ZAB1033 – Fundamentos da Estrutura Eletrônica da Matéria

3ª Lista de Exercícios

- 1 Calcule a energia cinética média e a energia potencial média de um elétron no estado fundamental do átomo de hidrogênio.
- 2 Escreva a expressão da função de distribuição radial de um elétron num orbital 2s num átomo hidrogenoide e determine o raio mais provável de encontrar o elétron.
- 3 Qual o momento angular orbital de um elétron nos orbitais (a) 1s, (b) 3s, (c), 2p e (d) 3d?
- 4 Calcule os valores permitidos de j para (a) um elétron num orbital d e (b) para um elétron num orbital f.
- 5 Entre as transições seguintes, quais as permitidas num espectro de emissão de um átomo? (a) $2s \rightarrow 1s$, (b) $2p \rightarrow 1s$, (c) $3d \rightarrow 2p$, (d) $5d \rightarrow 2s$, (e) $5p \rightarrow 3s$
- 6 Escreva a configuração eletrônica do Ni^{2+} . Quais os valores possíveis dos números quânticos do spin total S e M_S desse íon?
- 7 Que termos atômicos são possíveis com a configuração eletrônica (a) ns^1np^1 , (b) ns^1nd^1 , (c) np^1nd^1 ?
- 8 Dê os possíveis símbolos dos termos para (a) Li[He]2s¹, (b) Na[Ne]3p¹.
- 9-Um átomo pode apresentar as configurações eletrônicas [Rn] $5f^{14}7s^27p^1$ e [Rn] $5f^{14}6d^17s^2$.
- (a) Encontre os possíveis termos atômicos. (b) Dentre os termos quais transições são permitidas?
- (c) Calcule a energia de cada um dos termos. (d) Faça um diagrama dos níveis de energia. (e) Identifique no diagrama quais as possíveis estruturas finas e calcule a separação $\Delta \widetilde{\nu}$ em função da constante de acoplamento spin-órbita.

Equações

$$\int_{0}^{\infty} x^{n} e^{-ax} = \frac{n!}{a^{n+1}}$$

Harmônicos esféricos

I	m_l	\mathbf{Y}_{lm_l}
0	0	$\left(\frac{1}{4\pi}\right)^{1/2}$
1	0	$\left(\frac{3}{4\pi}\right)^{1/2}\cos\theta$
1	±1	$\mp \left(\frac{3}{8\pi}\right)^{1/2} \operatorname{sen}\theta \mathrm{e}^{\pm i\phi}$
2	0	$\left(\frac{5}{16\pi}\right)^{1/2} \left(3\cos^2\theta - 1\right)$

Funções de onda radiais de átomos de hidrogenoides

Orbital	n	l	R_{nl}
1s	1	0	$2\left(\frac{Z}{a}\right)^{3/2}e^{-\rho/2}$
2s	2	0	$\frac{1}{8^{1/2}} \left(\frac{Z}{a}\right)^{3/2} (2-\rho) e^{-\rho/2}$

$$\rho = \frac{2Zr}{na}$$