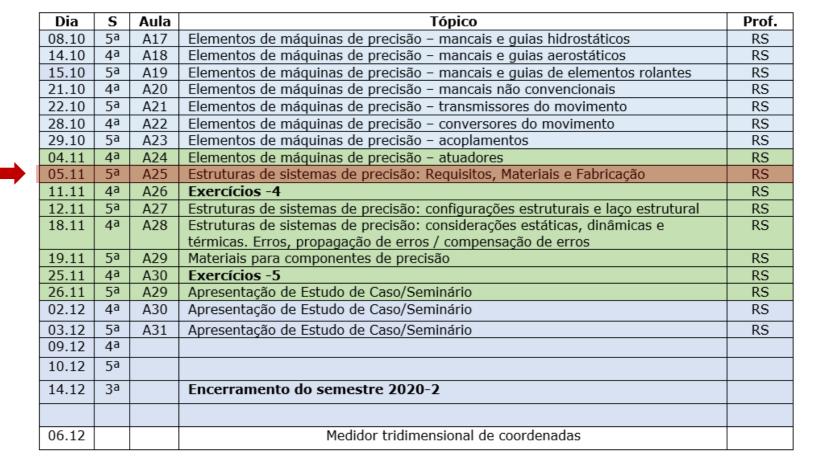


PMR 3501 Engenharia de Precisão


A25

Estruturas

2020.2

Planejamento

Estruturas

https://www.youtube.com/watch?v=y5xpMXbG8pU&t=59s

Considerações orientadas ao projeto de precisão

Para atingir alta precisão quatro requisitos funcionais básicos devem ser alcançados:

- 1. O sistema deve possuir um referência cinemática perfeita
- 2. O sistema deve possuir um conjunto cinemático perfeito
- 3. Deve ser construído de tal forma a ser imunes aos ruídos (internos e externos)
- 4. Deve ser capaz de detectar o movimento com exatidão

Considerações orientadas ao projeto de precisão

1 - Análise de projeto não é síntese de projeto

Uma grande quantidade de análises não vai mudar um projeto ruim. O resultado da análise de um projeto ruim será um projeto ruim otimizado.

2 – Especificações e requisitos de projeto

Especificações e requisitos de projeto devem ser feitos, quando possível de forma quantitativa, e se manterem o mais desacoplados possível.

3 - Simetria

A simetria no projeto, principalmente estrutural, sempre é benéfica, melhora o desempenho e simplifica as análises estática, dinâmica e térmica.

4 – Evite a ação de momentos

Momentos são amplificadores de tensões e deformações. Momentos geralmente são as principais fontes de erros por deformações

Considerações orientadas ao projeto de precisão

5 - Loopings

Loops, principalmente nas estruturas, permitem um fluxo de forças melhor distribuídos e contribuem para a simetria.

6 – Rigidez

A rigidez permite medir de forma direta a capacidade de um sistema de precisão em manter sua precisão enquanto realiza um movimento (aceleração/desaceleração) ou trabalho mecânico. A rigidez é importante quando o loop estrutural e metrológico coincidem. O requisito de rigidez estrutural resulta na diminuição das tensões nos componentes do loop, o que permite muitas vezes desprezar as tensões.

7 – Compensação

Considerações orientadas ao projeto de precisão

8 – Controle nulo

Loops, principalmente nas estruturas, permitem um fluxo de forças melhor distribuídos e contribuem para a simetria.

9 – Separação de erros / desacoplamento

A rigidez permite medir de forma direta a capacidade de um sistema de precisão em manter sua precisão enquanto realiza um movimento (aceleração/desaceleração) ou trabalho mecânico. A rigidez é importante quando o loop estrutural e metrológico coincidem. O requisito de rigidez estrutural resulta na diminuição das tensões nos componentes do loop, o que permite muitas vezes desprezar as tensões.

10 – Auto correção / auto calibração

Considerações orientadas ao projeto de precisão

11 – Projeto cinemático

Loops, principalmente nas estruturas, permitem um fluxo de forças melhor distribuídos e contribuem para a simetria.

12 - Pseudoprojeto cinemático

A rigidez permite medir de forma direta a capacidade de um sistema de precisão em manter sua precisão enquanto realiza um movimento (aceleração/desaceleração) ou trabalho mecânico. A rigidez é importante quando o loop estrutural e metrológico coincidem. O requisito de rigidez estrutural resulta na diminuição das tensões nos componentes do loop, o que permite muitas vezes desprezar as tensões.

13 – Projeto orientado a deformação

Considerações orientadas ao projeto de precisão

14 - Projeto orientado a plasticidade

Loops, principalmente nas estruturas, permitem um fluxo de forças melhor distribuídos e contribuem para a simetria.

15 – Princípio da simplicidade

A rigidez permite medir de forma direta a capacidade de um sistema de precisão em manter sua precisão enquanto realiza um movimento (aceleração/desaceleração) ou trabalho mecânico. A rigidez é importante quando o loop estrutural e metrológico coincidem. O requisito de rigidez estrutural resulta na diminuição das tensões nos componentes do loop, o que permite muitas vezes desprezar as tensões.

16 - Erros de Abbe e erros de seno

Considerações orientadas ao projeto de precisão

17 – Projeto invertido

Loops, principalmente nas estruturas, permitem um fluxo de forças melhor distribuídos e contribuem para a simetria.

18 - dissipação de energia

A rigidez permite medir de forma direta a capacidade de um sistema de precisão em manter sua precisão enquanto realiza um movimento (aceleração/desaceleração) ou trabalho mecânico. A rigidez é importante quando o loop estrutural e metrológico coincidem. O requisito de rigidez estrutural resulta na diminuição das tensões nos componentes do loop, o que permite muitas vezes desprezar as tensões.

19 – Teste e verificação

Erros de todas as origens podem ser compensados dentro de limites

10

Estruturas

Considerações térmicas

As estruturas de sistemas de precisão, também denominadas erroneamente de bases, tem por função servir de referência de montagem para todos os demais sistemas constituintes (guias, mancais, sensores, acionamentos, sistemas de medição e controle, etc.)

Estruturas

As estruturas

devem proporcionar uma referência cinemática perfeita

devem proporcionar um conjunto cinemático perfeito

devem proporcionar uma construção imune aos ruídos

devem ser capazes de detectar o movimento com exatidão

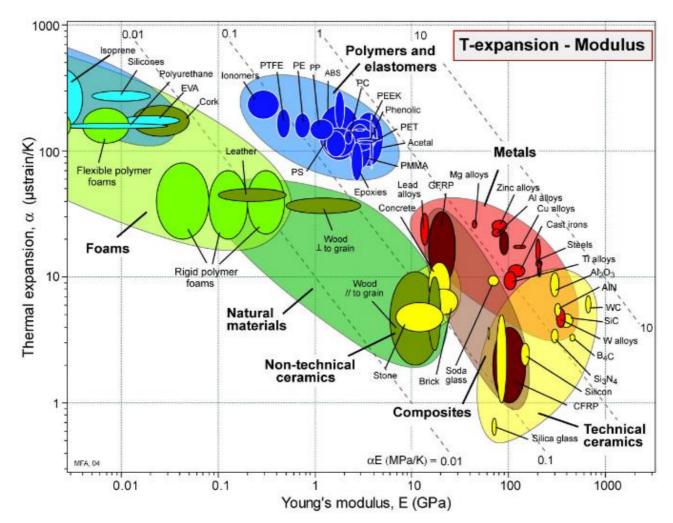
São o primeiro passo para a obtenção de alta precisão

Devem ser projetadas orientadas a cinemática e a precisão

Variações térmicas devem ser consideradas

Deformações devem ser consideradas

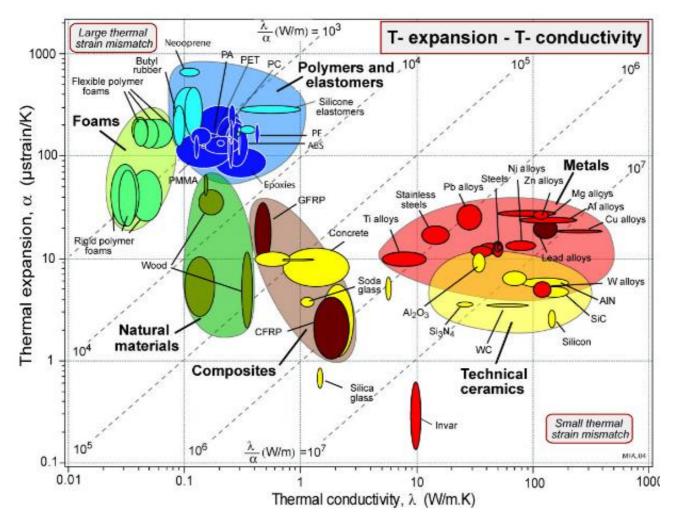
Estruturas


Requisitos

- →rigidez estática
- → rigidez dinâmica
- → estabilidade térmica
- estabilidade química
- → facilidade de manipulação
- → estabilidade dimensional
- → tolerâncias dimensionais
- → tolerâncias geométricas

Estruturas

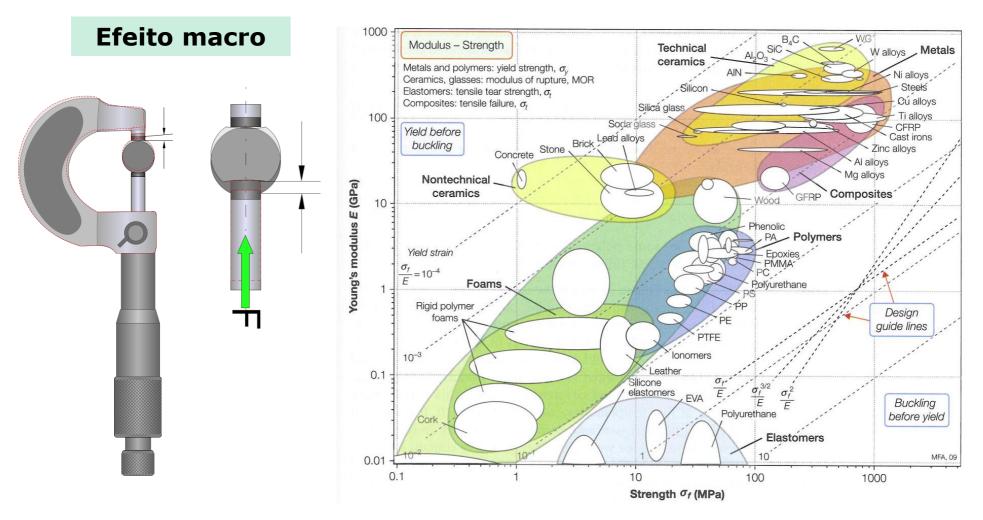
Considerações térmicas


14

Ashby, M. Seleção de materiais no projeto mecânico, Elsevier, Rio de Janeiro, 2012

Estruturas

Considerações térmicas


15

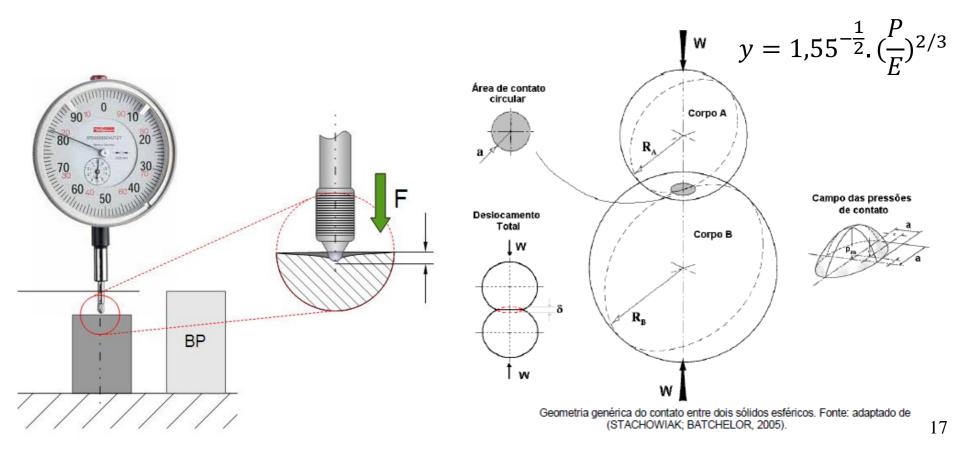
Ashby, M. Seleção de materiais no projeto mecânico, Elsevier, Rio de Janeiro, 2012

Estruturas

Considerações de deformação

16

Ashby, M. Seleção de materiais no projeto mecânico, Elsevier, Rio de Janeiro, 2012



Estruturas

Considerações de deformação

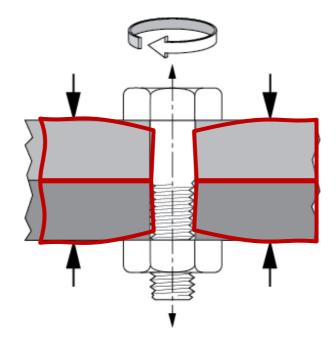
Efeito micro

Contatos hertzinaos

Estruturas

Considerações de deformação

A origem dessas deformações são principalmente decorrentes do:


- → peso das partes móveis
- → peso das peças de trabalho
- → forças de processo
- gradientes térmicos
- → campos magnéticos

Estruturas

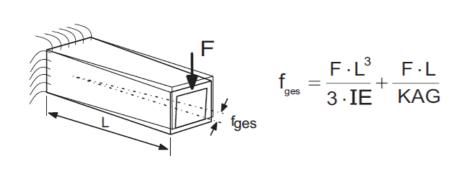
Considerações de deformação

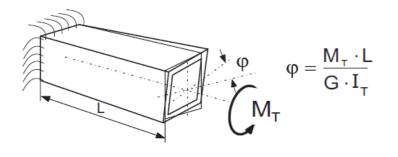
→Secundariamente ainda podemos encontrar deformações oriundas de montagens errôneas, torques excessivos em parafusos, nivelamento incorreto, entre outras.

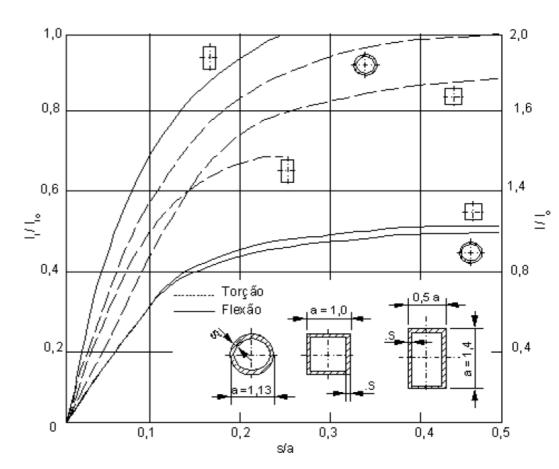
Estruturas

Considerações de rigidez

No projeto da estrutura em sistemas de precisão o requisito rigidez é muito mais importante do que os requisitos de capacidade de carga e de esforços a serem absorvidos.

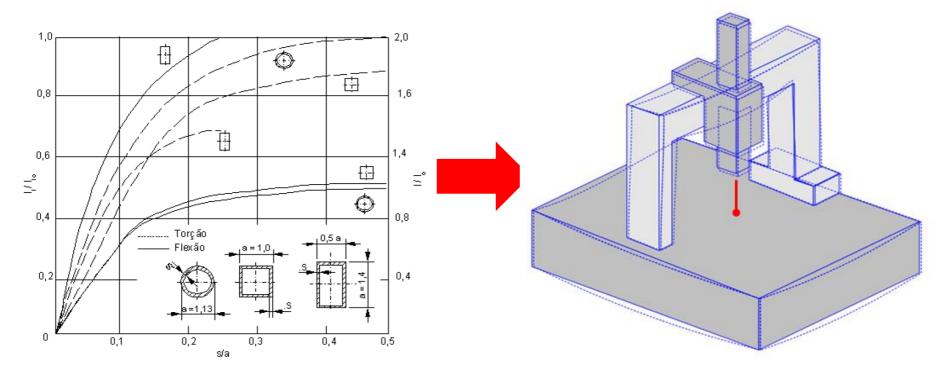

Os esforços de processos, como por exemplo: forças de medição e forças de usinagem (em usinagem UP em geral são inferiores a 5N), insuficientes para produzirem deformações estruturais significativas




Estruturas

Considerações de rigidez

Momento de inercia estrutural de Torção e Flexão para perfiz



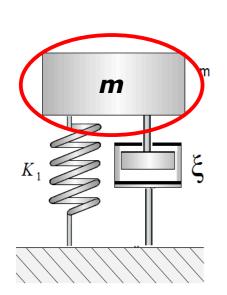
Estruturas

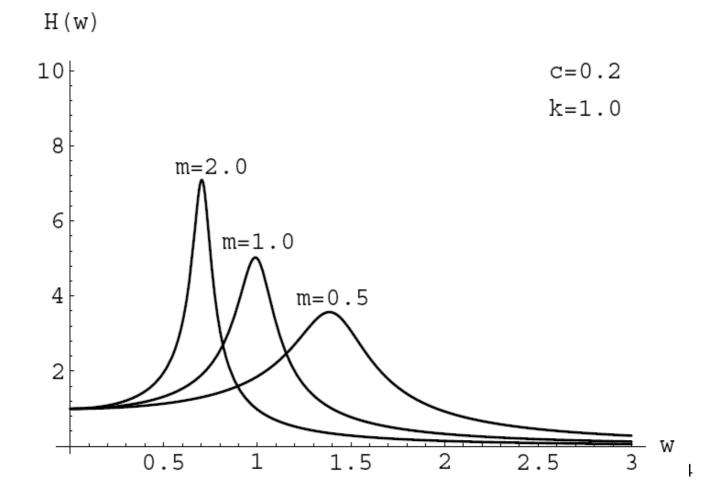
Considerações de rigidez

A combinação entre um material com alto módulo de elasticidade e uma grande seção transversal, com elevado momento de inércia deve ser perfeita

Estruturas

Considerações de rigidez

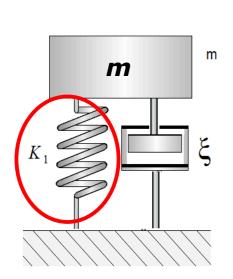

- > Se peso for adicionado aos requisitos então uma solução de compromisso deve ser alcançada.
- > Diferentes aplicações e diferentes requisitos tem custos diferentes

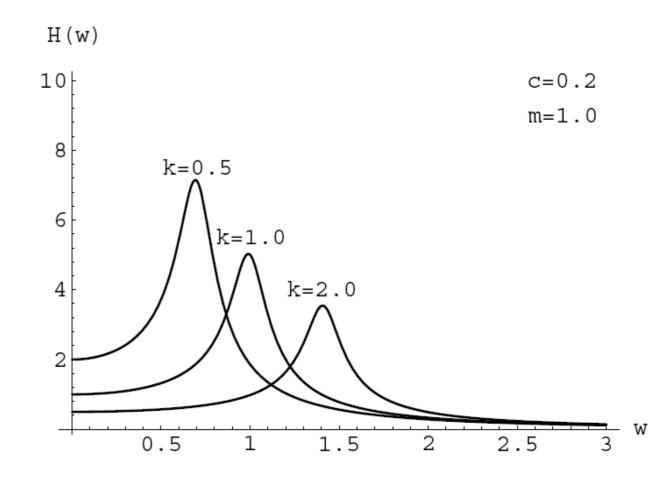


Estruturas

Considerações dinâmicas

Efeito da massa

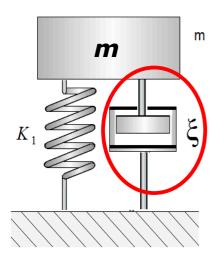


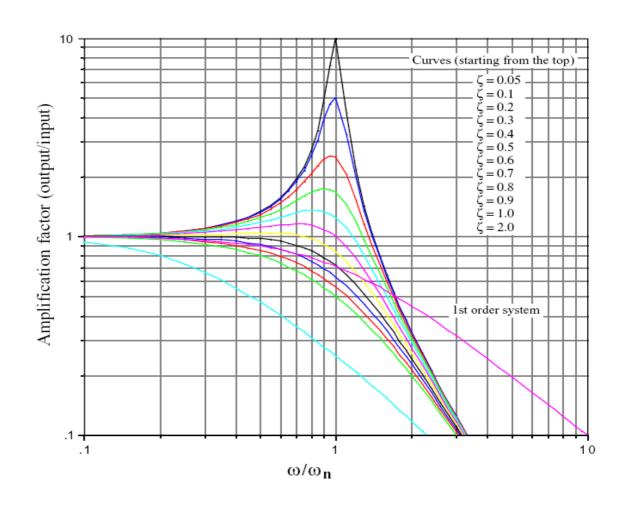


Estruturas

Considerações dinâmicas

Efeito da rigidez

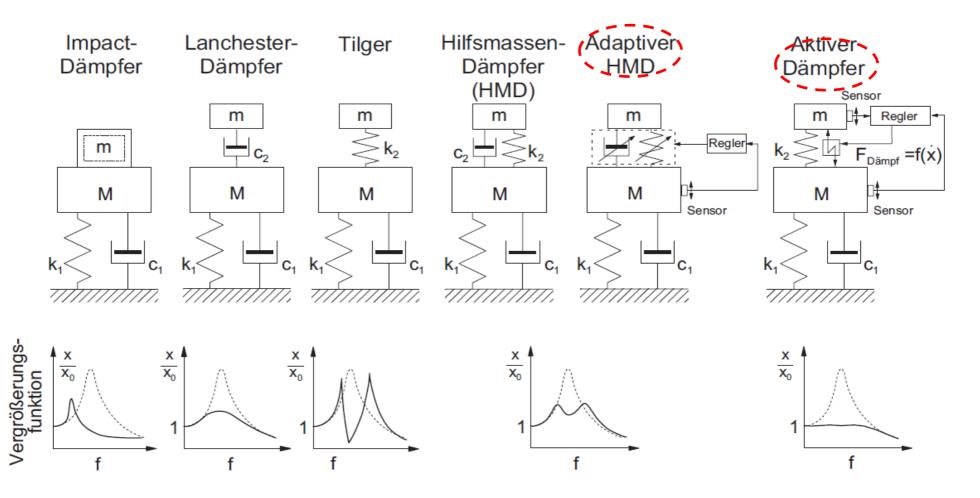




Estruturas

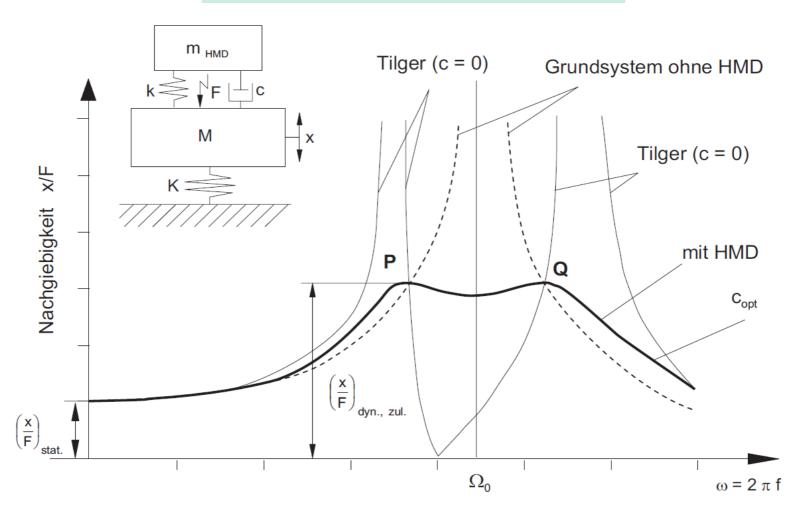
Considerações dinâmicas

Efeito do amortecimento



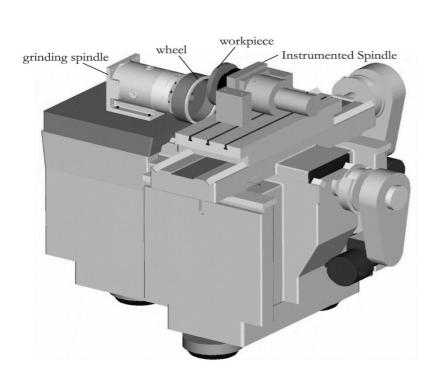
Estruturas

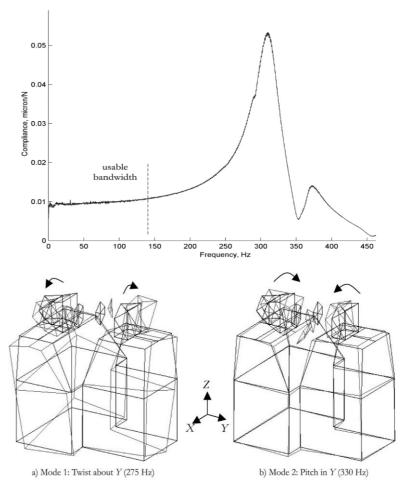
Considerações dinâmicas



Estruturas

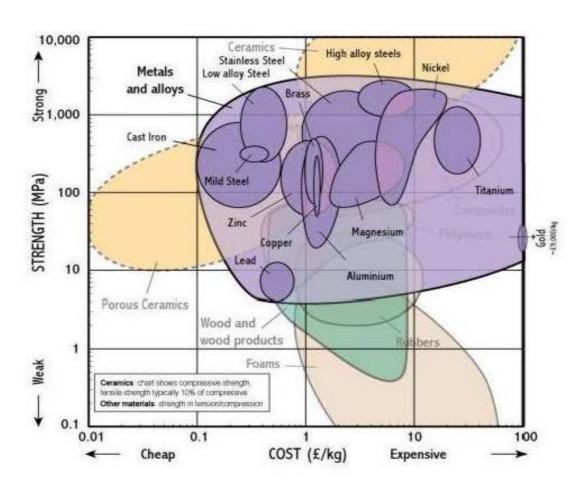
Considerações dinâmicas


Controle dinâmico



Estruturas

Considerações dinâmicas



Note: Since the infeed is in the Y direction, Mode 2 is the most influential

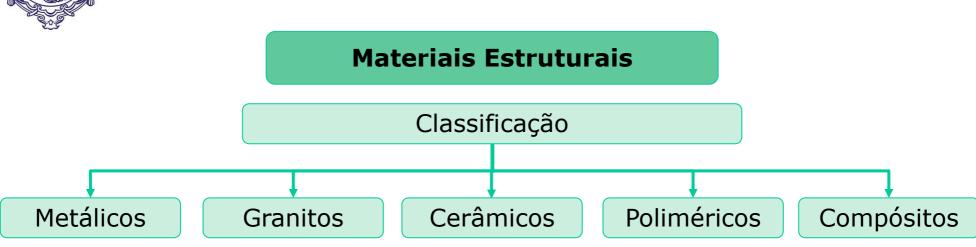
Estruturas

Considerações de custo

Estruturas

Materiais

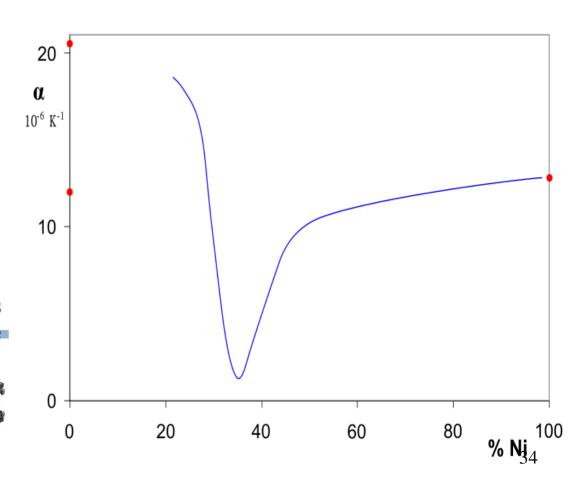
- Em sistemas de precisão as principais fontes de erros tem origem nas deformações mecânicas e térmicas, tensões mecânicas e vibrações.
- Uma estrutura somente é boa se os materiais e os processos de fabricação utilizados também o forem.
- Diferentes tipos de materiais geralmente levam a diferentes tipos de processos de fabricação, que afetam a escolha da forma construtiva da estrutura.



Materiais Estruturais

Requisitos

- → resistência mecânica
- → elasticidade
- → estabilidade mecânica
- → estabilidade térmica
- → estabilidade química
- → capacidade de amortecimento de vibrações
- → fabricabilidade
- → acessibilidade-disponibilidade
- → custo



Materiais Estruturais

Metálicos

Invar 36

➤ Invar é uma liga de níquelferro (FeNi36) que apresenta como característica principal um coeficiente de expansão térmica extremamente baixo.

Materiais Estruturais

Metálicos

Invar 36

Physical Properties	Metric
Density	8.05 g/cc
Mechanical Properties	Metric
Hardness, Rockwell B	90
Tensile Strength, Ultimate	621 MPa
Tensile Strength, Yield	483 MPa
	@Strain 0.200 %
Elongation at Break	20.0 %
Reduction of Area	60.0 %
Modulus of Elasticity	148 GPa
Electrical Properties	Metric
Electrical Resistivity	0.0000820 ohm-cm

Thermal Properties	Metric
CTE, linear III	1.30 µm/m-°C @Temperature 93.0 °C
	4.18 μm/m-°C @Temperature 260 °C
	7.60 µm/m-°C @Temperature 371 °C
Specific Heat Capacity	0.515 J/g-°C
Thermal Conductivity	10.15 W/m-K
Melting Point	1427 °C
Solidus	1427 °C
Liquidus	1427 °C

Component Elements Properties	Metric
Carbon, C	0.020 %
Iron, Fe	63.0 %
Manganese, Mn	0.35 %
Nickel, Ni	36.0 %
Silicon, Si	0.20 %
	43

33

279 °C

Curie Temperature

Materiais Estruturais

Metálicos

Aços ANSI 4340

Physical Properties	Metric
Density	7.85 g/cc

Mechanical Properties	Metric
Hardness, Brinell	363
Hardness, Knoop	392
Hardness, Rockwell B	100
Hardness, Rockwell C	40
Hardness, Vickers	384
Tensile Strength, Ultimate	1282 MPa
Tensile Strength, Yield	862 MPa
Elongation at Break	12.2 %
Reduction of Area	36.3 %
Modulus of Elasticity	200 GPa
Bulk Modulus	159 GPa
Poissons Ratio	0.29
Machinability	50 %
Shear Modulus	78.0 GPa

Thermal Properties	Metric
CTE, linear 📶	12.3 µm/m-°C @Temperature 20.0 °C
	12.6 μm/m-°C @Temperature 21.0 - 260 °C
	12.7 μm/m-°C @Temperature 20.0 °C
	13.7 µm/m-°C @Temperature 250 °C
	13.7 μm/m-°C @Temperature 21.0 - 540 °C
	13.9 μm/m-°C @Temperature 21.0 - 540 °C
	14.5 µm/m-°C @Temperature 500 °C
Specific Heat Capacity	0.475 J/g-°C
Thermal Conductivity	44.5 W/m-K

Component Elements Properties	Metric
Carbon, C	0.37 - 0.43 %
Chromium, Cr	0.70 - 0.90 %
Iron, Fe	95.195 - 96.33 %
Manganese, Mn	0.60 - 0.80 %
Molybdenum, Mo	0.20 - 0.30 %
Nickel, Ni	1.65 - 2.0 %
Phosphorus, P	<= 0.035 %
Silicon, Si	0.15 - 0.30 %
Sulfur, S	<= 0.040 %

36

Materiais Estruturais

Metálicos

Granitos Naturais

Material natural com composição e tamanho de grão variados, amplamente utilizado como elemento estrutural de sistemas de precisão

Vantagens

Estabilidade dimensional

Estabilidade térmica

Amortecimento

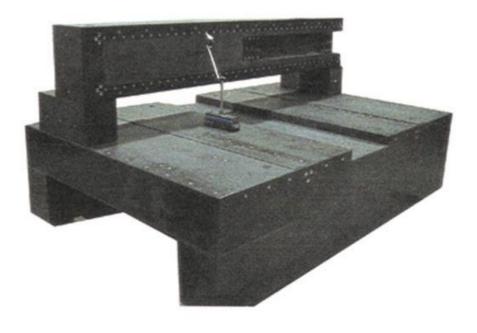
inexistência de tensões residuais

Physical Properties	Metric
Density	2.54 - 2.66 g/cc
Moisture Expansion	0.00500 %
Porosity	0.100 - 4.00 %
Permeability	1.00e-9 - 1.00e-6

Mechanical Properties	Metric
Hardness, Shore H	85.0 - 100
Hardness, Mohs	5.00 - 7.00
Abrasive Hardness	37.0 - 88.0
Tensile Strength, Ultimate	7.00 - 25.0 MPa
Modulus of Elasticity	20.0 - 60.0 GPa
Modulus of Rupture	0.00900 - 0.0379 GPa
Transverse Strength	9.00 - 38.0 MPa
Compressive Strength	96.5 - 310 MPa
Impact Toughness	2.76 - 11.0 cm/cm ²

Thermal Properties	Metric
CTE, linear	3.70 - 11.0 μm/m-°C @Temperature 20.0 °C
Specific Heat Capacity	0.210 - 0.350 J/g-°C
Thermal Conductivity	1.20 - 4.20 W/m-K

37


Materiais Estruturais

Metálicos

Granitos

Naturais

- Granitos sintéticos ou Granito Epoxy são uma mistura de resina epóxi com pós de granito de dimesões definidas geralmente utilizado como material alternativo para a construção e bases e estruturas de sistemas de precisão.
- Granitos sintéticos são utilizados em substituição aos ferro-fundido e aço devido a sua capacidade de amortecimento de vibrações, durabilidade, facilidade de manipulação, capacidade de forma e menor custo.

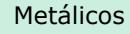
Materiais Estruturais

Metálicos

Granitos Sintéticos

Chevron Phillips Marlex® HHM TR-480Z/M362 Natural high density ethylene hexene copolymer/black concrete

Physical Properties	Metric
Density	0.944 g/cc
Environmental Stress Crack Resistance	>= 1000 hour @Temperature 50.0 °C
Melt Flow	0.110 g/10 min @Load 2.16 kg, Temperature 190 °C
High Load Melt Index	10.0 g/10 min @Load 21.6 kg,


Mechanical Properties	Metric
Tensile Strength, Ultimate	34.0 MPa
Tensile Strength, Yield	22.0 MPa
Elongation at Break	>= 500 %
Flexural Modulus	0.960 GPa

Thermal Properties	Metric
Brittleness Temperature	<= -90.0 °C

Processing Properties	Metric
Processing Temperature	193 - 216 °C

Materiais Estruturais

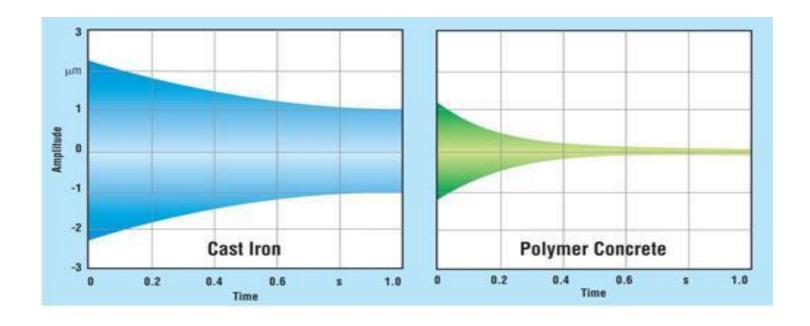
Granitos Sintéticos

Materiais Estruturais

Metálicos

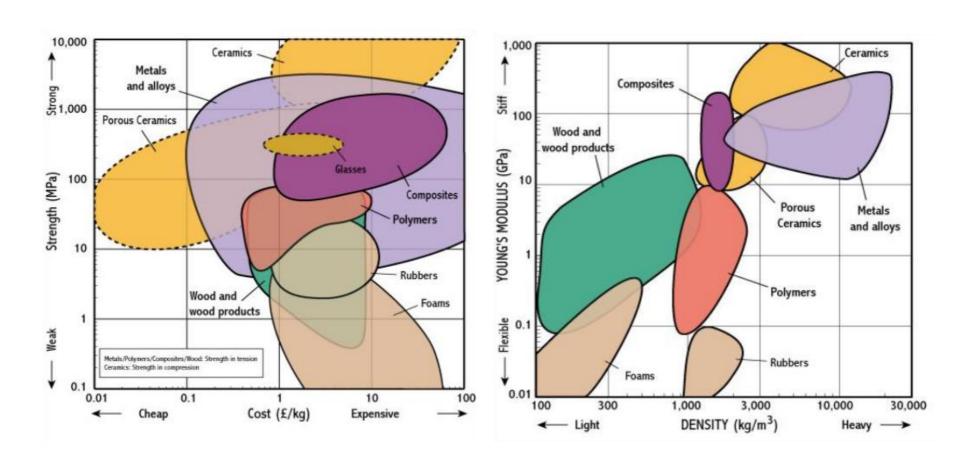
Granitos

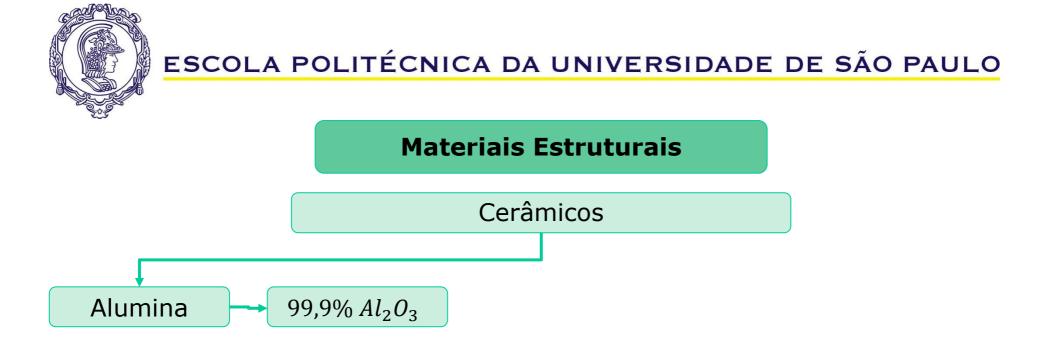
Sintéticos



Materiais Estruturais

Metálicos


Granitos Sintéticos



Materiais Estruturais

Cerâmicos

Alumina é uma das cerâmicas mais robustas, com excelentes propriedades estruturais, resistência ao desgaste e corrosão, além da capacidade de isolamento térmico e elétrico.

Aplicações

- Componentes de câmaras para semicondutores
- Peças para transporte de Wafers de semicondutores
- Componentes gerais de sistemas de precisão
- Peças resistentes a altas temperaturas e isoladores

Materiais Estruturais

Cerâmicos

Alumina 99,9% *Al*₂*O*₃

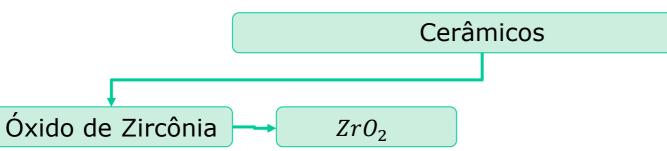
Chemical Properties	Metric
Molar Volume	25.575 cc/mol

Mechanical Properties	Metric
Hardness, Knoop	1700 - 2200
Hardness, Vickers	1365
Vickers Microhardness	2085
Hardness, Mohs	9.0
Abrasive Hardness	1000
Drilling Hardness	189000
Tensile Strength, Ultimate	300 MPa
Modulus of Elasticity	370 GPa
Flexural Strength	400 MPa
Compressive Strength	3000 MPa
	1900 MPa @Temperature 1000 °C
Poissons Ratio	0.22
Fracture Toughness	4.00 MPa-m1/2
Shear Modulus	150 GPa

Thermal Properties	Metric
Heat of Fusion	1093 J/g
Heat of Vaporization	19380 J/g
CTE, linear 🎹	0.600 µm/m-°C @Temperature -173 °C
	3.30 µm/m-°C @Temperature -73.0 °C
	5.50 µm/m-°C @Temperature 25.0 °C
	7.10 µm/m-°C @Temperature 127 °C
	7.50 µm/m-°C @Temperature 227 °C
	7.90 µm/m-°C @Temperature 327 °C
	8.50 µm/m-°C @Temperature 527 °C
	9.10 µm/m-°C @Temperature 727 °C
	9.60 µm/m-°C @Temperature 927 °C
	10.1 µm/m-°C @Temperature 1127 °C
	10.5 µm/m-°C @Temperature 1327 °C



Materiais Estruturais


Cerâmicos

Alumina \longrightarrow 99,9% Al_2O_3

Óxido de Zircônia é uma das cerâmicas mais resistentes disponíveis. É um dos melhores materiais quando os requisitos de resistência estrutural e resistência corrosão se fazem prioritários, além de ter uma excelente resistência a abrasão

Aplicações

- Guias para transporte de semicondutores
- Ferramentas de corte industrial
- Componentes de sistemas de ultra precisão
- Peças resistentes a abrasão

Materiais Estruturais

Cerâmicos

Óxido de Zircônia

 ZrO_2

Physical Properties	Metric
Density	5.68 g/cc
	6.10 g/cc
Molecular Weight	123.223 g/mol

Electrical Properties	Metric
Magnetic Susceptibility	-0.0000138

Thermal Properties	Metric
Heat of Fusion	706 J/g
CTE, linear 🎹	7.00 µm/m-°C @Temperature 20.0 °C
	12.0 µm/m-°C @Temperature 20.0 °C
Thermal Conductivity	1.675 W/m-K
Melting Point	2681 - 2847 °C

Metric

Materiais Estruturais

Cerâmicos

Zerodur vidro cerâmico

Physical Properties

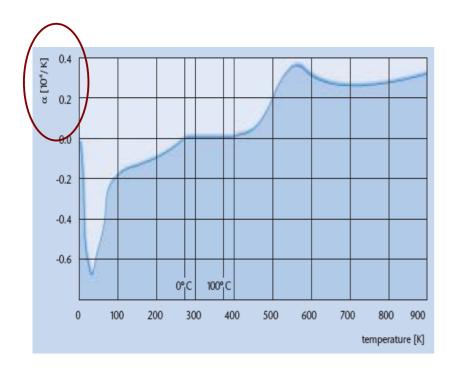
,		
Density	2.53 g/cc	
Mechanical Properties	Metric	
Modulus of Elasticity	91.0 GPa	

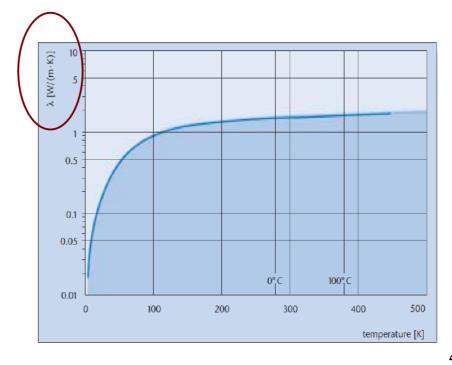
Woulds of Elasticity	31.0 Or a
Poissons Ratio	0.240

Thermal Properties	Wetric
CTE, linear	0.0500 μm/m-°C @Temperature 20.0 - 300 °C
Specific Heat Capacity	0.821 J/g-°C
Thermal Conductivity	1.64 VV/m-K @Temperature 100 °C

Optical Properties	Metric
Refractive Index	1.5394
	1.5447
	1.5447
	1.5544

Materiais Estruturais

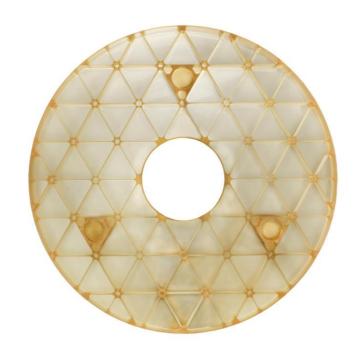

Cerâmicos


Zerodur vidro cerâmico

Thermal conductivity λ at 20°C [W/(m · K)] 1.46

Thermal diffusivity index a at 20°C [10⁻⁶ m²/s] 0.72

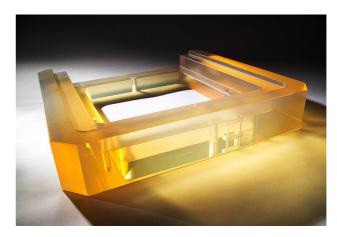
Specific heat capacity cp at 20°C [J/(g·K)] 0.80

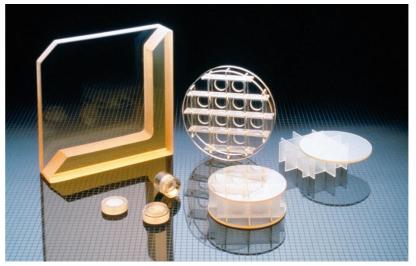


Materiais Estruturais

Cerâmicos

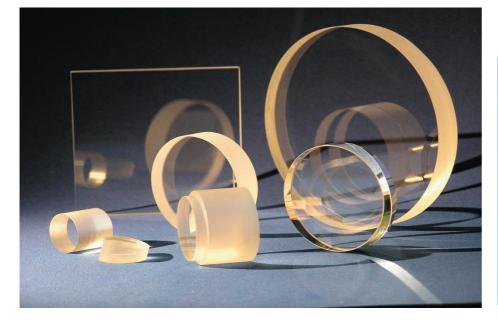
Zerodur *vidro cerâmico*

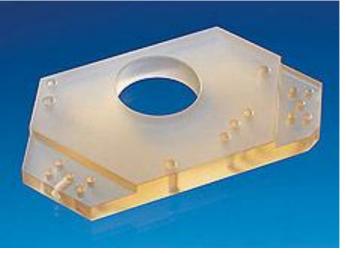

Materiais Estruturais


Cerâmicos

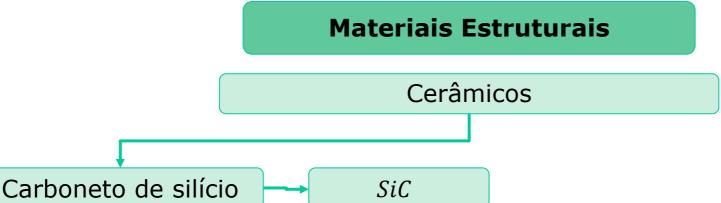
Zerodur

vidro cerâmico




Materiais Estruturais

Cerâmicos


Zerodur *vidro cerâmico*

Carboneto de silício é uma material leve, extremamente duro e resistente a corrosão o que o torna ideal para aplicações com requisitos de resistência ao desgaste, ou ambientes abrasivamente agressivos Carboneto de silício também oferece excelente condutividade térmica e alto módulo de Young.

Aplicações

- Equipamentos de processamento de Semicondutores
- Componentes de emprego geral
- Componentes resistentes a abrasão

Materiais Estruturais

Cerâmicos

Carboneto de silício

SiC

Physical Properties	Metric
Density	3.10 g/cc
	3.21 g/cc
a Lattice Constant	3.0817 Å
c Lattice Constant	15.1183 Å

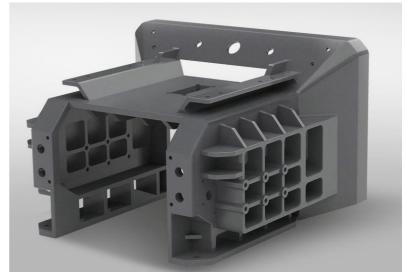
Mechanical Properties	Metric
Modulus of Elasticity	410 GPa
Compressive Strength	4600 MPa
Poissons Ratio	0.14
Fracture Toughness	4.60 MPa-m½
Shear Modulus	180 GPa

Thermal Properties	Metric
Specific Heat Capacity	0.670 J/g-°C
Thermal Conductivity III	77.5 W/m-K @Temperature 400 °C
	125.6 W/m-K @Temperature 200 °C
Melting Point	2797 °C

Optical Properties	Metric
Refractive Index	2.67

Materiais Estruturais

Cerâmicos


Carboneto de silício

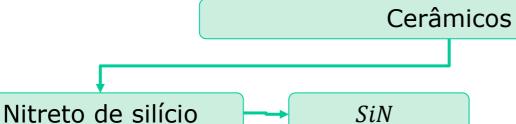
SiC

SiN

Cerâmicas de Nitreto de Silício oferecem alta resistência a choques térmicos e mecânicos. Estas propriedades combinadas com sua elevada resistência mecânica fazem do SiN uma excelente escolha para aplicações que envolvam alta temperatura e carregamentos mecânicos.

Aplicações

Nitreto de silício


- Equipamentos de processamento de Semiconductores
- Componentes de emprego geral
- Componentes resistentes ao calor

5.80 - 8.50 MPa-m½

104 - 128 GPa

Materiais Estruturais

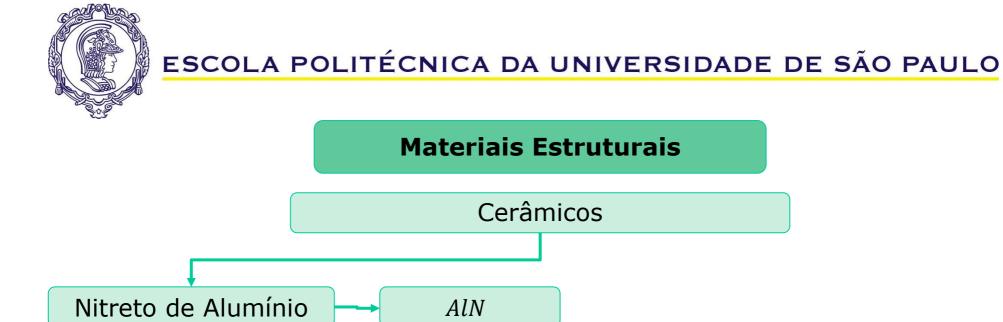
Physical Properties	Metric
Density	3.20 g/cc
Mechanical Properties	Metric
Hardness, Vickers	1600
Modulus of Elasticity	260 - 320 GPa
Flexural Strength	900 MPa
Poissons Ratio	0.25

Thermal Properties	Metric
CTE, linear	2.80 µm/m-°C
	@Temperature 20.0 °C

Fracture Toughness

Shear Modulus

Materiais Estruturais


Cerâmicos

Nitreto de silício

SiN

Nitreto de Alumínio é frequentemente utilizada por sua condutividade térmica e resistência à ataque por plasmas de fluoridos.

Aplicações

- Componentes de câmaras para processamento de semicondutores
- Substrato para aquecimento por radiação

Materiais Estruturais

Cerâmicos

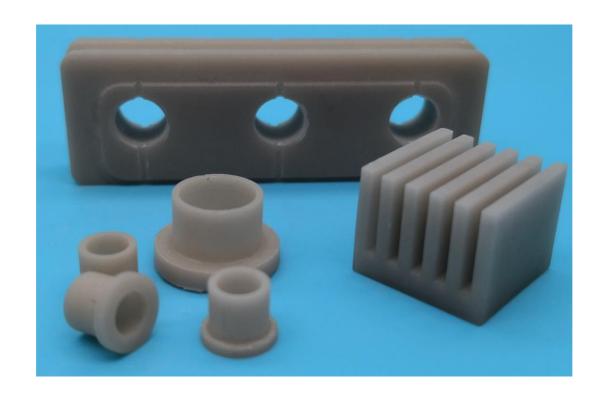
Nitreto de Alumínio

AlN

Physical Properties	Metric
Density	3.26 g/cc
a Lattice Constant	3.111 Å
c Lattice Constant	4.978 Å
Molecular Weight	40.989 g/mol

Electrical Properties	Metric
Dielectric Constant	8.8 - 8.9
Band Gap	6.02 eV

Thermal Properties	Metric
CTE, linear	4.50 μm/m-°C
	@Temperature <=1000 °C
Thermal Conductivity	285 W/m-K
Melting Point	3200 °C



Materiais Estruturais

Cerâmicos

Nitreto de Alumínio

AlN

Estruturas

As soluções serão de compromisso e envolvem a seleção de vários tipos de materiais

FIM DA AULA