $X_{(1)} = \min(X_1, X_2, \dots, X_n)$
- \Leftrightarrow Maior valor da amostra: $X_{(n)} = \max(X_1, X_2, \dots, X_n)$ onde $X_{(i)}$ é a i-ésima maior observação da amostra

Um **parâmetro** é uma medida usada para descrever uma característica da população.

Símbolos mais comuns para alguns			
parametros da população			
	Darametro	Estatístic	

\bar{X}
S^2
Ŷ

Exemplo: Seja uma população composta por quatro árvores, com os correspondentes diâmetros apresentados na tabela a seguir:

Árvore	Diâmetro (cm)
Α	8,0
В	20,0
C	24,0
D	27,0

A proporção de árvores com diâmetro inferior a 20 cm:

$$\pi = \frac{1}{4} = 0,25.$$

O diâmetro médio (μ):

$$\mu = \frac{\sum_{i=1}^{4} x_i}{4} = 19,75 \text{ cm}.$$

A variância (σ^2):

$$\sigma^2 = \frac{\sum_{i=1}^4 (x_i - \mu)^2}{4} = \frac{208,75}{4} = 52,1875 \text{ cm}^2.$$

O desvio padrão (σ):

$$\sigma = \sqrt{\sigma^2} = \sqrt{52, 1875} = 7,2241 \text{ cm}.$$

Distribuição amostral da estatística P

Vamos supor que uma árvore com menos de 20 cm de diâmetro não seja interessante para o mercado.

- Existe apenas uma árvore na população com determinada característica $\Rightarrow \pi = 1/4 = 0,25$.
- Estimar tal proporção observando árvores dessa população

Observar uma amostra de tamanho dois, com reposição

Estimar π por meio da estatística

$$P = \frac{\text{número de casos favoráveis (sucessos)}}{\text{tamanho da amostra}}$$

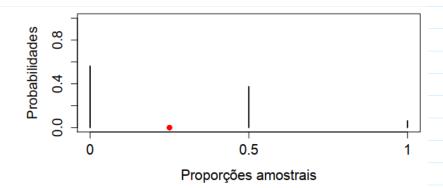
Perguntas:

- Quais proporções amostrais podem ser obtidas?
- Qual a probabilidade associada a cada uma?
- Qual a forma da distribuição das proporções amostrais?
- Qual a média da distribuição amostral dessas proporções?
- Qual a variância da distribuição amostral dessas proporções?

Amostra	Elementos	$\hat{\pi}$	$\hat{\mu}$	$\hat{\sigma^2}$
1	A,B	0,50	14,0	72,0
2	A,C	0,50	16,0	128,0
3	A,D	0,50	17,5	180,5
4	B,C	0,00	22,0	8,0
5	B,D	0,00	23,5	24,5
6	C,D	0,00	25,5	4,5
7	B,A	0,50	14,0	72,0
8	C,A	0,50	16,0	128,5
9	D,A	0,50	17,5	180,0
10	C,B	0,00	22,0	8,0
11	D,B	0,00	23,5	24,5
12	D,C	0,00	25,5	4,5
13	A,A	1,00	8,0	0,0
14	B,B	0,00	20,0	0,0
15	C,C	0,00	24,0	0,0
16	D,D	0,00	27,0	0,0
			4 [1 2 4 🗐 5 4

Distribuição amostral da proporção:

Уi	0	1	2
$\hat{p} = y_i/2$	0	0,5	1
$P(P = \hat{p})$	9/16=0,5625	6/16=0,3750	1/16=0,0625



Forma: distribuição assimétrica;

Média:

$$\mu_{p} = 0 \times 0,5625 + 0,50 \times 0,3750 + 1 \times 0,0625 = 0,25 = \pi$$

Variância:

$$(0-0,25)^2 \times 0,5625 + (0,50-0,25)^2 \times 0,3750 + (1-0,25)^2 \times 0,0625 =$$

= $0,09375 = \pi(1-\pi)/n$

Vimos que...

Y: número de árvores com diâmetro inferior a 20 cm

Se
$$Y \sim Bin(n, \pi)$$
.

Então,

$$\mu = n\pi$$
 e $\sigma^2 = n\pi(1-\pi)$.

Logo, a distribuição amostral das proporções poderá ser aproximada por uma distribuição normal comparâmetros:

$$\mu = \pi$$
 e $\sigma^2 = \frac{\pi(1-\pi)}{n}$.

Observação: Quando são utilizadas amostras sem reposição, deve-se fazer uma correção na variância.

Exemplo: Uma proporção de 37% dos visitantes de um parque favorecem a cobrança de taxas de entrada. Uma amostra aleatória de 200 visitantes foi tomada. $P = Q \overline{Q} + Q \overline{Q$

- (a) Qual é a probabilidade que na amostra de 200 visitantes pelo menos 40% seja favorável a cobrança de taxas?
- (b) Qual é a probabilidade que na amostra de 200 visitantes, a porcentagem dos que são favoráveis a cobrança de taxas fique entre 35% e 39%?
- (c) Uma nova amostra de 10 visitantes foi tomada. Qual a probabilidade de que pelo menos 50% dos visitantes na amostra seja favorável à cobrança de taxas? É válido utilizar o mesmo método utilizado anteriormente? Qual método deveria ser utilizado nesse caso?

anteriormente? Qual método deveria ser utilizado nesse caso?

$$\frac{1 - 6 \left[\frac{2}{4} \cdot 0,88 \right]}{\frac{937(963)}{20}} = 0.1894$$

$$21 = 0.35 - 0.37 = -0.59 = P(2<0.59) - P(2<-0.59) = 0.70,24 - 0.2776$$

$$E_{d} = \frac{0.30 - 0.37}{0.37 (0.63)^{3}} = 0.59$$

$$(c)$$
 $n=10$ $p=0.37$

$$N = \frac{0.37.(0.63)}{10} \qquad P(P>0.5) = P(Z > 0.85) = 1 - P(Z < 0.65)$$

$$= 1 - 0.80 \times 3$$

$$\frac{1}{2} = \frac{0.5 - 0.37}{0.37 \cdot (0.63)} = 0.85$$

$$\frac{10}{10} = 0.85$$

$$\frac{1}{2} = 0.977$$

Exemplo: Um processo de encher garrafas de vinho fornece 10% de garrafas com volume abaixo do especificado. Extraída uma amostra de 400 garrafas enchidas por esse processo, qual a probabilidade de a proporção amostral de garrafas com volume abaixo do especificado, P, estar entre $P_1 = 0.09$ (9%) e $P_2 = 0.11$ (11%)?

Distribuição amostral da média

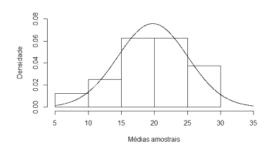
Distribuição amostral da estatística \bar{X}

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

Considerando-se o exemplo de diâmetro das árvores. Agora o interesse é estimar o diâmetro médio (μ) .

Amostra	Elementos	$\hat{\pi}$	$\boldsymbol{\hat{\mu}}$	$\hat{\sigma^2}$
1	A,B	0,50	14,0	72,0
2	A,C	0,50	16,0	128,0
3	A,D	0,50	17,5	180,5
4	B,C	0,00	22,0	8,0
5	B,D	0,00	23,5	24,5
6	C,D	0,00	25,5	4,5
7	B,A	0,50	14,0	72,0
8	C,A	0,50	16,0	128,5
9	D,A	0,50	17,5	180,0
10	C,B	0,00	22,0	8,0
11	D,B	0,00	23,5	24,5
12	D,C	0,00	25,5	4,5
13	A,A	1,00	8,0	0,0
14	B,B	0,00	20,0	0,0
15	C,C	0,00	24,	0,0
16	D,D	0,00	27,0	0,0

- Qual a forma da distribuição das médias amostrais?
- Qual a média da distribuição amostral dessas médias?
- Qual a variância da distribuição amostral dessas médias?



- Forma: distribuição simétrica
- Média:

$$\frac{14,0+16,0+\ldots+27,0}{16}=19,75~{\rm cm}=\mu$$

Variância:

$$\frac{(14,0-19,75)^2 + (16,0-19,75)^2 + \ldots + (27,0-19,75)^2}{16} =$$

$$= 26,09 \text{ kg}^2 = \frac{\sigma^2}{n}.$$

Assim...

Y: média do diâmetro das árvores (cm)

Se
$$Y \sim N(\mu, \sigma^2)$$
.

Então, a média amostral seguirá a distribuição normal com parâmetros:

$$\mu = \mu$$
 e $\sigma^2 = \frac{\sigma^2}{n}$.

Observação: Quando são utilizadas amostras sem reposição, deve-se fazer uma correção na variância.

Teorema Central do Limite

Se a população original tem uma distribuição qualquer com média μ e variância σ^2 , para n "suficientemente grande" (na prática, quando $n \geq 30$), \bar{X} tem distribuição **aproximadamente** normal:

$$E(X) = \mu \qquad \Rightarrow \quad \bar{X} \sim N \left(\mu \cdot \frac{\sigma^2}{2} \right)$$

$$\left\{
\begin{array}{c}
\mathsf{E}(X) = \mu \\
\mathsf{Var}(X) = \sigma^2
\end{array}
\right\} \quad \Rightarrow \quad \bar{X} \sim \mathsf{N}\left(\mu, \frac{\sigma^2}{n}\right).$$

Exemplo: Seja X a produção anual de resina de árvores de *Pinus elliotti*. Suponha que X segue uma distribuição normal com média 2,3 kg e desvio padrão 0,7 kg.

- (a) Faça um esboço da distribuição de X.
- (b) Foi tomada uma amostra aleatória de 16 árvores. Qual é a probabilidade de que a produção média das 16 árvores amostradas seja maior do que 2,8 kg?
- (c) Uma amostra aleatória de 49 árvores foi tomada. Qual é a probabilidade de que a produção média das 49 árvores amostradas seja maior do que 2,8 kg?
- (d) Uma amostra aleatória de 25 árvores foi tomada. Obter \bar{x} tal que:
 - $P(\bar{X} < \bar{x}) = 0,985$
 - $P(\bar{X} < \bar{x}) = 0,975$

~ (97)2= 949

XNN(M, 50)

(b) n=16

$$P(\bar{x} > 2,8) = P(\bar{z} > 2,86) = 1 - P(\bar{z} < 2,86)$$

$$= 1 - 0,9979$$

$$= 0,0021$$

$$\frac{2}{2} = \frac{2.8 - 2.3}{19} = 5$$

$$AX < X/= 0.985$$
 $E = 2.17$

$$2,17 = \frac{1}{12} - \frac{1}{12}$$
 $17 = \frac{1}{12} - \frac{1}{12}$
 $17 = \frac{1}{12} - \frac{1}{12}$

$$P(X < X) = 9975$$

 $2 = 1,96$

$$1.96 = \frac{x - 2.3}{\sqrt{0.49}}$$
 $x = 2.5744 = 2.6$