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UCTION WITH PH ASE CHANGE: eady state approximation will be described. Solutions tg exact problem
5

COND
\JOVING BOUNDARY PROBLEMS
<2 The Heat Equations
_ hows a region which is undergoing phase h
i 615 : : p Change due to
nr:ficrn at one of its boundaries. The temperature distribution in theT:
hase region is governed by two heat equations, one for the solid phase and

Enﬂ for the liquid phase. We make the following assumptions:

M properties of each phase are uniform and remain constant.
(2) Negligible effect of liquid phase motion due 1o changes in density.

6.1 Introduction 3) One-dimensional conduction.

There are many applications in which a material undergoes phase ¢ (4) No energy generation.
such as in melting, freezing, casting, ﬂblﬂ"“’f- cryosurgery and soldering pased on these assumptions, eq. (1.8)
Conduction with phase change is characterized by a moving  interface ives
separating two phases. Such problems are usually referred to as moving : T(x,0) | T(x1)
boundary ot free boundary problems. They are inherently transient during o'T, 1 oT, e, e 8
; i jon and location of the interf; 2 = bo ) e x —r—L
interface motion. The motion ace are unknown g ox a, of
priori and thus must be determined as part of the solution. Since material (‘“ \dl'—/_/
properties change following phase transformation and since a discuﬂlinuily and P T
: : : : : moving interface
in temperature gradient exists at the interface, it follows that each phase T | oT
must be assigned its own temperature function. Furthermore, changes in - L = - ; 2 (62) Fig. 6.1

X a,

density give rise to motion of the liquid phase. If the effect of motion is
significant, the heat equation of the liquid phase must include a convective

term. However, in most problems this effect can be neglected.
6.3 Moving Interface Boundary Conditions

A moving front which is undergoing a phase change is governed by a

hmfndar}r condition not encountered in previous chapters. This condition, Continuity of temperature and conservation of energy give two boundary
wmﬂ:, is based on conservation of energy, is non-linear. Because of this {  conditions at the solid-liquid interface. Mathematical description of these
non-linearity there are few exact solutions to phase change problems.

where the subscripts L and s refer to liquid and solid, respectively,

conditions follows.

In this ¢h , : .
Fose I::iu'-:]:llit;r weh will state the h:al' conduction equations ‘ﬂslr one- (1) Continuity of temperature. We assume that the material undergoes a
hefﬂﬂnulatag as::: Ange problems. The interface boundary condition W phase change at a fixed temperature. Continuity of temperature at the
it an 'rts nuf'n—lmﬂnr nature identified. The governing equations interface requires that
“ast in dimensionless form to reveal the important parameters 3
' T,[I,,r)=TI(I,J}=Tp "

St
goveming phase change problems. A simplified model based on quasi-
where

I'(x,1)= temperature variable
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 fusion (melting of freezing) Er:mperature
¢ location at ime !

Ty
x.=x,{1)= interfac
I
0. 6.2 shows a
tion. Fig. 6.2
2) Energy equatiti :
§' }uid element which 15 undergpmg PhE!SE
clf?angc to solid. A one-dimensional suhcll-
liquid interface located at .t=:.n':;+(r) is
' itive x-
ed to move in the postiy
e lement fil‘; in the

direction. Consider an € ! .
liquid adjacent (o the interface. The

clement has a fixed mass O/m. During a

time interval dr the element undergqes x, |
phase change to solid. Because material ~ —" dx, = dx, ]

density changes as it undergoes phase

transformation, the thickness of the _
element changes to dx,. Consequently, the interface advances a distan

dx, = dx,. Application of conservation of energy to the element a5 j
transforms from liquid to solid during time dI. gives
0E, -0E,, =0E, (a)

interface i"'I'Erﬁn:l:

at 1 At £
liquid element 6

at time ¢

where

d E,, =energy added during time df
OE,,, =energy removed during time df
0 E =energy change of element during time df

The energy added by conduction through the solid phase is
0E, =q,dl, (b)
where
9. = rate of heat conducted to the element through the solid phase

:Iin °rRY 1s removed from the clement by conduction and in the form of work
one by the element due 1o changes in volume. These two components of

Chiergy are given by

ﬁgaw =9, df-i-pdV : (c)

where

dV = change |
ke nvolume of element from liquid to solid during df

6.3 Hn\ring Il'ltﬂfm:g

p = prﬂ&ﬁlll'ﬂ
g, =€ of heat conducted from the element through the liquig phase

The change in energy of the element is given by
JE =(n_ -1
( 5 u.l')ﬁm 5 {d}

sm = mass of element
jj = internal energy per unit mass

substituting (b), (¢) and (d) into (a)
g5 —q,)dt = —it,)6m + pav . (e)

Applying Fourier’s law

o7, (x,,1)
and g, =}k, 411712
x s L 3

(f)

where
A = surface area of element normal to x
k =thermal conductivity
x = coordinate
x, = x,(1) = interface location at time ¢

The mass of the element dm is given by

om= psAcfr” (E}

jvlhere £ 15 density. The change in volume dV of the element is related
s mass and to changes in density as

dV:( : . )Jm.
Ps P

to

(h)

Substituting (f), (g) and (h) into (e) and assuming that pressure remains

constant
oy(x,,1) , T, (x,,1) . pd
...k FAHf LA*) e - +_.p- I O s, | e
e i T [, + 2 - G+ I,
Howevyer

)
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;s Bos & -
. ,_E.-‘H +———)_-h “h—j_‘ |
("L * 1 ( ’ s J 5 g
where |
jr = enthalpy PeT untf mass
2= latent heal of fusion
Substituting (j) nt0 (1) .
oT, (x;51) T, (x,,1) _ dx,
e P Lt -

ce energy equation. It 1s valid for both solidificatie,
for melting o, is replaced by p, for melting,

(3) Convection at the interface. There are [fn?b[em_s where lhe liquid
phase is not stationary. Examples 1n¢[ut:!e F:uhduﬁcalmn associated with
forced or free convection over a plate or inside a tube. Fnr‘ such problems
equation (6.4) must be modified to include the effect of fluid motion. This
: troduces added mathematical complications. An alternate approach is to
replace the temperature gradient in the liquid phase with Newton's law of

cooling. Thus

Eq. (6.4) is the interfa
and melting. However,

o, (5,,1) dx,
L)y w1, -T)=p, 251, 6.5

where

h = heat transfer coefficient
T, = temperature of the liquid phase far away from the interface

The plus sign in eq. (6.5) is for solidification and the minus sign is for
melting.

6.4 Non-linearity of the Interface Energy Equation

A solution to a phase change conduction problem must satisfy the eneré
condition of eq. (6.4) or eq. (6.5). Careful examination of these equations
shows that they are non-linear. The non-linearity is caused b)"

(ependence of the interface velocity dx, /dt on the temperature gradien’

To revea!I thF non-linear nature of equations (6.4) and (6.3), W€ i
total derivative of T, i eq. (6.3)

i : jonal Form of the Governj L
6.5 Non-dimensiona ovemning —— _
- JbVemIng Parameters
189

o7, (x;,1) oT, (x,,1
r dx + sa; }dfz{}

pividing through by df and noting that dx = dx, , gives dx. / di
ax, _ Ol (x,,0)/é

dt T, (x,,0)/dx (6.6)

When this result is substituted into eq. (6.4) we obtain

2
N oT, (x,,t) oT
k’[ﬂa%—l] ~ L;I‘ ) ’:“”=-ﬂs£-——-ﬂ’{x””. (6.7)
X dt '

Note that both terms on the left side of eq. (6.7) are non-linear. Similarly
cubstituting eq. (6.6) into eq. (6.5) shows that it 1o is non-linear ’

6.5 Non-dimensional Form of the Governing Equations: Governing
Parameters

To identify the governing parameters in phase change problems. the two
heat equations, (6.1) and (6.2) and the interface energy equation (6.4) are
cast in non-dimensional form. The following dimensionless quantities are

defined:
il B o]
by =1, Ky dp=1,
where L is a characteristic length and T is a reference temperature. Ste
ts the Stefan number which is defined as

CoeTr=T,)
srewmtls o) (6.9)
£
where ¢ ps 15 the specific heat of the solid phase. Substituting eq. (6.8) into

equations (6.1), (6.2) and (6.4) gives

X a
, E=—, = Ste—=1, (6.
'+ I r ELI (6.8)

az_g‘t:Sj'E E?..‘L' {ﬁ'“}}
agl or
a; azﬂr, = Ste ?_EI_ (6.11)
a, o0& 0

and
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00,(&,1) 00,60 _do,
’é‘.f - 9 dr (6.1

dimensiunh::ﬂ g.f:-'fgrm:fde;f;{;?:n S:Dws o
f thermal dlﬁ‘uﬁl_\’IhEﬁ . amber, e
it is worth noting the following:

1) By including the ratio (k, / k) in the deﬁﬂi}’iun of ,, this
w is}ur:liminated from the interface energy equation. Paramete,

lem with convection at its boundary y;
7y A phase change prob 0 -
@ innﬂ:m the Biot number as an additional parameter.

The Stefan number, defined in eq. (6.9), represents the ratio of the
sensible heat to the latent heat. Sensible heat, EFE{TI =T}, s the
energy removed from a unit mass of solid at the fusion temperature I
to lower its temperature to T, Latent heat, .2, is the energy per uni
mass which is removed (solidification) or added (melting) during
phase transformation at the fusion temperature. Note that the Stefan
number in eq. (6.9) refers to the solid phase since it is defined in terms
of the specific heat of the solid¢ . The definition for the liquid phase

IS

Examination of ll"""
meters, the ratio ©

(3

c (T, =T;)
- Lo, (6.13)

Ste

Sensible heat,c,, (T, =7 ), is the energy added to a unit mass of
liquid at fusion temperature 7, to raise its temperature to 7,

6.6 Simplified Model: Quasi-Steady Approximation

Because of the non-linearity of the interface energy equation, there are few
exact solutions to conduction problems with phase change, An
approximation which makes it possible to obtain solutions to a variety of
problems is based on a quasi-steady model. In this model the Stefan
number is assumed small compared to unity. A small Stefan number
corresponds to sensible heat which is small compared to latent heat. T0
i’f“-‘;fl:lﬂ the significance of a small Stefan number, consider the limiti{'ns
. in““i::atthenal Th?se specific heat is zero, i.e. Ste = 0. Such a materia!
with infinite :::1 d'f;”“""t)f- This means that thermal effects propagat®
interface moves ;" . fh’ad}’ state is reached instantaneously s th¢

+ Allematively, a material with infinite latent hest

6.6 Simplified Model:
: Q'Ilulsi-&:.ly A o
PProXimation
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N tionary interface. Th i
gle=0) hasasia us the interfa
imﬂ" gtefan number and the lemperature distﬁ&un::‘ ihwl? for a
-:nrrﬂﬁpﬂﬂdﬁ to that of steady state. |p practice, qﬂﬂ:i—ﬂm:ly ] iz :
is justified for Ste <0.1. Setting Ste =0 in €quations (6.10) n:; (6.11
gi‘fﬁ 2 | }
3%, _.
6, _,
a;l o (ﬁ'lﬂ

Note that the interface energy equation (6.12) is unchanged in this model
and that temperature distribution and interface motion are time dependent.
What is simplified in this approximation are the governing equations and
their solutions.

Example 6.1: Solidification of a Slab at the Fusion Temperature T,

A slub of thickness L is initially at the fusion T4
temperature Ty One side of the slab is solid Tﬁm
Iy

suddenly maintained at constant temperature

T, <T, while the opposite side is kept at 1. T
A solid-liquid imterface forms and moves
towards the opposite face. Use a quasi-steady — X
state model to determine the time needed for o

the entire slab to solidify. L 1
Fig. 6.3

L=

e I %

(1) Observations. (i) Physical consideration
l'ﬁi'llil'ﬂ that the liquid phase remains at a uniform temperature equal to the
fju!mn temperature 7}. (i1) Solidification starts at time =0, (iii) The
lime it takes the slab to solidify is equal to the time needed for the interface
!ﬂ iraverse the slab width 1. Thus the problem reduces to determining the
Interface motion which is governed by the interface energy condition.

:i} Origin and Coordinates. Fig. 6.3 shows the origin and the coordinate
es,

) F ormulation,
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-dimensional conduction, (2
mptions. (1) One -:Ellmensmna » 2) cong
(i) Assump uid and solid phases, (3) no changes i, fﬂst'::::

- f the hq
properties 0 : [4}qunsi-5tﬂadf state, Sfre o B (8

temperafure a '
(i) Governing E_qul_tiuns: F-:?‘ quasi-steady state the cgp ductiop
equations, expressed in dimensional form, are
L 0.
ox’ ()
0°T,
aJ II =0 (b)
(iif) Boundary and Initial Conditions.
() T,(00)=T,
@) Ty(x,,0) =T,
G) T, (x,0)=1,
Interface energy condition is
ol (x,.0) , OT,(x,,t dx
Bligestes =il ";I ! - prl—
I
The initial conditions are
(6) T:- {I,ﬂ) = Tf
(7) x | (0)=0
(4) Solution. Direct integration of () and (b) gives
and T:[‘IJJ:AI'i" B,, [;’}
TL(I;IJ=C'I+£}, (d)

where 4, B, C
functj »and D are constants of integration, These constants ¢an be

ions of tj Tk :
me. Application of the first four boundary conditions gives

W=t 4, - 1,2 i

and x, (1)

6.6 Simplified Model: MMAM
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Tf. (x,f)=?}. (f}

< nd the liquid temperature : :
As anticipated, _ e remains constant. The interface
ocation IS determined from condition (5). Substituting (e) and (f) into
condition (5) gives

T,-T
k’ L ﬂ—ﬂ=prft—£r_’._
X dt
Separating variables
k. (T, -T
xde, =-21-1 “Jdr.

PsL

Integration gives

X
p,L
Initial condition (7) givesC', =0 . Thus

(D) = J“dff Ay
psL

In terms of the dimensionless variables of eq. (6.8), this result can be

expressed as
& = JE g

The time ¢, needed for the entire slab to solidify is obtained by setting
Y =L ineq. (6.16a)

+L().

(6.16a)

(6.16b)

2
fhia pstL (6.17a)
2*, (Tf s Tp)
Since tota| solidification corresponds to & =1, eq. (6.16b) pves
(6.17b)

r, =1/2.
LSJ Checking.  Dimensional check: eqs. (6.16a) and (6.17a) are
imcnsiun.u}, consistent,

Limiting check: (i) If T, =T 4 1O solidification takes place and ﬂ“ time
Needed to mlidif}' the slab should be infinite. Setting Tp =T__f in eq.
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i) If the slab is infinitely wide, solidification lime

" =0,
(6.17a) gIves o \ [ =0 ineq. [ﬁ.l?ﬂ}gives [, =00,

should be infinite. Setting
(6) Comments. (1) Initial condition (6) 1s not u%ed in 'I.;he Wlminn. This i
inherent in the quasi-steady stale model. fjmce time da:nvutivcs of
temperature are dropped in this model, llhen: Is 10 opportunity to satisfy
initial conditions. Nevertheless, the sn?llunnn Lo 1I'.|1'It: II:IHP!:I‘HLI.HI'E distributiop
in the liquid phase does satisfy il'llll_l.l condition (6). (i) The solution
confirms the observation that the liquid phase.Tust. remain at 7, Thys
analysis of the liquid phase is unnecessary. (ii1) Since the liquid phase
remains at the fusion temperature, fluid motion due to density changes of
convection plays no role in the solution.

Example 6.2: Melting of Slab with Time Dependent Surface
Temperature

The solid slab shown in Fig 6.4 Is T 4
initially at the fusion temperaturel ;.
The side at x = 0 is suddenly maintained
al a time dependent temperature above

T expfth. liquid | solid

T.."* given by
T,0.0=T, exp fir, =z [ "
i
where T, and B are constant. A liguid- I—ﬁ’—']-h— _....i'
solid interface forms at x=0 and .
moves lowards the opposite side. Use a Fig. 6.4

?‘Hﬂﬂ-ﬂﬁn@ state model to determine the

interface location and the time it takes for the slab to mell,

(1) l":ilmrvati:nm. (1) Based on physical consideration, the solid phl'!f
remams at uniform temperature equal to the fusion temperature - ()
Melting starts at time ¢ = 0, (iii) The time it takes the slab to melt fs €qud

::lm: 8 needad for the interface to traverse the slab width L.
Origi ; :
o nigin and Cﬂﬂn"nl'lﬂ, F|g 6.4 shows the 'ﬂ'rigil'l and the l:{l'ﬂl'dm"‘c
[3'] Fﬂm“hﬁu n.

(1) Assy :
Properties u?tf;hl?;ﬂd (1) One-dimensional conduction, (2) W“’tﬂ}
neglect motion of the 'qu;:& » (3) no changes in fusion temperature:

Phase and (5) quasi-steady state ( Sfe < 0.1)

0 Hplicd Mol Quasi-Steady Approximation 195
(i) Governing Equations. For quasi-steady state the Jiy:

conduction equation, expressed in dimensional form, s e liquid phase
2

ax? (a)

since no heat can transfer to the solid phase, its temperature remains

constant, Thus
T,] {IJ‘) = T_,I" ‘ l:h]'

(iii) Boundary and Initial Conditions. The boundary conditions are
(N 7,0.0)=T, exp fit
@ T (x,,)=T,

Substituting (b) into eq. (6.4) gives the interface energy condition
oT, (x;,!) dx
f

=p 250
dx Pr dt

Note that since this is a melting problem, p, in eq (6.4) is replaced by p, .
The initial condition of the interface is

4) x,(0)=0

(3) =k

(4) Solution. Integration of (a) gives
T,(x,)=Ax+B.

Application of boundary conditions (1) and (2) gives

T, -T,exppt

T, (x,t)= x+ T, exppt. ()

I.I
Substituting (c) into condition (3) and separating variables

_._.kf_-(Tf '-T,? gxpﬁ;]df:xid:’t. (d)

P L

'“"-'Eﬂlliﬂg and using initial condition (4)
£

k, I' = dx
-2 (1, ~T, exp prydt = f X,
prL 4 9
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2
_L[Tfp{?;fﬁ}ﬂxp(ﬁfH{Tﬂfﬂ)]:%’.
4

P

Solving this result for X, (1)

£ ‘Fk} (7,1 Brexp(BO-T, ~(T, 1 B)). (6.1
Pi

To determine the time , it takes for the slab to melt, set x;, =L in eq
(6.18)

L:J%{{Lfﬁ)exp{ﬁg}—?}fﬂ -(T, fﬁ}] , (6.19)

This equation can not be solved for r, explicitly. A trial and ermor
procedure is needed to determinef , .

(5) Checking. Dimensional check: Eq. (6.18) is dimensionally consistent.

Limiting check: For the special case of constant surface temperature i
x =0, results for this example should be identical with the solidification
problem of Example 6.1 with the properties of Example 6.1 changed 10
those of the liquid phase. Setting f =0 in the time dependent surface
temperature gives 7(0,6) =T, which is the condition for Example 6.1
However, since f appears in the denominator in eq. (6.18), direct
substitution of =0 can not be made. Instead, the term exp gt in ¢&

(6.18) is expanded for small values of St before setting /3 = 0. Thus.
small Bt eq. (6.18) is written as

2, N
0= T B+ Bty =T, =T,/ )+

or,for f=0

 [2k 6.20)
x (1) = J——’E(r., -T)t . f

L

This result agrees Wwith eq. (6.16a),

6.7 Exact Solutions 197

(6) Comments. Time dependent boundary conditions do il
mathematical complications in the quasi-steady state mode.

6.7 Exact Solutions
6.7.1 Stefan’s Solution

One of the earliest published exact solutions to phase change problems is
credited to Stefan who published his work in 1891 [1]. He considered
solidification of a semi-infinite liquid region shown in Fig. 6.5. The liquid
is initially at the fusion temperature 7,. The surface at x =0 is suddenly
maintained at temperature 7, <T,. Solidification begins instantaneously
at x=0. We wish to determine the temperature distribution and interface
location. Since no heat can transfer to the liquid phase, its temperature
remains constant throughout. Thus

I, (x,n=1,. (a)
The governing equation in the solid phase is given by eq. (6.1)

a'T, 1 oI,

; (b)
ox’ a, Ot

The boundary conditions are
(O T,(0,N=T,
(2) T, (x,,0) = I,

Substituting (a) into eq. (6.4) gives

orT,(x,,.1) dx
ax  Ptar
The initial condition is Fig. 6.5

4) x,(0) =0

“quation (b) is solved by similarity transformation. ‘We assume ::::':';
™0 independent variables x and  can be cnmhined into a ;:gle s
= 1(x,1). Following the use of this method in solving the PO’

sient conduction jn a semi-infinite region, the approf -
Variable jg
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X

LS 1}4:::,! +

solution to (b) can be expressed as

(6.21)

We postulate that the
Ty =T:(m). ©

Using eq. (6.21) and (c), equation (b) transforms to

e s e (d)

Thus the governing partial differential equation (b) 1s transformed into gy
ordinary differential equation. Note that (d) is identical to eq. (4.33) which
describes transient conduction in a semi-infinite region without phase
change. Following the procedure used to solve eq. (4.33), the solution to
(d)is

I,=Aerfn+ B. (6.22)
Applying boundary condition (2) and using eq. (6.21) give
gl R (©
da 1

Since I, is constant, it follows that the argument of the error function in
(¢) must also be constant. Thus we conclude that

x, At .
X, = A1f4ﬂ,f \ (n

:T;r;j g ‘-mmf to be determined. Note that this solution 10 the
o location  satisfies initial condition (4). Applying bounday
o1 (110 €q. 622) and noting that erf 0 = 0, gives

Let

B=T,. B
Boundary condition (2), (g) ang ¢q. (6.22) give the constant A
PRl il 1] v
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substituting (g) and (h) into eq. (6.22) gives the temperature distrihurin -
the solid phase ! o
T, T,

T(I'I-I)=Tﬂ+ -
’ efd T

(6.23)
Finally, interface energy condition (3) is used to determine the constant A
substituting (f) and eq. (6.23) into condition (3) gives
k T..rr B Tﬂ
*oerfd

[ - (erfq)ﬂ} =p gi___m
dn Ox % Sl
The derivative of the error function is given by eq. (4.34). Substituting into
the above and using eq. (6.21) gives

[Tf - Tﬂ)cﬁ

ez

where ¢, is specific heat of the solid. Equation (6.24) gives the constant
A. However, since eq. (6.24) can not be solved explicitly for 4, a trial and
error procedure is required to obtain a solution. Note that 4 depends on the
material as well as the temperature at x = 0.

A(expA®)erf A= (624)

It is interesting to examine Stefan’s solution for small values of 4. To
evaluate eq. (6.24) for small A, we note that

2 4
exp A’ 1+-—+-';!-+ wl,
and
erf 4 = _2_,1,

2 AoA

’1_ IEETH |
7:( 3ul!+5ﬂ!+ ) x
Subniluting into eq. (6.24) gives

" “JE'"(TI -T)
22

:hu;, cording to eq. (6.13), a small 4 corresponds to a small Stefan
Umber, Substituting eq. (6.25) into (f) gives

for small 4. (6.25)
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FJ[TI -T")f , forsmall A (small Ste),
X, =

200

Y, (6.26)

This result is identical to €. (6.16a) of the quasi-steady state mode|,

6.7.2 Neumann's Solution: Solidification of Semi-Infinite Regiop

Neumann [1] solved the ITI.I.‘.II.‘E T
general problem of phase Ghﬂl‘fge in
a semi-infinite region which is not
initially at the fusion temperature.
Thus Stefan’s solution is a special
case of Neumann's problem.
Although Neumann’s solution was
presented in his lectures in the
1860's, the work was not published
until 1912.

Consider the solidification of a semi-infinite region shown in Fig. 6.6,
Initially the region is at a uniform temperature T, which is above the
solidification temperature 7. The surface at x = 0 is suddenly maintained
at a constant temperature T, <7,. A solid-liquid interface forms
instantaneously at x =0 and propagates through the liquid phase. Since
T;#Ty, heat is conducted through the liquid towards the interface
Neumann's solution to this problem is based on the assumption that the
temperature distribution is one-dimensional, properties of each phase s

uniform and remain constant and that motion of the liquid pha .
neglected. Thus the governing equations are

7T, 1 a1
' _ : (6.1)
ox!  a, of e
and
T, 1 or
L2 - (62)
axz EL -a_;"' X > .I.i #
““b"“"dlry':urnditiun; are

(1 T,{ﬂﬁ;} - Tu
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@ T(x,0)=T;
(3) T;.(I.‘*r)=Tf
@ T (=0 =T,

The interface energy equation is
aTs(xH")_k aTL(I;af)= dx,

dx L=y L
The initial conditions are

6) T,(x0)=T,
(M x,(0)=0

(5) ks

Following the procedure used to solve Stefan’s problem, the similarity
method is applied to solve equations (6.1) and (6.2). The appropriate

similanty variable is
= xr‘,,‘-ia,f ‘ (6.21)

We assume that the solutions to eq. (6.1) and eq. (6.2) can be expressed as

I, =T.(n), (a)
and
T, =T,(n). (b)
Using eq. (6.21), (a) and (b), equations (6.1) and (6.2) transform to
d’T, dT,
. o D) e w5 () O<np<n,, (c)
dn’ * dn L
and
2
dT; +2a’qdr"=ﬂ 1> @
dq @, dn
'l-lrhm

ny = x,yaa,t. &

Solutions to (c) and (d) are

T, =Aerdn+ B, &
and
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T!_=Cgrf1Jﬂsf|‘!I..?]+ﬂi @®

Applying boundary condition (2)
ppiY .
Tjr = Aﬂrf +B.

da.t
Thus
wieli.
Let
Ir = .1 41‘.‘1_.,]'. {h}

Using eq. (6.21) and (h), conditions (1) to (6) are transformed to

() T,0)=T,
(3) TL{A} o T_,"

@ T, (=)=T,

dl(A) , dT,(4)
(5) k, ‘j;}_ -k, _‘;-"?_._ =2p,a,i L
6) T, (»)=T,

Note that (h) satisfies condition (7} and
that conditions (4) and (6) are identical.
In the transformed problem the interface
appears stationary at n=A. Fig 6.7
shows the temperature distribution of
the transformed problem. Boundary
conditions  (1{4) give the four
constants of integration, A, B, (" and D.

Solutions (f) and (g) become
T, - N
T ()T, + [_I_I:’_)_ o X * (6.2
erf A da 1
and ,

T(x) =T, 4~ (Tf-m—(l-e:rf B (629

. il
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The constant 4 appearing in the interface solution (h) and in equations
627) and (6.28) is still unknown. All boundary conditions are satisfied
except the interface energy condition. Substituting equations (6.27) and
(6.28) into condition (5) gives an equation for A

exp-A) _ |as b Ti=T; exp-Za,la))  x 22
erf A a, ks T, -T, 1-erf (JJa, /a, 1) (T, -T,)

(6.29)
Note that Stefan’s solution is a special case of Neumann's solution. It can
be obtained from Neumann’s solution by setting T, =T, in equations
(6.27)-6.29).

6.7.3 Neumann’s Solution; Melting of Semi-infinite Region

The same procedure can be followed to solve the corresponding melting
problem. In this case the density o, in interface condition (5) above is
replaced by p,. The solutions to the interface location and temperature

distribution are
x, = A J4a,t , (6.30)
{Tf _Tﬂ'} X
- erf : (6.31)
ix0=To*—gf1 " Jaa,
and

(Tr~1;

) X
T.(x,0)=T, _?c-(l-“ff). (6.32)
J{I } '+ I“:'rf fﬂ', fﬂ, j‘ 4“!’

where A is given by

M_ ’H:_ k, Tf _T.' exp{-a,f!a,} 2 \{.'-'? LA

Err,l H’ k: Tﬂ - Tf ! —El’f(lfiﬂ'; fﬂ" A] rpf_{T.p -T_."}
(6.33)

Itis important to recognize that for the same material at the 5!;:‘!: |?]n; ?n:rlt
- F},—T! . values of A for solidification and for melting
identica,
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consideration property change during

the effect of liquid motion peg,

M

6.8 Efect of De
« have taken nto

we have n:g]ﬂﬂtﬁfj
: material that

ity change. A
from density COEIS ses the
: lidification cau
expands during soll dicaction of

in the
yqud se 1o move in the ¢
:ﬂfag:mﬁnn a5 shown in Fig. 6.8 The

i ion for a fluid
heat conduction equation '
moving with a velocity U'1s obtained ﬁ-om
eq. (1.7). Assuming constant properties

and one-dimensional conduction, €q. (1.7)
gives
7% 2 y2h

d Phase

lling

To formulate an equation for the liquid b

velocity U, consider phase change in ot | at f+dr
which the liquid phase is not restmned Q——é ;
from motion by an external rigid liquid
boundary. Fig. 6.9 shows a liquid element ;ltc;nml
dr, adjacent to the interface at x,.  __J
During a time interval df the element % i
solidifies and expands to dx,. The — @ —
interface moves a distance dx, given by l‘*d": = dy

drl - ‘h"l ; (a) FIE: 6.9
The expansion of the element causes the
liquid phase to move with a velocity {/ given by

v, (b)
dt

Conservation of mass for the element yields

Prdx, = pydx; = podx,,

de, =P
L L dx,. ©
Gubstituting (c) into (b)
/= W E‘i

gince interface velocity dx;/dt is not constant, it follows that the velogity
U istime dependent. Substituting eq. (6.35) into eq. (6.34) gives

0T, p, \d&, 6T, oT
a, ———-(1-—+) <L _L__¢
‘ ox? ( p_,_)dr ox ar (6.36)

The solution to Neumann’s problem, taking into consideration liquid phase
motion, can be obtained by applying the similarity transformation method.

6.9 Radial Conduction with Phase Change

Exact analfytic solutions to radial conduction with phase change can be
constructed if phase transformation takes place in an infinite region.
Examples include phase change around a line heat source or heat sink.
Consider solidification due to a line heat sink shown in Fig. 6.10. The
liquid is initially at 7, >7';. Heat is suddenly removed along a line sink at
arate (J, per unit length. Assuming constant properties in each phase and
neglecting the effect of liquid motion, the heat conduction equations are

-
o7, +_I_HT, - 1 97, 0<r<r(t), (6.37)
ar* ror a, ot

2
o°T, _,_1631 w 1 E.?i r>r(1). (638)
ort ror a, 0t

where £, (1) is the interface focation. The boundary condition at the center
r=0 is based on the strength of the heat sink. it is expressed as

() Iim[Ezrk, %T_*] S0,
r

r—()

The remaining boundary conditions are
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{2) T_, {r;t'” i Tf i
(3) Tt{rf*”=rf Merface

@ T@N=T, |
m » F.I[:E mﬂ:m IS
(5) '
dr, T line sink

T, (r,.1) _ ET_._.—-I("””= ol e |
*;"'ié_r'_' k, ar Ps = dn G

The initial temperature is

©® T,(r0)=T,
Assuming that solidification begins
instantancously, the interface initial
condition is

(M 7,(0)=0 Fig. 6.10
Solution to this problem is based on the
similarity method. The similarity variable is [1]

n= r fr"'ﬂ,f . (6.39)

Assume that
T,(x,0y=T,(n),

and
TL{-‘-'!” » TL {’f}

Using eq. (6.39), equations (6.37) and (6.38) transform to

2
i.fzi.q,.([.g.l).‘_q.{.zﬂ‘ {'E'*'ml'
» dn n" dn
2
E.E;L+(.?L+_!_ _{TL:{L (ﬁ."'”
dn” ‘a, n’ dpn

ﬂmﬂmﬁmmbein : . iables in ¢
{6.4ﬂ]mmins tegrated dll’ﬁ:ﬂy. S-cpammg var

I“ G
dT,/dyg ) T —dm.

7
dT
Ty =T+,

h.[i dT,
Aldgl T

Rearranging, separating variables and integrating again

Ts <
d‘Ts =4 —dn+8B,
7
m{uq
Ir"‘**"l‘[_‘d'?*'ﬂ- (a)
1

where A and B are constants of integration. The choice of the upper limit
in the above integral will be explained later. The same approach is used to
solve eq. (6.41). The result is

me‘{ﬂ'l @y
T, =c| dn+D. ®
" n

where C and D are constants of integration. Solution (a) and boundary
condition (1) give

~1]
lim 2::1-&,3!-?:"--'33 = lim —Exk,r.{i——i =
-0 dn or{ n-0 n dal

=N
limu[—drrk,dg——q} =-4xk, A =0,

n— n
This gives A as
0, (€)
2 dnk,
ed to boundary condition (2) t0 give

To determine 7, (1) solution (a) is app!i
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e i+ B
. —dn+ B,
ﬁ-AL R @
here 77, is the value of 77 at the interface. It is determineg by
W f

L = 1 B ﬁ-3E]
sething r = J, Ineq [ 2
r"‘ — r’ l.'4ﬁ,"5f. {6"4:!]

Since T, remains constant at all times, this resulg requires that p, b,
indcpcnérent of time. It follows from eq. (6.42) that ;" & £. Thus we let

p"2 =4la,tl. (6.43)

Note that this form of r; satisfies initial condition (7). Substituting into &q.

(6.42) gives
'FL e A b (:]

where A is a constant to be determined. Substituting (¢) and (e) into (d)

oo
T)r=_ Qﬂ I : d’?"'ﬂ.
dxk, J, n

Solving for B
BaT, 428 I “—dn. 0
4“7‘*: A N

Applying condition (4) to solution (b) gives

“'E-m,r.:r,m
T,=('I dn+ D=0+ D,

ity q
or
D=T, o
Boundary condition (3) and solution (b) give
- T, ~T, (h)
= E-[H, lag
[
/i n

Interf; !
Ac¢ energy equation (5) gives an equation for A

i
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QLE"I—- ki(?:—Tf) E_{ﬂ’m”'l-)_
1= -r:. E—{asm;,‘md =Apsa L. (6.44)
A n !

Thus all the required constants are determined. Before substituting the
constants of integration into solutions (a) and (b) we will kil iha
integrals appearing in this Sﬂllﬁtiﬂ“- These integrals are encountered in other
application and are tabulated in the literature [2]. The exponential integral
function Ei(-x) is defined as

Ly

Ef(-x}:-_[ el

v

(6.45)

This explains why in integrating equations (6.41) and (6.42) the upper limit
in the integrals in (a) and (b) is set at 77 = . Values of exponential integral
function at x =0 and x =00 are

Ei(0) =00, Ei(w0)=0. (6.46)
Using the definition of Ei(—x) and the constants given in (c), (f), (g) and
(h), equations (a), (b) and (6.44), become

T,(r,)=T, + Ifihlﬂ{_rl [4at) - E.l'(-i}] ; (6.47)
Tf — T[

T, =T + Ei(-r® l4a,t), (6.48)
" Ei(-Aayla,) : g
and
E—J_ﬂ_ -A + -Irf: (Ti -T_,r) E-Mt:r,uq.'l ='J'p: I'I,.E. (6.49)
4r Ei(-Aa,/a,)

6.10 Phase Change in Finite Regions

Fium analytic solutions to phase change problems are IimiFed to seﬁ
!ﬂﬁlnil: and infinite regions. Solutions to phase chuflge in finite slubshm
Mside or outside cylinders and spheres are not available. Such prob

ire usually solved approximately or numerically.



310 6 Conduction with Phase Change

REFERENCES
[1] Carslaw, H.S., am:! Jaeger, J.G..Ig‘;;ducﬂun of Heat in Solids ”
edition, Oxford University Press, _

[2] Selby, S.M., Standard Mathematical Tables, The Chemica) Rubber
Co.. Cleveland, Ohio, 1968.

PROBLEMS

6.1 A slab of thickness L and fusion
temperature T, is initially solid at T} " jiouidsona
temperature 7, <T,. At time /20
one side is heated 10 temperature 1}
T, >T, while the other side is held at 11
T,. Assume that Ste < 0.1, determine Ol X

X
the transient and steady state interface Nﬁ
jocation. p— L

6.2 Consider freezing of a deep lake which is initially at the fusios
temperature 7, During a sudden cold wave which lasted fow
weeks, air temperature dropped to - 18°C, Assume that lske
surface temperature is approximately the same as sir Lemperature.
Justify using a quasi-steady model and determine the ice thickness ¥
the end of four weeks, lce properties are: Cow ™ 2093 Jfkﬂ‘.c'
ky =221 Wim-°C, £=333730/kg and p, = 916.8 kg/m’

6.3  Radiation s beamed at a semi-
infinite region which is initially mdiation | :
solid at the fusion temperature 7', -
The radiation penctrates the liquid liquid ¢ %
phase resulting in a uniform energy
Bcntmf“" ff.' The surface at RSN s &
x=1 {s maintained at lemperature
Te>Tr. Assume thay Ste < 0.1,

ine the transient angd
: st
State interface location. eady

6.4 You decided to make ice during a cold day by

6.5

6.6

Problems 243

placing water i
outdoors. Heat transfer from the water js by mnvncti:,lp;.

temperature is —10°C and the heat transfer coefficient is 125
W/m?-°C. Initially the water is at the fusion temperature. How
thick will the ice layer be after 7 hours? Justify using a quui;mdy
model to obtain an approximate answer. Properties of ice are:

Cps = 2093 Jkg-"C, k, =221 W/m-°C, £=333730 Jkg
and p, =916.8 kg/m’,

An old fashioned ice cream kit
consists of two concentric cylinders
of radii K, and R,. The inner
cylinder is filled with milk and ice
cream ingredients while the space
between the two cylinders is filled
with an ice-brine mixture. To
expedite the process, the inner
cylinder Is  manually rotated,
Assume that the surface of the
¢ylinder is at the brine temperature 7, and that Sre < 0.1, Assume
further that the liquid is initially at the fusion temperature. Derive an
expression for the total solidification time. Apply the result to the
following case: R, = 10cm, R, =25cm, T, = ~20°C, T; = T;.
Assume that ice cream has the same properties as ice, given by:

€y = 2093 J/kg="C, k, =221 W/m-°C, £=333730//kg and
Py = qlﬁug kgfmj
Liquid at the fusion temperature T, s contained between (wo

concentric cylinders of radii R, and Kj. At I'timar.' 120 tlul':nlr
eylinder is cooled at a time dependent rate go () per unit gth.

The outer cylinder is insulated. o
[A]  Assuming that Ste < 0.1, derive an spowssion B
solidification time,

[b] Determine the solidification time for
g, (1) =C/4Jr, where C is constant.

ﬂnwiﬂﬂﬂ"f
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69 Consider 2 semi-mbagte solid repron at the hiu-ﬂpu—erf,

The surface at
grven by

where C is constant. Determine the interface location for the case of

x = 0 is suddenly bested with a time dependent fim

f:{u} - % ’

2 Stefan number which is large compared to unity.

610 A glacier slides down on an

nclined plane

miyear. The ice front is heated
by coavection. The heat transfer
coefficient is h::sw.\\'mz__“c_
The average ambient temperature
through September

during Apri]
is rnzlnic.

at a rate of 12

During the remaining months the temperafur® ®
Meltng ice at the front flows into an adjacent sUes®*

¢ . =1460 Jxg—"C k, =3.489 Wim*C
p. =B kgm’

ﬂﬁhmﬂh:hh“

612

6.13

6.14

T, = suidenl beougit i comect »ith 3 semi-inmne
ﬁu:ﬂ_m};{]}_m_ﬂh
o anderps plissr Tansiormasom The hgeid colems
bepms © soldify a0d pow. Dermin: e maecface
mﬁﬂmﬂﬂliﬁ*-ﬁkw
compared 10 uny .

A siab of width L is mitialhv solid a
the fusion lcmperature T,. The
siab is brought into contact with a
semy-infinste solid region which is
nitially at uniform temperature
T}:-Tf-ﬂ:mlidmgionduaml
undergo phase change while the slab
melts. Obtain an exact solution for

the time needed for the entire slab to
melt. Assume that the free surface
of the slab is insulated.

Solve Neumann’s problem taking into consideration the effect of

density change. )
A slab of width L is initially liquid f' ; ;
at the fusion temperature T,. The a, !?
slab is brought into contact with a Pe ;
semi-infinite solid region which is T, i, é
initially at uniform temperature \ Opsex

T, <T;. The solid region does not e »
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hase change while the slab solidifies. Obtain ay i
g tire slab to solid;

r the time needed fffl' _ﬂlE en |:- dify. P
ce of the slab is insulated.

underg® P
solution fo
that the free surfa -
ertain conditions the temperature of a .hqmd can be 1“"”%
6.15 Under ";5 fusion temperature without undergoing solidifi Cation, i
t.gfﬂf: ;n such a state is referred .tn as ,sup?m,n?lfd' Considey ,
hqmmmled semi-infinite liquid region which is initially at unifory,
50
mnﬁcperature I < TJ,-. The surface at |
¢ =0 is suddenly mainuiljcfi at +th¢
fusion temperature Iy. Sﬂlldjflﬁ‘:fﬂ:i
begins immediately and a snlrd-i!qu
front propagales through the Iu:.luir.:l
phase. Note that the solid phase 1s at
uniform temperature T;. Determine

the interface location.

6.16 Consider melting due fo a line heat source in an infinite solid region
The solid is initially at T, < T,. Heat is suddenly added along a line
source at a rate 0, per unit length. Determine the interface location.
Assume constant properties in each phase and neglect fluid motion

due to density change.

L—
\ON-LINEAR CONDUCTION PROBLEMs

7.1 Introduction

Non-lineanty in conduction problems arises when properties are
{emperature dependent or when ‘buundnq conditions are non-linear.
gyrface radiation and free convection are typical examples of non-linear

poundary conditions. In phase change problems the interface energy
equation is non-linear.

Although the method of separation of variables has wide applicability, it is
limited to linear problems. Various methods are used to solve non-linear
problems. Some are exact and others are approximate, In this chapter we
will examine the source of non-linearity and present three methods of
solution. Chapters 8 and 9 deal with approximate techniques that are also
applicable to non-linear problems.

1.2 Sources of Non-linearity
7.2.1 Non-linear Differential Equations

Let us examine the following heat equation for one-dimensional transient
conduction

0 ,, 0T oT

k +q" = p¢, —. (7.1)

ﬂx( 61) =P 5
In this equation the density p, specific heat ¢ p and thermal conductivity
k can be functions of temperature. Variation of p and/or ¢, with
lemperature makes the transient term non-linear. Similarly, if k = k(T)
the first term becomes non-linear. This is evident if we rewrite eq. (7.1) as

2
o*T dk|oT e (00 ah
kaxl +dT{ﬂx] i B
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t.gfﬂf: ;n such a state is referred .tn as ,sup?m,n?lfd' Considey ,
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50
mnﬁcperature I < TJ,-. The surface at |
¢ =0 is suddenly mainuiljcfi at +th¢
fusion temperature Iy. Sﬂlldjflﬁ‘:fﬂ:i
begins immediately and a snlrd-i!qu
front propagales through the Iu:.luir.:l
phase. Note that the solid phase 1s at
uniform temperature T;. Determine

the interface location.

6.16 Consider melting due fo a line heat source in an infinite solid region
The solid is initially at T, < T,. Heat is suddenly added along a line
source at a rate 0, per unit length. Determine the interface location.
Assume constant properties in each phase and neglect fluid motion

due to density change.
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7.1 Introduction

Non-lineanty in conduction problems arises when properties are
{emperature dependent or when ‘buundnq conditions are non-linear.
gyrface radiation and free convection are typical examples of non-linear

poundary conditions. In phase change problems the interface energy
equation is non-linear.

Although the method of separation of variables has wide applicability, it is
limited to linear problems. Various methods are used to solve non-linear
problems. Some are exact and others are approximate, In this chapter we
will examine the source of non-linearity and present three methods of
solution. Chapters 8 and 9 deal with approximate techniques that are also
applicable to non-linear problems.

1.2 Sources of Non-linearity
7.2.1 Non-linear Differential Equations

Let us examine the following heat equation for one-dimensional transient
conduction

0 ,, 0T oT

k +q" = p¢, —. (7.1)

ﬂx( 61) =P 5
In this equation the density p, specific heat ¢ p and thermal conductivity
k can be functions of temperature. Variation of p and/or ¢, with
lemperature makes the transient term non-linear. Similarly, if k = k(T)
the first term becomes non-linear. This is evident if we rewrite eq. (7.1) as

2
o*T dk|oT e (00 ah
kaxl +dT{ﬂx] i B



