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The strikingly high incidence of obstructed labor due to the dis-
proportion of fetal size and the mother’s pelvic dimensions has
puzzled evolutionary scientists for decades. Here we propose that
these high rates are a direct consequence of the distinct character-
istics of human obstetric selection. Neonatal size relative to the
birth-relevant maternal dimensions is highly variable and posi-
tively associated with reproductive success until it reaches a criti-
cal value, beyond which natural delivery becomes impossible. As a
consequence, the symmetric phenotype distribution cannot match
the highly asymmetric, cliff-edged fitness distribution well: The
optimal phenotype distribution that maximizes population mean
fitness entails a fraction of individuals falling beyond the “fitness
edge” (i.e., those with fetopelvic disproportion). Using a simple
mathematical model, we show that weak directional selection for
a large neonate, a narrow pelvic canal, or both is sufficient to
account for the considerable incidence of fetopelvic dispropor-
tion. Based on this model, we predict that the regular use of
Caesarean sections throughout the last decades has led to an evo-
lutionary increase of fetopelvic disproportion rates by 10 to 20%.

cephalopelvic disproportion | human evolution | natural selection |
obstructed labor | obstetric dilemma

The incidence of obstructed labor in humans is strikingly high,
in the range of 3 to 6% worldwide (1, 2). Most of these cases

result from the disproportion of the newborn’s head or shoul-
ders and the mother’s pelvic dimensions. Estimates of the inci-
dence of cephalopelvic disproportion vary widely, depending on
the criteria for diagnosis. In Africa, rates of cephalopelvic dis-
proportion have been reported to range from 1.4 to 8.5% (3).
US statistics suggest rates of 2.3% for infants weighing 3,000 to
3,999 g at birth, and 5.8% for those weighing 4,000 g or more (4).
Without medical care, cephalopelvic disproportion often results
in maternal and neonatal death or severe morbidity (5). Given
this enormous—and in many parts of the world still persisting—
selection pressure, it is puzzling why the pelvic canal has not
evolved to be wider to reduce rates of obstructed labor.

At least 4 to 5 million years ago, bipedality evolved in the
human lineage, long before brain size started to increase about
2 million y ago (6). The increasingly large-headed neonates
thus had to be delivered through a pelvis that had earlier been
adapted to bipedalism. It has been claimed that a wider pelvis
would be disadvantageous for bipedal locomotion, hence consti-
tuting a selective force opposed to that of obstetrics (“obstetri-
cal dilemma”; refs. 7–9). However, because the biomechanical
benefit of a narrow pelvis presumably is small (10, 11), it remains
unclear how a population’s fitness loss due to the high rate of
obstructed labor is outweighed by these minor advantages for
bipedal locomotion.

Here we show that human obstetrics is subject to a particularly
unusual selection scenario. The high proportion of mismatched
individuals is a direct consequence of the inherently asymmetric
fitness distribution of the size of the neonate relative to that of
the mother’s pelvic canal, even under weak directional selection.

The Obstetric Fitness Function. Successful labor requires the
match of the neonatal head and shoulder dimensions with the

dimensions of the maternal pelvic inlet, midplane, and outlet.
Consider an idealized variable, D , that represents the differ-
ence between the size of the neonate and the size of the mater-
nal pelvic canal. A negative value indicates a pelvic canal that
can accommodate the newborn, whereas fetopelvic dispropor-
tion occurs if D > 0. In practice, this composite quantity cannot
be inferred from the usual clinical measurements, but it is con-
ceivable that D can be expressed as a function of a finite set of
appropriate morphological measurements.

Neonatal size and maternal pelvic dimensions influence fit-
ness (i.e., reproductive success) of the newborn and the mother
in multiple ways. Undoubtedly, relative brain size had increased
during human evolution in response to directional selection.
Recently, it has also been suggested that the large human brain
may be the result of runaway selection for the childcare of
infants that are born prematurely because of their large brain
(12). It is unclear whether any of this selection still persists after
the slight decrease of brain size in the late Pleistocene. How-
ever, birth weight, which correlates with brain size at birth, is
strongly positively associated with infant survival rate (13) and
has also been reported to correlate negatively with the risk of
multiple diseases (14). Reducing neonatal brain size by short-
ening gestation length seems to be equally disadvantageous:
Delivery before term clearly increases the likelihood of impaired
cognitive function in later life (15, 16). Grabowski and Rose-
man (17) identified a complex pattern of natural selection that
has acted on the pelvis throughout hominin evolution, but no
consensus has been reached about the actual benefit of a nar-
row pelvis for bipedal locomotion (7, 8, 10, 11). However, a nar-
row pelvic cavity might be advantageous for other reasons as
well. During bipedal posture, the inner organs of the peritoneal
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cavity are vertically aligned with the rectal and urogenital orifices;
the pelvic girdle thus supports the inner organs and, secondar-
ily, also the neonate. Whereas in quadruped mammals the pelvic
floor muscles are vertically oriented and mostly involved with the
motion of the tail, the connective tissue and muscles of the hori-
zontal pelvic floor in humans support the abdominopelvic organs
and resist intraabdominal pressure exerted from above (18, 19).
Pelvic organ prolapse as well as multiple other pelvic floor disor-
ders and connective tissue defects, such as premature rupture of
fetal membranes or cervical insufficiency, are common in human
females, especially during pregnancy and after vaginal birth (20–
22), suggesting a system very sensitive to perturbations. It has
been shown that a wide pelvic cavity increases the probability of
disorders: The transverse diameter of the pelvic inlet is corre-
lated with the rate of pelvic floor disorders, including prolapse
(23, 24).

In terms of our model, a large neonatal brain and body as well
as a narrow maternal pelvic canal both lead to a large value of
D and are positively associated with individual fitness (neonatal
or maternal). Opposed to that, a large neonate relative to the
pelvic canal increases the risk of obstructed labor. It has been
shown that Caesarean section rate and maternal morbidity is only
weakly related to neonatal head circumference for normal size
variation, but beyond a critical value (90th to 95th percentile)
obstructed labor and morbidity increase drastically (25–28). In
our model, fitness increases with D until it reaches a maximum at
D = 0; beyond this threshold, the neonate does not fit through
the mother’s pelvic canal anymore and fitness drops to zero (here
the model refers to the situation before the safe availability of
Caesarean sections). Individual female fitness, plotted as a func-
tion of D (the blue curve in Fig. 1A), has the form of an asymmet-
ric “cliff edge” (29, 30): It increases continually before it drops
suddenly. In the simplest version of the model, as presented in
Fig. 1A, individual absolute fitness increases linearly with slope
βA on the left side of the cliff edge. For modern human variation,
this linearity is supported by the medical literature cited above.
However, the fitness slope may be higher for the offspring than
for the mother because of an inherent discrepancy in the opti-
mal amount of fetal provisioning that arises from the effects on
future offspring (31); the slope βA thus represents the average
fitness increase.

The success of labor is not only influenced by D but also by
numerous other factors, including flexibility of the pelvic liga-
ments, orientation of the neonate, and efficiency of uterine con-
tractions (4, 5). However, as long as these factors are statistically
independent of the discrepancy between neonatal and maternal
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Fig. 1. The cliff-edge model of obstetric selection. (A) Model I: The discrepancy, D, between neonatal size and maternal pelvic canal size is approximately
normally distributed in a population with mean µD and SD σD. The red dashed curve shows the probability density function (pdf) of D. Individual female
fitness, W (blue curve), increases linearly with D to its maximum at D = 0; thereafter fitness drops to zero because of fetopelvic disproportion. In this
example, the fitness function has a slope of βAσ = 0.1 units absolute fitness per SD of D. (B) The corresponding adaptive landscape: population mean
fitness, W̄ , plotted against µD, the population mean of D. Because of the asymmetric fitness function, the trait mean that maximizes population fitness
deviates from the trait value with maximal individual fitness; in this example it is situated 1.7 SDs of D to the left. This optimal phenotype distribution
entails a 4.5% rate of individuals with fetopelvic disproportion, that is, with D > 0 (the red area in A). This fraction neither depends on the maximum value
of absolute fitness nor on the scale of D, only on the linear fitness increase per SD (βAσ = σD/δ).

dimensions, the selection gradient and evolutionary trajectory of
D can be modeled independently of other factors (32, 33).

Variation of Birth-Relevant Dimensions. In contrast to the highly
asymmetric fitness function, the dimensions of the head and
the pelvis tend to be approximately symmetrically distributed
(34–36). The difference, D , between birth-relevant neonatal and
maternal dimensions can thus be considered a polygenic and sym-
metrically distributed trait. Importantly, D is affected both by
maternal and neonatal genes, where half of the alleles affecting
neonatal size are of paternal origin and therefore independent
of the alleles that influence the mother’s pelvis. If neonatal size
and pelvic canal size vary independently, their variances sum up
to that of D (Materials and Methods). Whereas both head size
at birth and pelvic dimensions show considerable genetic varia-
tion (34, 37), gestational age at birth is heavily influenced by envi-
ronmental factors (38–40). Heritability of gestation length has
been estimated to be only 0.3 (41), where about two-thirds of this
genetic variation are of maternal origin and one-third is of fetal
origin (42). Furthermore, female pelvic remodeling extends into
late adulthood (43, 44); the dimensions of the pelvic canal thus
are also influenced by the mother’s age. For those reasons, phe-
notypic variation of D is large, highly polygenic, and has a strong
environmental component. Recombination between maternal
and paternal alleles—in addition to the environmental effects—
is likely to maintain an approximately symmetric and wide
trait distribution, despite the asymmetric fitness function.

A Model of Obstetric Evolution. The mean population fitness (i.e.,
the average number of offspring per individual in the population)
is given by the integral of the product of the fitness function and
the trait distribution of D . For the cliff-edged fitness function
introduced above, Fig. 1B shows the mean population fitness for a
range of mean phenotypes, µD , assuming constant standard devi-
ation (SD), σD . Such a plot is referred to as an adaptive landscape
(45, 46). It has been shown that in the standard case of adaptive
evolution toward a single fitness maximum the population mean
of a quantitative trait approaches the fitness peak, that is, the pop-
ulation moves uphill on the adaptive landscape (32, 45).

In these standard models, the fitness distribution is symmetric,
and the trait mean that maximizes the population mean fit-
ness thus is equivalent to the trait value with maximal individ-
ual fitness. This differs from the evolutionary scenario with an
asymmetric fitness function. The symmetric phenotype distribu-
tion cannot match the cliff-edged fitness distribution well: The
population optimum is shifted toward the flatter shoulder of
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the individual fitness curve (30, 47, 48). The mean of D that
maximizes population fitness thus deviates from the individual
fitness maximum at D =0 (Fig. 1B). This also leads to the—
seemingly paradoxical—situation where the optimal trait dis-
tribution involves a fraction of individuals falling beyond the
“fitness edge,” that is, with zero fitness (the red area in Fig. 1A).
In other words, as long as the size of the neonate relative to that
of the maternal pelvic canal is positively associated with repro-
ductive success (increasing fitness for D < 0), the population will
evolve a distribution of D that implies a constant fraction of indi-
viduals subject to fetopelvic disproportion.

The larger the slope of the fitness function on the flat shoul-
der, that is for D < 0, the faster will the trait distribution evolve
toward the fitness edge and the closer toward the edge will
the optimal population mean lie. This results in an increase
of the fraction of individuals with D > 0 (Fig. 2A). In other
words, the model predicts a higher rate of obstructed labor if
the strength of selection for a large neonate, a narrow pelvis, or
both is increased. The fraction of individuals with D > 0 for a
given selection pressure can only be reduced by reducing phe-
notypic variation, the dispersion of D . The wider the pheno-
type distribution, the larger the number of individuals affected
by obstructed labor (Fig. 2A; see also ref. 48). In other words, for
a population with a mean phenotype close to the edge, the fit-
ness function imposes a stabilizing selection gradient on D . But
in the case of obstetric evolution the variation of the compos-
ite trait D , with its complex genetic structure and strong envi-
ronmental component, cannot easily be reduced by stabilizing
selection on either maternal or fetal dimensions separately.
However, positive correlation between fetal size and mater-
nal pelvis dimensions can reduce the variance of D (Materials
and Methods). Indeed, neonatal head size and maternal pelvis
shape have been found to covary (36), presumably via pleiotropic
genetic effects. Furthermore, size and weight of the newborn are
correlated with maternal stature and pregnancy weight (39, 49,
50). This correlation is partly driven by the genes shared between
the mother and the fetus (51), but the fetus also develops under
the influence of the maternal environment. For example, data
from in vitro fertilizations with egg donation have shown a cor-
relation of infant birth weight and head circumference with
the height of the genetically unrelated mother (52). Although
this integration of neonatal and maternal dimensions may have
evolved as an adaptation to the specific obstetric selection sce-
nario, there is still independent variation: The discrepancy, D ,
varies considerably more than fetal and maternal dimensions
separately.
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Fig. 2. (A) Effect of fitness increase on the rate of individuals beyond the “fitness edge.” If βAσ , the absolute fitness increase per SD of D, increases, the
maximum population fitness decreases and the fraction of individuals beyond the fitness edge (i.e., with D> 0) increases. (B) Model II. Individual fitness,
averaged over both sexes, increases linearly with D, until it drops to zero at D > 0 for females but continues to increase for males. Assuming a sex ratio of
1/2 and a fitness increase of βAσ = 0.1 per SD, a mean of µ∗σ = − 1.2σD maximizes the population mean fitness across both sexes, entailing a disproportion
rate of 11.1%, which is more than twice as much as in model I.

The simplest version of the cliff-edge model as presented in
Fig. 1 (linear fitness increase and normally distributed D) has
a single parameter only: βAσ , the absolute fitness increase per
SD of D (Materials and Methods). When βAσ is divided by the
population mean fitness, the resulting parameter expresses the
increase of relative fitness per SD of D , which equals the well-
known standardized directional selection gradient, βσ (53). This
relationship allows us to infer the directional selection gradient
on D for a given rate of fetopelvic disproportion. For example,
a population with a 4.5% rate of disproportion at its popula-
tion optimum (evolutionary steady state) implies βAσ =0.1 units
increase of absolute fitness per SD of D and βσ =0.12 (Fig. 2A;
see Materials and Methods for more details). Considering the
wide range of reported incidences, disproportion rates of 2 to
6% translate into absolute fitness slopes of 0.05 to 0.13 and stan-
dardized selection gradients of 0.06 to 0.16. Studies of numer-
ous morphological and life-history traits in animals have shown
that standardized selection gradients typically are rather modest
(median 0.15, mean 0.2 of absolute values) but with a long tail of
larger values (54–56). According to our model, the current rates
of fetopelvic disproportion thus suggest the persistence of mod-
erate directional selection on D toward larger size of the neonate
relative to that of the maternal pelvic canal. However, it is not
clear from our model whether selection is acting on the neonate,
on the maternal pelvic canal, or on both.

The cliff-edge fitness function in Fig. 1 can also be described
as consisting of two opposing directional selection regimes: lin-
ear selection with slope βA favoring larger D , and truncation
selection favoring smaller D with the threshold at D =0, where
truncation selection is known to be the most efficient form of
selection (57, 58). At the evolutionary steady state, that is, for
the mean phenotype with maximal population fitness, these two
directional selection gradients cancel. If phenotypic variance
stays constant, the remaining stabilizing selection gradient leads
to a constant fraction of cases with fetopelvic disproportion,
which equals the tail of the phenotype distribution beyond the
fitness threshold.

Selection on birth-relevant pelvic dimensions may not nec-
essarily originate only from obstetrics. Due to the develop-
mental and structural integration of the pelvis, other selection
regimes, including thermoregulation (59–61), can have an indi-
rect effect on the pelvic canal (17, 33, 62). The directional selec-
tion gradient on D may also comprise effects other than actual
selection, such as plastic responses to environmental changes.
The balance between maternal and fetal interests depends on
the environment in which it is negotiated; it may be disrupted
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Fig. 3. Polynomial approximations of Eq. 3 for µ∗σ (A) and βAσ (B) within the interval 0.02 < βAσ < 0.3. The dots are computed by the actual formulas,
and the curve is the polynomial approximation.

if the environment changes (16, 63). For example, mothers
born and raised in third-world countries tend to have short
stature and narrow pelvic dimensions; they experience marked
risk of cephalopelvic disproportion and shoulder dystocia after
migrating as adults to the United States, where a change to a
high-protein diet putatively causes an increase in birth size (64).
Similarly, the unequally strong investment in the fetal brain,
which is maintained even under maternal starvation, protects the
fetus under conditions of food scarcity. However, when nutri-
tional conditions change substantially, as they did in the last cen-
tury, this overproportional investment in the fetus may lead to a
mismatch of neonatal brain size and maternal pelvic dimensions.

The presented model can be extended in various ways (see ref.
48 for a comprehensive mathematical treatment of asymmetric
fitness functions). For instance, taking into account that not all
cases of fetopelvic disproportion are lethal for the mother, or
that she had offspring from earlier pregnancies, slightly increases
the rate of affected women. More importantly, the above model
(model I) describes only female phenotypes and assumes no
genetic correlation between the sexes. However, because neona-
tal head size and pelvic morphology are controlled by genes that
are expressed in both sexes, the traits are expected to coevolve
in males and females (65). Both sexes may be subject to simi-
lar nonobstetric selective forces, yet obstructed labor primarily
affects the mother’s fitness; the father’s lifetime reproductive
success is much less influenced by it. We therefore extended the
previous model by including both sexes (model II, with a sex
ratio of 1/2). We assumed complete genetic correlation (coevolu-
tion) between the sexes, and an unconstrained fitness increase for
males, whereas female fitness drops to 0 at D > 0 (Fig. 2B). For a
slope of absolute fitness βAσ =0.1, the inclusion of males pushes
the optimal mean to µD =− 1.2σD , with 11.1% of females expe-
riencing disproportion (note that a constant sexual dimorphism
does not influence this rate). Incidences of 2 to 6% correspond
to standardized directional selection gradients ranging from 0.02
to 0.07—considerably lower than those for model I. This implies
that genetic correlation between the sexes severely aggravates
the risk of obstructed labor for women. The biological and social
factors determining fitness and genetic correlation in the sexes
differ across populations; the actual selection scenarios specific
to different populations thus may vary between models I and II.

Caesarean Sections. In industrialized countries, Caesarean sec-
tions have minimized maternal mortality due to obstructed labor.
Although the obstetric selection pressure has been relaxed, the
directional selection on D may persist and induce an evolu-
tionary change. Theory shows that the expected evolutionary

change of a mean phenotype resulting from directional selection
equals the product of the additive genetic variance (the herita-
ble part of phenotypic variation) and the directional selection
gradient (32, 45). Heritabilities of most pelvic dimensions have
been reported to range from 0.5 to 0.8; the heritability of biischial
breadth (the only birth-relevant dimension reported) is 0.56 (34).
A twin study reported a heritability of 0.73 for intracranial vol-
ume at gestational week 40 (37), but this estimate does not take
into account the plasticity of gestational length. The heritability
of intracranial volume at the time of birth may thus be consider-
ably lower (39). As a conservative estimate, let us assume a 3%
incidence of fetopelvic disproportion before the availability of
Caesarean sections and a heritability of 0.5 for D . This implies
a standardized selection gradient of βσ = 0.080 for model I
and of βσ = 0.037 for model II. The predicted average change
of D after the emergence of Caesarean sections is 0.040 and
0.018 SDs per generation for the two models, respectively. For
the time range that Caesarean sections have been regularly and
safely conducted in industrialized countries (since the 1950s and
1960s, i.e., roughly two generations), our model predicts a 20%
increase of the incidence of fetopelvic disproportion for model I
and a 9% increase for model II. Note that these are predictions
about the actual disproportion rate, not Caesarean section rate,
which has increased much more rapidly for other reasons; the
obstetric literature typically considers the actual disproportion
rate constant.

Conclusion
In an attempt to model the evolutionary dynamics underlying
the obstetric dilemma, we identified three distinct characteris-
tics of human obstetric selection that jointly produce the high
rates of obstructed labor. First, the size of the neonate relative to
the birth-relevant dimensions of the maternal pelvis has a highly
asymmetric, cliff-edged fitness distribution. Second, the genetic
structure of this trait is particularly complex. It involves mater-
nal and paternal genes distributed across two generations and is
superimposed by a strong environmental component. This causes
a wide and approximately symmetric variation of the discrepancy
between fetal and maternal dimensions. Third, obstetric selec-
tion affects only the female half of the population, but female and
male dimensions are genetically correlated and subject to similar
nonobstetric selection. The tight fit of the neonate through the
maternal birth canal thus is aggravated by the influence of the
genes selected in males.

We demonstrated that due to these three properties weak
directional selection favoring large neonates relative to the
maternal pelvic dimensions is sufficient to account for the high
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incidence of fetopelvic disproportion in human populations. Our
model does not specify the origin of these selective forces, but
we found evidence in the medical literature for a reproductive
advantage of both large neonates and women with a narrow
pelvis, independent of putative biomechanical advantages. We
predict that this weak directional selection has led to a 10 to 20%
increase in the rate of fetopelvic disproportion since the regular
use of Caesarean sections.

Materials and Methods
The Cliff-Edge Model. Let z denote a phenotypic trait, such as D introduced
earlier, with a population distribution P(z), and write W(z) for the abso-
lute fitness of an individual, with a population mean of W̄ =

∫
W(z)P(z)dz.

The relative fitness, w, of an individual with phenotype z is w(z) = W(z)/W̄ .
For model I, let the cliff-edged function of absolute individual fitness be
W(z) = βA(z + δ) if−δ≤ z≤ 0 and 0 otherwise, where δ is the interval of
z in which absolute fitness increases with slope βA (Fig. 1A). The linearity
can be considered a local approximation to a nonlinear function; the argu-
ments in this paper also extend to a wider class of functions (30, 47, 48). The
range from−δ to 0 likewise is no restriction of generality, because any vari-
able z may be translated to fit this requirement. As a further idealization,
let the phenotypic distribution within a population be P(z) = P(z, µz, σz) ∼
N(µz, σz). Again, our arguments do not strictly require a normal distribu-
tion of trait values, only an approximately symmetric distribution with finite
variance. Our model further assumes constant variance over time; the only
evolving parameter is the population mean of the trait, µz. The population
mean fitness is then given by W̄ =

∫ 0
−δ βA(z + δ) P(z)dz, and the adaptive

landscape is the curve of W̄ over µz (Fig. 1B). In the standard models of adap-
tive evolution, the population mean moves uphill on the adaptive landscape
until the maximum population fitness has been reached (32, 45, 46). Assum-
ing constant σz, we thus seek the value µ∗z for which W̄ is a maximum:

µ
∗
z = arg max

µz

∫ 0

−δ
βA(z + δ) P(z, µz, σz)dz. [1]

Because of the cliff-edged individual fitness function, µ∗z will be less than—
but close to—the individual fitness maximum at z = 0 whenever σz > 0 (48).
As long as βA > 0, the population maximum always involves a fraction of
individuals beyond the fitness edge (i.e., individuals with zero fitness). This
fraction is given by

f =

∫ ∞
0

P(z, µ∗z , σz)dz. [2]

The three model parameters have a single degree of freedom only; we
can thus reduce them to one new compound parameter, βAσ . The fraction
f is independent of population size and the total number of offspring (the
areas under the probability density function and fitness curve in Fig. 1A).
Thus, without loss of generality, we set the maximum individual fitness at
z = 0 to 1, so that βA = 1/δ, and express δ in terms of SDs, δ/σz. Then the
model has a single parameter only: absolute fitness increase per SD, βAσ =

σz/δ. Because βAσ is unit-free, the fraction f is independent of the scale of
z. Eqs. 1 and 2 can be expressed in terms of this new model parameter:

µ
∗
σ = arg max

µσ

∫ 0

−1/βAσ

βAσ(z + 1/βAσ) P(z, µσ, 1)dz, [3]

f =

∫ ∞
0

P(z, µ∗σ, 1)dz,

where µ∗σ = µ∗z /σz is the optimal trait mean expressed in units of SDs.
For model I, with the fitness slope set to βAσ = 0.1, the maximal mean

population fitness of W̄ = 0.78 was achieved by a mean trait value of
µ∗σ = −1.7σz, with f = 0.045. This was computed by numerical integration
in Mathematica 10.0 (Wolfram Research, Inc.).

In Fig. 2A, the maximal population fitness W̄ and the ratio f were com-
puted for standardized fitness slopes, βAσ , ranging from 0 to 0.3 based on
Eq. 3. The resulting plot is equivalent to a plot with fixed SD, σz, and varying
absolute fitness slope, βA, as well as to a plot with varying σz and fixed βA,
using Eqs. 1 and 2.

Model II in Fig. 2B was based on the fitness function W(z) = βA(z + δ)
if −δ≤ z≤ 0 and W(z) = βA(z + δ)/2 if z> 0, reflecting that fitness still
increases for the male half of the population with slope βA beyond D> 0,
whereas the female half has zero fitness. Obviously, the male fitness increase
for positive values of D can be linear only in the near vicinity of D = 0
because, among other reasons, of the altered sex ratio. However, this limita-
tion does not affect our calculations because the estimated trait means are
clearly negative.

Phenotypic Variation. Write N for an idealized measure representing neona-
tal size and C for the mother’s pelvic canal size. The variance of the
difference D = N− C can be expressed in terms of the variances and the
covariance of N and C:

Var(D) = Var(N) + Var(C)− 2Cov(N, C).

This well-known theorem implies that if N and C were uncorrelated, their
variances would add up to the variance of D. Any positive association
between them would reduce variation in D, which in turn would reduce
the fraction f (Fig. 1B).

Evolutionary Prediction. Under the idealized assumption of no genotype–
environment interactions, the phenotypes can be decomposed into an addi-
tive genetic component and an independent environmental component. In
the absence of environmental changes between generations and changes
due to recombination or mutation, the mean phenotypic change,4µz, from
one generation to the next can be modeled as the product of the additive
genetic variance, G, and the directional selection gradient, β (32, 45):

4µz = Gβ.

The directional selection gradient is the slope of relative fitness on the trait,

β =
∂w(z)

∂z
= W̄−1 ∂W(z)

∂z
=
βA

W̄
.

The standardized directional selection gradient (53), βσ , is expressed in
terms of SDs and equals the standardized slope of absolute fitness divided
by the population mean fitness: βσ = βAσ/W̄ .

We assumed a heritability of 0.5 for D, that is, the genetic variance of
D equals half the phenotypic variance. Thus, when expressing D in units of
SD, G = 0.5. We further assumed a conservative estimate of 3% incidence
of fetopelvic disproportion before the use of Caesarean sections. Choosing
f = 0.03 in Eq. 3 gives βAσ = 0.070 and an optimal population trait mean
µ∗σ = − 1.88σD for model I.

Caesarean sections remove the fitness threshold so that fitness can be
assumed to increase linearly even for small positive values of D. The mean
fitness, W̄∗, of the population right after the emergence of Caesarean sec-
tions, that is, still centered at µ∗z , but with relaxed fitness threshold, is thus
given by

W̄∗ =

∫ ∞
−δ

βA (z + δ)P(z, µ∗z , σz)dz

=

∫ ∞
−1/βAσ

βAσ (z + 1/βAσ)P(z, µ∗σ, 1)dz

≈ 1 + µ
∗
σβAσ = 0.868 for βAσ < 0.3. [4]

The standardized directional selection gradient is then βσ = βAσ/W̄∗ =

0.081, and the predicted evolutionary change per generation is ∆µσ =

Gβσ = 0.040σD. Because the population mean of D was estimated to be
µ∗σ =− 1.88σD, a response to selection over two generations shifts the
mean to −1.80σD, which in turn is associated with a predicted dispropor-
tion rate of f = 0.036—a 20% increase of incidence.

For model II, an incidence of 3% translates into βAσ = 0.035 and
µ∗σ =− 1.88σD. Given a heritability of 0.5, the corresponding βσ = 0.037
after Caesarean sections shifts the mean to −1.84σD after two generations,
which gives f = 0.0326—a 9% increase of incidence.

In both models, higher initial rates of disproportion lead to higher
increases due to Caesarean sections; the presented figures thus are con-
servative estimates. In any case, because of the idealizations and approxi-
mations in the model and the uncertainty of the published incidences, our
predictions are merely meant to represent orders of magnitudes. Prediction
of long-term evolution is even more difficult because changes in variational
properties and selective forces are hard to foresee. Medical treatment may
relax some of the selective forces, whereas fetal development and maternal
metabolism may constrain the response to selection (10, 16).

Polynomial Approximations. The dependences of the optimal trait mean,
µ∗σ , and the fraction, f , on the absolute fitness increase, βAσ , are given by
Eq. 3, expressed in terms of SDs of z. These relationships cannot be expressed
in closed form, but we found that for 0.02 < βAσ < 0.3 they can be approx-
imated very well by the following polynomials (Fig. 3):

µ
∗
σ ≈ −2.76 + 18.53βAσ − 109.49β2

Aσ + 360.3β3
Aσ − 452.2β4

Aσ
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βAσ ≈ 2.55f − 8.51f2
+ 25.15f3

Together with the approximation in Eq. 4, these polynomial representations
allow for the application of the model without computing the actual maxi-
mizations over the integrals.
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