Medida da atenuação e da velocidade acústica em simuladores de tecidos biológicos;

Neste experimento será examinado: a velocidade de propagação e a atenuação da onda ultrassônica em diferentes meios materiais.

Teoria

Em materiais homogêneos e isotrópicos as ondas de ultrassom se propagam em linha reta. Em materiais sólidos a propagação pode ser longitudinal ou transversal, i.e., a direção de vibrações mecânicas pode ser paralela ou perpendicular à direção de propagação da onda. A propagação da onda em líquidos e gases é praticamente longitudinal, porque não há nenhuma estrutura sólida que poderia causar vibrações na direção perpendicular.

Os principais processos que caracterizam a atenuação da energia acústica ultra-sônica no interior do tecido biológico são:

- Espalhamento
- Absorção;

Ambos os processos contribuem na caracterização da redução da amplitude de uma onda ultrassônica propagando através de um meio. A atenuação é descrita por uma função exponencial. A atenuação de uma onda acústica que se propaga em um determinado meio leva à modificação da equação da linearidade de Euler. A amplitude de vibração das partículas vai sendo

Ultrassom em Biomedicina Prof. Adilton Carneiro

atenuada à medida que a radiação se aprofunda no tecido devido a suas propriedades visco-elásticas.

A equação abaixo é específica para excitação harmônica senoidal, em que p é a velocidade instantânea das partículas e p_0 é a velocidade inicial, ω é frequência angular e k o número de onda.

$$p(x,t) = p_0 e^{-\mu x} e^{j(\omega \cdot t - k \cdot x)} \tag{1}$$

O coeficiente de atenuação μ é dado pela soma do coeficiente de espalhamento (μ_e) e o coeficiente de absorção (μ_a) .

$$\mu = \mu_e + \mu_a \tag{2}$$

Espalhamento da Onda Ultrassônica em Materiais Biológicos

A natureza do espalhamento é dependente da relação entre a dimensão do alvo e o comprimento da onda. Estruturas dentro de tecido que podem espalhar o feixe ultrassônico podem ser desde a célula ($\sim 10~\mu m$) até os contornos dos órgãos. O comprimento de uma onda ultrassônica numa freqüência de 5 MHz em tecido mole é de aproximadamente 0,3mm. Diferentes tipos de espalhamento ocorrem em diferentes níveis de estrutura. Classificando o espalhamento pela dimensão linear da estrutura (a) relativo ao comprimento da onda λ tem-se:

1 – Para estruturas muito maiores que o comprimento de onda $a >> \lambda$, tais como: Diafragma, veias, tecido mole, osso, cistos, etc, o espalhamento ocorre devido à reflexão e refração e é o que mais atenua o feixe ultrassônico dentro do corpo humano. Para esta condição, o espalhamento não depende da fregüência.

2 –Nas estruturas com dimensões equivalentes ao comprimento da onda $a \cong \lambda$, o espalhamento da onda é predominante e ocorre por difração. Sua contribuição na atenuação do feixe acústico é considerada moderada. A região onde ocorre este tipo de espalhamento é denominada de região estocástica e sua

Ultrassom em Biomedicina Prof. Adilton Carneiro

dependência com a freqüência é variável. Por exemplo, no tecido hepático, o coeficiente de atenuação varia com a segunda potência da freqüência.

 $a<<\lambda$, como por exemplo, o sangue, predominantemente os eritrócitos, o espalhamento é mais fraco que nas duas outras condições acima e varia com a quarta potência da freqüência.

Para baixas freqüências, o espalhamento responde por algo em torno de 10 -15% da atenuação total. A estrutura do tecido causa o espalhamento para muitos ângulos. Ambos, absorção e espalhamento, são dependentes da freqüência.

Reflexão e Refração em uma Superfície Plana

Quando uma onda se encontra na interface de dois meios diferentes, ela pode ser parcialmente refletida. A onda refletida retorna em uma direção negativa, através do meio incidente, com a mesma velocidade com a qual ela se aproximou da interface. A onda transmitida continua a mover-se no meio na direção positiva. Da mesma forma que em óptica, as leis geométricas da reflexão são aplicadas, e os ângulos de incidência e reflexão são iguais no mesmo plano para uma onda longitudinal. Entretanto, se o comprimento da onda ultrassônica é comparável com, ou maior que, as dimensões do objeto refletor, as leis geométricas da óptica, neste caso se aplicam. Entretanto, assumido que o comprimento da onda é pequeno comparada com as dimensões da interface, e considerada plana e perpendicular ao plano de propagação, a reflexão é dita ser especular.

Na figura 1 os sufixos i, r e t referem às ondas incidente, refletida e transmitida. Como em óptica,

$$\theta_i = \theta_r$$

E, na ordem para manter a coerência da forma da onda, ou seja, pela aplicação da lei de Snell, em que c_1 e c_2 são, respectivamente as velocidades das ondas no meio 1 e no meio 2.

$$Sen\theta_i / Sen\theta_r = c_1 / c_2 \tag{2}$$

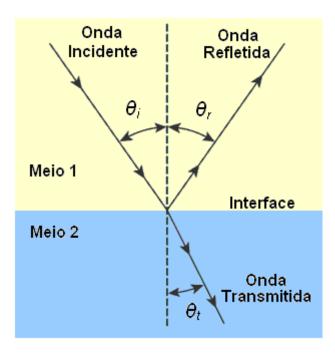


Figura 1 Mostra o comportamento da onda incidente na fronteira entre dois meios.

A taxa da amplitude das ondas refletidas (P_r) e transmitidas (P_t) numa interface com diferentes impedâncias é dada por:

$$\frac{p_r}{p_i} = \frac{Z_2 \cos \theta_i - Z_1 \cos \theta_t}{Z_2 \cos \theta_i + Z_1 \cos \theta_t} \tag{3}$$

е

$$\frac{p_t}{p_i} = \frac{2Z_2 \cos \theta_i}{Z_2 \cos \theta_i + Z_1 \cos \theta_t} \tag{4}$$

Em uma incidência normal, $\theta_i = \theta_t = 0$, as equações (3) e (4) se tornam:

$$\frac{p_r}{p_i} = \frac{(Z_2 - Z_1)}{(Z_2 + Z_1)} \tag{5}$$

е

$$\frac{p_t}{p_i} = \frac{2Z_2}{(Z_2 + Z_1)} \tag{6}$$

Se $Z_1 = Z_2$, $p_r/p_i = 0$, logo não tem reflexão de onda.

Se $Z_1 > Z_2$, a onda de pressão refletida está em fase com a onda incidente.

As taxas de intensidades refletidas e transmitidas são dadas por:

$$\frac{I_r}{I_i} = \left(\frac{Z_2 \cos \theta_i - Z_1 \cos \theta_t}{Z_2 \cos \theta_i + Z_1 \cos \theta_t}\right)^2 \tag{7}$$

е

$$\frac{I_t}{I_i} = \frac{4Z_2Z_1\cos\theta_i\cos\theta_t}{(Z_2\cos\theta_i + Z_1\cos\theta_t)^2} \tag{8}$$

Em uma incidência normal, $\theta_i = \theta_t = 0$ a equação (7) e (8) se tornam:

DF/FFCLRP/USP

$$\frac{I_r}{I_i} = \left(\frac{Z_2 - Z_1}{Z_2 + Z_1}\right)^2 \tag{9}$$

$$\frac{I_t}{I_i} = \frac{4Z_2Z_1}{(Z_2 + Z_1)^2} \tag{10}$$

Se $Z_2 >> Z_1$ ou $Z_2 << Z_1$, $I_r / I_i = 1$, correspondendo à reflexão total na interface.

A tabela abaixo mostra as taxas de reflexão da pressão e da intensidade para incidência normal nas principias interfaces no tecido biológico.

A impedância acústica para uma onda plana se propagando em meio fluido é definida pela equação

$$Z=\rho c$$
 (11)

Medida da Velocidade do Som

O tempo, t_a , gasto para atravessar *a distância d* através da água é $t_a = d/c_a$ sendo c_a a velocidade do som na água. Quando o cilindro está presente o tempo, t_m , para atravessar o novo caminho é $t_m=d/c_m$. A mudança no tempo da fonte para o receptor é então

$$\Delta t = t_a - t_m = d \left(\frac{1}{c_a} - \frac{1}{c_m} \right) \tag{12}$$

Resolvendo para a velocidade no material c_m , tem-se:

$$c_m = \frac{c_a}{1 - c_a \Delta t / d} \tag{13}$$

Note que, se a variação de tempo Δt é positivo implica que $c_m > c_a$

Medida do Coeficiente de Atenuação (α)

Um método convencional de medir a atenuação acústica em um determinado material é medindo a pressão acústica transmitida e refletida no mesmo, imerso em água.

O coeficiente de atenuação da água é da ordem de 0,0002 dB/cm/MHz sendo um valor muito baixo quando comparado aos das amostras biológicas. Portanto, pode-se ignorar a atenuação presente na água, assumindo como sendo um meio não dispersivo. Depois de medidos a amplitude do sinal com e sem a presença da amostra, a atenuação, α em dB/cm pode ser expressa como sendo igual a:

$$\alpha = -\frac{20}{d} \log_{10} \left(\frac{A_o}{A} \right) \tag{14}$$

Procedimento Experimental

Equipamentos

- Cuba acústica com os transdutores emissor e receptor (1,1 MHz) acoplados;
- O sistema Transmissor/Receptor acústico;
- Gerador de função;
- Osciloscópio;

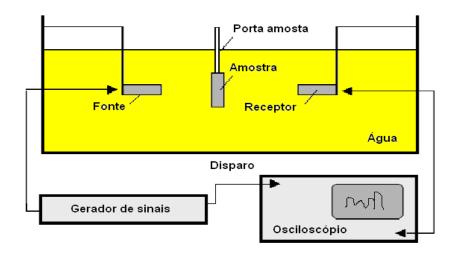
Ultrassom em Biomedicina Prof. Adilton Carneiro

 Amostras com diferentes impedâncias e espalhadores acústicos: Um disco de acrílico, um de PVC, um de teflon (espessura =1 cm; diam = 5 cm) e 6 amostras (espessura = 2,5 cm, diam = 7 cm) de parafina gel com deferentes concentrações de pós de vidro (0%-10%).

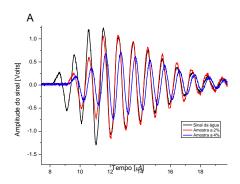
Montar o experimento de acordo com a figura 2. Conectar o gerador no transdutor de excitação e o transdutor receptor direto no osciloscópio.

- 1 Configurar o gerador no modo Burst com 1 ciclo de uma onda quadrada e 10
 ms de repetição, amplitude de 1 Volts e frequência de 1.1 MHz.
- 2 Avaliar o pulso acústico (frequência central e comprimento). Observar que o perfil do pulso é característica das propriedades do transdutor e que a frequência avaliada é a natural da cerâmica.
- 3 Inserir amostras entre o emissor e o receptor. Observar as variações no tempo e na amplitude do pulso transmitido e preencher a tabela.
- 4 A partir desses dados da tabela, determinar:
 - A velocidade acústica para cada material (ver a equação 12 e 13).;
 - A impedância acústica das amastras;
 - O coeficiente de atenuação para cada amostra (ver a equação 14).

Discutir o relatório com relação à:


- Variação da velocidade e da atenuação acústica nos diferentes materiais (teflon, Acrílico, PVC, parafina gel) ;
- Variação da velocidade e da atenuação acústica nas parafinas com diferentes concentrações de pó de vidro;

OBS: A distancia **d** entre o transdutor emissor e receptor é de **10,15** cm


Amostra	Amp(Volts)	t (s)
Sem amostra		
Acrílico (m= 27 g)		
PVC (m = 32 g)		

Teflon (m= 49)	
Parafina (m=85 g)	
Parafina + 2% pó de vidro	
Parafina + 4% pó de vidro	
Parafina + 6% pó de vidro	
Parafina + 8% pó de vidro	
Parafina + 10% pó de vidro	

Amp = Amplitude pico a pico do pulso transmitido; t = tempo referente ao primeiro pico do pulso (ver de detalhes de t e de Amp figura 4)

Figura 2. Esquema do aparato utilizado para realização das medidas da velocidade do som e do coeficiente de atenuação e meios materiais.

Figura 3: A) Ex. de sinais provenientes da transmissão do pulso ultrassônico pelas amostras com diferentes velocidades e atenuações.

A figura abaixo (fig 4) ilustra uma janela sinal típico do pulso de excitação entre o momento da excitação e a chegada do pulso no transdutor recepetor.

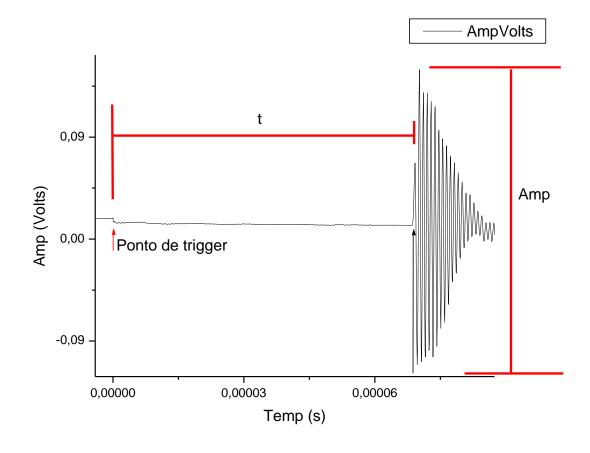


Figura 4: Exemplo de uma medida do pulso de transmissão.

Modelo do relatório:

Relatório em grupo, contendo uma introdução, metodologia, resultado e discussão dos resultados. Discutir cada observação e fazer uma comparação entre o observado e a propagação da onda ultrassônico em tecidos biológicos.