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ABSTRACT: Hyperthermia, the procedure of raising the temperature of a part of or the 
whole body above normal for a defined period of time, is applied alone or as an adjunc-
tive with various established cancer treatment modalities such as radiotherapy and che-
motherapy. Clinical hyperthermia falls into three broad categories, namely, (1) localized 
hyperthermia, (2) regional hyperthermia, and (3) whole-body hyperthermia (WBH). Be-
cause of the various problems associated with each type of treatment, different heating 
techniques have evolved. In this article, background information on the biological ration-
ale and current status of technologies concerning heating equipment for the application of 
hyperthermia to human cancer treatment are provided. The results of combinations of 
other modalities such as radiotherapy or chemotherapy with hyperthermia as a new 
treatment strategy are summarized. The article concludes with a discussion of challenges 
and opportunities for the future. 
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I. INTRODUCTION 

The term hyperthermia broadly refers to either an abnormally high fever or the 
treatment of a disease by the induction of fever, as by the injection of a foreign 
protein or the application of heat.1 Hyperthermia as a method of treating cancer 
has a long history. Many Greek and Roman physicians thought that if they could 
simply control body temperature they could cure all diseases. This included can-
cer, with the pathology of tumor development having been described in the 
Greek literature.2

Hyperthermia may be defined more precisely as raising the temperature of a 
part of or the whole body above normal for a defined period of time. The extent 
of temperature elevation associated with hyperthermia is on the order of a few 
degrees above normal temperature (41–45°C). The effect of hyperthermia de-
pends on the temperature and exposure time. First, there is the curative, physio-
logically based therapy (physiological hyperthermia), which treats aches, pains, 
strains, and sprains. This is applied in the folloing multiple sessions: use low 
temperature (e.g., below 41°C) for approximately an hour; have a reparative goal 
of accelerated tissue healing; and use physiological mechanisms of increasing 
blood flow and metabolic rates.3 At temperatures above 42.5–43°C, the exposure 
time can be halved with each 1°C temperature increase to give an equivalent cell 
kill.4 Most normal tissues are undamaged by treatment for 1 hr at a temperature 
of up to 44°C.5 The main mechanism for cell death is probably protein denatura-
tion, observed at temperatures > 40°C, which leads to, among other things, al-
terations in multimolecular structures such as cytoskeleton and membranes, and 
changes in enzyme complexes for DNA synthesis and repair.6  

The first paper on hyperthermia was published in 1886.7 According to the au-
thor, the sarcoma that occurred on the face of a 43-year-old woman was cured 
when fever was caused by erysipelas. Westermark8 used circulating high-
temperature water for the treatment of an inoperable cancer of uterine cervix with 
beneficial results. In the early twentieth century, both applied and basic research 
on hyperthermia was carried out; however, the heating methods and temperature-
measuring technologies were not sufficiently advanced at that time and positive 
clinical application of hyperthermia treatment was not accomplished. Conse-
quently, surgeries, radiotherapy, and chemotherapy remained the dominant 
therapies for tumors.9 Worldwide interest in hyperthermia was initiated by the 
first international congress on hyperthermic oncology in Washington in 1975. In 
the United States, a hyperthermia group was formed in 1981 and the European 
Hyperthermia Institute was formed in 1983. In Japan, hyperthermia research 
started in 1978 and the Japanese Society of Hyperthermia Oncology was estab-
lished in 1984. 

This developing interest has followed a course that is usual for a new type of 
treatment. In the first decade there was a growing enthusiasm, reflected by an ex-
ponential increase in the number of papers and participants at meetings. Thereaf-
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ter, the interest waned, due to disappointing clinical results from some of the first 
randomized studies, accompanied by reluctance among sponsoring authorities 
and hospital boards to support further research. Today, there appears to be a re-
newed interest, thanks to several investigations demonstrating that the improve-
ments in treatment outcome by adjuvant hyperthermia can be very substantial, 
provided that adequate heating procedures are used.10  

In recent decades, extensive studies have been performed in the field of hy-
perthermia, ranging from the mechanisms of thermal cell kill to clinical trials and 
treatments. A series of books have been published summarizing the many ex-
perimental and clinical studies in the field of hyperthermia.11–14 Other books de-
scribing hyperthermia and its clinical applications have been authored or ed-
ited.9,15–20 Several book chapters also focused on hyperthermia.21–25 There is an 
increasing number of relevant published periodicals as well as a large number of 
scientific articles published in high-ranked journals that review the physical 
background and technical realization of hyperthermia.3,26–49 A large body of sci-
entific and clinical literature demonstrating the effectiveness of hyperthermia, ei-
ther alone or combined with radiotherapy or chemotherapy, has been published 
during the past few years.6,10,23,41,50–68 The increasing number of applications and 
clinical trials at universities, clinics, hospitals, and institutes proves the feasibility 
and applicability of clinical hyperthermia in cancer therapies.49

The objective of this review is to outline and discuss the means by which 
electromagnetic (EM) energy and other techniques can provide temperature ele-
vation within the human body. Clinical hyperthermia falls under three major 
categories, namely, localized, regional, and whole-body hyperthermia (WBH). 
Because of the individual characteristics of each type of treatment, different 
types of heating systems have evolved. Hyperthermia may be applied alone or 
jointly with other modalities such as radiotherapy, chemotherapy, surgical treat-
ment, and immunotherapy. The article concludes with a discussion of the chal-
lenges and opportunities for medical applications of hyperthermia in the future.  

II. BIOLOGICAL RATIONALE 

The clinical exploitation of hyperthermia was and still is hampered by technical 
limitations and the high degree of interdependency between technology, physiol-
ogy, and biology.69,70 Extensive biologic research has shown that there are sound 
biological reasons for using hyperthermia in the treatment of malignant dis-
eases.35 The biological rationale for the treatment of malignant disease by heat is 
mediated by a number of reasons. First, the survival of cells depends on the tem-
perature and duration of heating in a predictable and repeatable way. For exam-
ple, when the temperature increases, the survival rate of the cell becomes lower. 
Second, tumor cell environment, such as hypoxia, poor nutrition, and low pH, 
while detrimental to cell kill by ionizing radiation, is beneficial to heat therapy. 
Third, cells may develop a resistance to subsequent heat following previous heat 
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treatment. This condition is known as thermotolerance. Fourth, the differential 
sensitivity of normal and tumor cells to heat is dependent on cell type and envi-
ronmental conditions. And finally, heat treatment enhances the biological effect 
of both radiation and chemotherapy agents.9,34

A. Heat Alone 

The biological rationale is based on a direct cell-killing effect at temperatures 
above 41–42°C.6 However, the thermal-dose-response relation varies among cell 
lines and depends on microenvironmental factors such as pH.71 Protein damage is 
the main molecular event underlying the biological effects of hyperthermia in the 
clinically relevant temperature range (39–45°C). The activation energies for pro-
tein denaturation and heat-induced cell death are within the same range.6 Cellular 
and tissue level studies, both in vitro and in vivo, indicate that protein denatura-
tion is the most likely thermal effect causing permanent irreversible damage.72 
Biophysical approaches73–75 as well as work with model proteins76,77 have directly 
shown that substantial protein denaturation occurs in the clinically relevant tem-
perature range. As a result of denaturation, proteins are prone to aggregation. 
Without chaperones, these aggregates can have destructive consequences for 
many macromolecular structures and their functions.66

The responses of tumors to hyperthermia involve both cellular and host-
related factors. Frequently, it is not easy to separate these experimentally. When 
cells are exposed to elevated temperatures, they are inactivated in a time- and 
temperature-dependent fashion. Inactivation starts at about 40 to 41°C, at least, 
for murine cells and tumors. At these low temperatures, cell inactivation contin-
ues for only a few hours; beyond that time, the surviving cells appear resistant to 
further exposure to such temperatures. Studies have shown that this is not a se-
lection of heat-resistant subpopulations, but rather a consequence of the induction 
of a temporary resistance to heat. This transient phenomenon is referred to as 
thermotolerance. However, very prolonged heating at mild temperatures (41–
42°C) overcomes this transient thermotolerance.78 Above 43°C, for most rodent 
lines, inactivation is exponential with time and thus resembles cell inactivation 
by ionizing radiation. Human cells tend to be more resistant, and in some human 
tumor cell lines this temperature threshold is as high as 44.5°C. Hence, thermo-
tolerance can develop during treatment of human lesions, since tumor tempera-
tures only rarely exceed 44°C. At even higher temperatures, thermotolerance 
does not develop; however, if the cells are returned to 37°C, the surviving cells 
become resistant within a few hours. At temperatures between 41°C and 42°C, 
human tumor cell lines may be more sensitive than rodent tumor cells, and a po-
tential therapeutic advantage may be achieved with prolonged heating at these 
milder temperatures.79  

The development of thermotolerance is accompanied by the preferential syn-
thesis (or de novo synthesis) of a series of proteins referred to as heat-shock pro-
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teins (HSPs). These molecules are the subject of intense study because of their 
importance in normal cell function and in various disease states.80 Thermotoler-
ance can also greatly modify the cellular response to some drugs or heat in com-
bination with X-irradiation, but it does not seem to have much effect on the cells’ 
response to X-irradiation alone.81  

In addition to thermotolerance, there is great variability in genetically deter-
mined heat sensitivity of tumor cells. The frequency of occurrence of such cells 
appears to be very low; however, there is no evidence of cross-resistance be-
tween heat sensitivity and X- irradiation or most anticancer drugs. Hence, geneti-
cally heat-resistant cells may be of little importance during combination treat-
ments with heat and radiation or chemotherapy. 

B. Heat and Radiation 

Aggregation of nuclear proteins damage is thought to be the central event by 
which heat makes cells more sensitive to radiation.74,82 The synergy between heat 
and radiation, often expressed as thermal enhancement ratios (TERs), is highest 
when the two modalities are given simultaneously. When heat precedes radiation, 
the synergy is lost when the time interval between the two modalities increases; 
this loss of TERs nicely parallels the decline in protein aggregation.83 It is impor-
tant to note that at the time when the TER is maximal (during or immediately af-
ter heating), HSP levels have not yet increased; conversely, when HSP levels are 
maximal, cells have regained normal radiosensitivity. This means that HSPs are 
not involved in thermal radiosensitization and, more importantly, that physio-
logical upregulations in HSPs that make cells thermotolerant cells are heated, 
they do become less well radiosensitized than nonthermotolerance control cells 
and the decline of radiosensitization is more rapid as if the cells had been heated 
with a milder heat treatment. This is because in the thermotolerance cells’ nu-
clear protein, aggregation is attenuated and/or repaired more rapidly due to the 
elevated HSP levels.66,83

Heat enhances the cytotoxicity of X-rays, in a supra-additive fashion. Supra-
additivity refers to an increase in cytotoxicity observed over and above what 
would be expected on the basis of additivity of the two treatments, and it is 
maximum when these are given simultaneously. It decays with time when the 
treatments are separated by more than one or two hours (even less in some sys-
tems).15,35

C. Heat and Drugs 

A lot of physiology-related features make a combination of heat and drugs very 
attractive. Moreover, heat can cause supra-additive killing when combined with 
alkylating agents, nitrosureas, platinum drugs, and some antibiotics,84 although 
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for some drugs only additive effects or even less than additive effects on cell 
death are found.66 The most impressive results in this regard are for heat and cis-
platin treatments. Synergistic killing is already found at rather mild heat treat-
ments.85

When cells are exposed at elevated temperatures to drugs, their response is 
frequently very different from that seen at 37°C. Drugs whose rate-limiting reac-
tion is primarily chemical (i.e., not involving enzymes) would, on thermody-
namic grounds, be expected to be more efficient at higher temperatures. The rates 
of alkylation of DNA, or of conversion of a nonreactive species to a reactive one, 
can be expected to increase as the temperature increases. Tissue culture studies 
have shown this to be true for the nitrosoureas and cisplatin. For other drugs, 
there appears to be a threshold at or near 43°C. Below that temperature, drug ac-
tivity is only mildly enhanced. At higher temperatures, however, cell killing pro-
ceeds at a greatly enhanced rate. The combination of chemotherapy with hyper-
thermia still deserves attention and has high potential.66

III. TYPES OF HYPERTHERMIA 

Hyperthermia is mostly applied within a department of radiation oncology under 
the authority of a radiation oncologist and a medical physicist. Hyperthermia is 
always implemented as part of a multimodal, oncological treatment strategy, i.e., 
in combination with radiotherapy or chemotherapy.69 The effectiveness of hyper-
thermia treatment is related to the temperature achieved during the treatment, as 
well as the length of treatment and cell and tissue characteristics.10,86 To ensure 
that the desired temperature is reached, but not exceeded, the temperature of the 
tumor and surrounding tissues is monitored throughout the hyperthermia proce-
dure.59,60 The majority of hyperthermia treatments are applied using external de-
vices, employing energy transfer to tissues by EM technologies.87,88

A. Local Hyperthermia 

The success of hyperthermia as a treatment modality lies in the localization of the 
heat inside the cancerous tumor without causing thermal damage to surrounding 
normal tissues. In local hyperthermia, the aim is to increase mainly the tumor 
temperature while sparing surrounding normal tissue, using either external or in-
terstitial modalities. Heat is applied to a small area, such as a tumor, using vari-
ous techniques that can deliver energy to heat the tumor. Local hyperthermia 
treatment is a well-established cancer treatment method with a simple basic prin-
ciple, namely, if a rise in temperature to 42°C can be obtained for one hour 
within a cancer tumor, the cancer cells will be destroyed. Primary malignant tu-
mors have poor blood circulation, which makes them more sensitive to changes 
in temperature. 
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Local hyperthermia is performed with superficial applicators (RF, micro-
wave, or ultrasound) of different kinds (waveguide, spiral, current sheet) placed 
on the surface of superficial tumors with a contacting medium (bolus). The re-
sulting specific absorption rate (SAR) distribution is subject to strong physical 
curtailment resulting in a therapeutic depth of only a few centimeters and is even 
further limited in regions with an irregular surface, such as the head and neck 
area, or the supraclavicular region. The penetration depth depends on the fre-
quency and size of the applicator; the clinical range is typically not more than 3–
4 cm. A system for local hyperthermia consisting of a generator, control com-
puter applicator, and a scheme to measure temperature in the tumor is shown in 
Figure 1. The power is increased until the desired temperature is achieved.  

The volume that can be heated depends on the physical characteristics of the 
energy source and on the type of applicator.89 During local hyperthermia, the tu-
mor temperatures are increased to levels that are as high as possible, as long as 
the tolerance limits of the surrounding normal tissues are not exceeded.10  

Candidates for local hyperthermia include chest wall recurrences, superficial 
malignant melanoma lesions, and lymph node metastases of head and neck tu-
mors. Development 
areas in the delivery 
of local hyperther-
mia include the de-
velopment of addi-
tional techniques for 
heating, the expan-
sion of the tumor lo-
cations that can be 
treated adequately, 
and the improve-
ment of existing sys-
tems.90–92  

 
FIGURE 1. A diagram for local hyperthermia. 

1. External Local  
Hyperthermia 

Heating of small ar-
eas (usually up to 50 
cm2) to treat tumors 
in or just below the 
skin (up to 4 cm) 
may be achieved 
quite easily. External 
local hyperthermia 
therapy may be used 
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alone or in combination with radiation therapy for the treatment of patients with 
primary or metastatic cutaneous or subcutaneous superficial tumors (such as su-
perficial recurrent melanoma, chest wall recurrence of breast cancer, and cervical 
lymph node metastases from head and neck cancer). Heat is usually applied using 
high-frequency energy waves generated from a source outside the body (such as 
a microwave or ultrasound source). 

2. Intraluminal Local Hyperthermia 

Intraluminal or endocavitary methods may be used to treat tumors within or near 
body cavities. Endocavitary antennas are inserted in natural openings of hollow 
organs. These include (1) gastrointestinal (esophagus, rectum), (2) gynecological 
(vagina, cervix, and uterus), (3) genitourinary (prostate, bladder), and (4) pulmo-
nary (trachea, bronchus).51 Very localized heating is possible with this technique 
by inserting an endotract electrode into lumens of the human body to deliver en-
ergy and heat the area directly. Various types of electrodes are available depend-
ing on the size of the lumen and the site of the lesion.  

To improve the treatment results of locally advanced oesophageal carcinoma, 
Sugimachi et al.,93–95 Kitamura et al.,96 and Saeki et al.97 used intraluminal RF 
hyperthermia in addition to external irradiation and chemotherapy to treat inop-
erable cases and reported good therapeutic results. Fuwa et al.98 developed an ap-
plicator enabling simultaneous intraluminal radiotherapy and intraluminal hyper-
thermia delivery to improve the treatment results for locally advanced oesophag-
eal carcinoma. Hyperthermia was delivered by a RF current thermotherapy 
instrument for 30 min at an output that raised the esophageal mucosal surface 
temperature to 42–43°C. Intraluminal radiotherapy was delivered to a submuco-
sal depth of 5 mm after the first 15 min of hyperthermia. Four cases out of eight 
achieved complete response, with all demonstrating local control. Partial re-
sponse was obtained in four cases, and three of these patients died of local recur-
rence. There were no significant adverse side effects apart from a fistula in one 
case. These results represent an improvement over previous work99 on treatment 
by an applicator that simultaneously delivered an intraluminal high dose of irid-
ium irradiation and intraluminal RF hyperthermia.  

Recently, Freudenberg et al.100 measured the effect of hyperthermia applied 
through a heatable stent in the esophagus in order to investigate whether this pro-
cedure offers a therapeutic option for tumor treatment. The maximal heating 
temperature tolerated in the esophagi without transmural necrosis was 46.5°C, 
when applied twice for 60 min with a pause of 48 hr. With this procedure, a tu-
mor-damaging temperature of 42.5°C was achieved at a maximum distance of 12 
mm surrounding the stent. 
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3. Interstitial Local Hyperthermia 

Interstitial techniques are used to treat tumors deep within the body, such as brain 
tumors. Many types of interstitial hyperthermia equipment are used. These in-
clude local current field techniques utilizing RF energy (at a frequency of 0.5 
MHz), microwave techniques utilizing small microwave antennas inserted into 
hollow tubings with frequencies of 300–2450 MHz, ferromagnetic seed implants 
for delivering thermal energy to deep seated tumors, hot water tubes, and laser 
fibers. Interstitial heating allows the tumor to be heated to higher temperatures 
than external techniques. Other advantages of this technique include better con-
trol of heat distributions within the tumor as compared with external hyperther-
mia, and the sparing of normal tissues, especially the overlaying skin. On the 
other hand, the disadvantages are invasiveness, difficulty in repeated treatment, 
and limitation of applicable sites. 

Under anesthesia, probes or small needles (thin antennas) are inserted into 
the body to produce localized deposition of EM energy in subcutaneous and 
deep-seated tumors. For treatment regions that are large compared to the field 
penetration depth of the frequency used, the required SAR uniformity throughout 
a tumor volume cannot be achieved with a single antenna, and arrays of antennas 
are then employed.101,102 Imaging techniques, such as ultrasound, may be used to 
make sure the probe is properly positioned within the tumor.  

B. Regional Hyperthermia 

Regional heating is indicated for patients with locally advanced deep-seated tu-
mors such as those in the pelvis or abdomen. The application of regional hyper-
thermia is, however, more complex than local heating, particularly because of the 
wide variation in physical and physiological properties of body tissues. It re-
quires more sophisticated planning, thermometry, and quality assurance. Since 
regional heating techniques apply energy to the adjacent deep-seated tumors in a 
focused manner, energy is also delivered to the adjacent normal tissues. Under 
such conditions, selective heating of tumors is only possible when heat dissipa-
tion by blood flow in normal tissue is greater than that in tumor tissue. Most 
clinical trials on regional hyperthermia have used the approach as an adjunct to 
radiotherapy.60 Locally advanced and/or recurrent tumors of the pelvis are the 
major indications for regional hyperthermia, including rectal carcinoma, cervical 
carcinoma, bladder carcinoma, prostate carcinoma, or soft tissue sarcoma. Some 
of these indications were validated in prospective studies. 

1. Deep Regional Hyperthermia 

Heat delivery to deep-seated tumors is the most difficult problem in applications 
of hyperthermia, and major efforts have been devoted to the development of ex-
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ternal deep-heating equipment. The ideal heating device should be capable of 
raising the whole tumor volume to a therapeutic temperature without overheating 
adjacent normal tissues.  Treatments of deep-seated tumors are difficult because 
EM energy is rapidly absorbed by human tissue.

41

103 External applicators are posi-
tioned around the body cavity or organ to be treated, and EM energy is focused 
on the area to raise its temperature. Deep regional hyperthermia is usually per-
formed using arrays of multiple applicators.104 For example, annular phased-array 
systems delivering EM energy and RF capacitive heating apparatus are examples 
of regional heating devices. This type of system has the advantage that subcuta-
neous fat is not excessively heated, and it is therefore suitable for obese patients. 
However, this method causes systemic symptoms such as tachycardia and mal-
aise, which result from the use of large-sized applicators.41 Model calculations 
show significant improvements in control of power distribution by increasing the 
antenna number with the assumption of optimum adjustment of phases and am-
plitudes.105 The Sigma-60 applicator is a widely spread applicator, which consists 
of four dipole antenna pairs arranged in a ring around the patient.60 The Sigma-
Eye applicator is one of the next generations of commercially available applica-
tors, consisting of three shorter rings, each with four flat dipole-antenna pairs.106

2. Regional Perfusion Hyperthermia 

Regional perfusion techniques can be used to treat cancers in the arms and legs, 
such as melanoma, or cancer in some organs such as the liver or lung. In this 
procedure, some of the patient’s blood is removed, heated, and then pumped 
(perfused) back into the limb or organ. Anticancer drugs are commonly given 
during this treatment. Regional hyperthermia is usually applied by perfusion of a 
limb, organ, or body cavity with heated fluids.107,108

Much experience with hyperthermic chemoperfusion has been gained since 
1970. In contrast to external heating methods, hyperthermic perfusion techniques 
carry the risk of severe and persisting adverse effects (for example, neuropathy 
and amputation of limbs). However, both hyperthermic isolated limb perfusion 
and hyperthermic intraperitoneal perfusion at different temperatures achieve high 
response rates in comparison with historical control groups receiving systemic 
chemotherapy. This success is due to both the homogeneous and well-controlled 
heat application and the much higher (more than tenfold) drug concentrations 
possible with this technique.60  

Hyperthermic isolated limb perfusion has been mostly used as a melphalan-
based induction therapy in advanced stages of nonresectable melanomas and 
soft-tissue sarcomas (limited to one limb). Trials showed further improvement in 
response rates with addition of high doses of tumor necrosis factor, whereas ap-
plication of additional drugs (especially cisplatin) is not beneficial. Because of 
these high response rates, no prospective randomized trials on induction therapy 
with hyperthermic isolated limb perfusion have yet been done.109–111
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3. Other Regional Hyperthermic Techniques 

Other hyperthermia approaches of clinical interest are under investigation for 
prostate cancer,112 preirradiated rectal cancer, and, particularly, use of partial-
body hyperthermia for peritoneal carcinosis (for ovarian cancer) in conjunction 
with chemotherapy (liposomal doxorubicin).60 Continuous hyperthermic 
peritoneal perfusion is another technique used to treat cancers within the 
peritoneal cavity (the space within the abdomen that contains the intestines, 
stomach, and liver), including primary peritoneal mesothelioma and stomach 
cancer. During surgery, heated anticancer drugs flow from a warming device 
through the peritoneal cavity. The peritoneal cavity temperature reaches 41–42°C. 

C. Whole-Body Hyperthermia (WBH) 

Early attempts at WBH date back to the 1890s.113 WBH (to a limit of 42°C) is a 
distinctive and complex pathophysiological condition that has tremendous impact 
on tissue metabolism, blood flow, organ function, and tissue repair. For example, 
the basal metabolic rate of a patient weighing about 70 kg is 85 W at 37°C and 
double that at 42°C; this in itself is enough to raise the body temperature within 
180 min from 37.5°C to 42°C, if thermal isolation is complete.60 WBH has been 
investigated since the 1970s as an adjuvant with conventional chemo- or radio-
therapy for the treatment of various malignant diseases.114 It is used to treat 
metastatic cancer that has spread throughout the body. To ensure that the desired 
temperature is reached, but not exceeded, the temperature of the tumor and sur-
rounding tissue is monitored throughout hyperthermia treatment.  

Three major methods are now available to achieve reproducible, controlled 
WBH, namely, thermal conduction (surface heating), extracorporeal induction 
(blood is pumped out of the patient’s body, heated to 42°C or more, then put 
back in the body while still hot), and radiant or EM induction.115–117 The toler-
ance of liver and brain tissue limits the maximum temperature for using WBH to 
41.8–42.0°C, but this temperature may be maintained for several hours. Heating 
can be accomplished with thermal conduction heat sources such as immersion in 
heated fluids,118 heated air,119 wrapping the patient in heated blankets,120 or using 
thermal chambers (similar to large incubators).  

WBH hyperthermia may also be used to treat AIDS. In a technique called ex-
tracorporeal hyperthermia, the blood is pumped out of the patient’s body, heated 
to 42°C or more, then put back in the body while still hot. Extracorporeal hyper-
thermia treatment of bone followed by its reimplantation may be an optional 
treatment of bone tumors.121

EM techniques are available that use radiant heat, microwave radiation, in-
frared radiation, or combinations of these to induce WBH with steady-state tem-
peratures of 41–42°C. Although the power absorption patterns are nonuniform, 
redistribution of the thermal energy via the circulatory system is rapid. WBH can 
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be combined with chemotherapy to increase tumor cell death without increasing 
bone marrow suppression.122 A newer approach is to increase the temperature to 
~ 40°C for a longer period, which, in combination with cytokines and cytotoxic 
drugs, is expected to lead to a greater therapeutic index than WBH at the maxi-
mum tolerated level.123  

WBH can be applied only to patients in a good health. When combined with 
drugs, the first step must evidently be to demonstrate its safety.10 The toxicities 
associated with WBH may be significant; therefore, careful patient selection and 
supportive care are essential. Sedation or general anesthesia must be used and 
continuous monitoring of vital signs, core body temperature, cardiac function 
[using an electrocardiogram (ECG)], and urine output is necessary. 

D. Extracellular Hyperthermia 

The classical hyperthermia effect is based on well-focused energy absorption tar-
geting the malignant tissue. The treatment temperature has been considered as 
the main technical parameter. There are discussions about the mechanism and 
control of the process because of some doubts about the micromechanisms. The 
main idea of the extracellular hyperthermia (or electrohyperthermia, oncother-
mia) is to heat up the targeted tissue by means of electric field, keeping the en-
ergy absorption within the extracellular liquid.124 Extracellular hyperthermia is 
devoted to enhancing the efficiency of conventional hyperthermia by additional, 
nonequilibrium thermal effects with the aim of suppressing the existing disad-
vantages of the classical thermal treatments.  Although this new technique recog-
nizes the benefits of increased tissue temperature and its biological consequences, 
it also argues that nonequilibrium thermal effects are partially responsible for the 
observed clinical deviations from the purely temperature-based treatment the-
ory.49  

Extracellular hyperthermia is based on a capacitively coupled energy transfer 
applied at a frequency that is primarily absorbed in the extracellular matrix due to 
its inability to penetrate the cell membrane.125 Since the energy absorption for 
these effects is more significant than the temperature, it is important to character-
ize the hyperthermia by thermal dose and not by temperature. Thermal dose 
changes many energetic processes in the tissue and in their physiology. Most of 
the desired changes (structural and chemical) involve energy consumption.49

IV. HYPERTHERMIA HEATING SYSTEMS 

Most clinical hyperthermia systems operate by causing a target volume of tissue 
to be exposed to EM fields or ultrasound radiation. A structure is needed that is 
capable of transferring energy into biological tissue and getting the best ap-
proximation of the area to be treated by 3D distribution of SARs. The majority of 
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the hyperthermia treatments are applied using external devices (applicators), em-
ploying energy transfer to the tissue.87,88,126 User needs require that the system be 
effective, safe, and robust. For a heating system to be effective, it must be able to 
produce final time and temperature histories that include a set of tumor tempera-
tures that can be maintained for long enough times to result in clinically effective 
thermal doses without also producing unacceptable normal tissue temperatures.3

A. Techniques 

Facilitated by the enormous progression in computational power, the last decade 
has brought significant advances and innovations in the technology needed to de-
velop RF, microwaves, and ultrasound applicators. Applicators are positioned 
around or near the appropriate region, and energy is focused on the tumor to raise 
its temperature. Currently, hyperthermia systems can be interfaced with magnetic 
resonance image (MRI) systems, allowing noninvasive temperature monitoring 
of the treatment. 

1. Ultrasound 

Sound is vibration. Ultrasound waves involve the propagation of sound waves at 
a frequency of 2–20 MHz through soft tissues. Absorption of ultrasound waves 
results in heating of the medium. In terms of basic physics, ultrasound has the 
best combination of small wavelengths and corresponding attenuation coefficient 
that allow penetration to deep sites with the ability to focus power into regions of 
small size. The primary limitation of such systems is their inability to penetrate 
air and the difficulty in penetrating bone.  

Early ultrasound systems used single-transducer applicators that showed in-
creased tumor temperatures compared with microwave systems. Multiple ele-
ments and frequencies can be used in order to increase the focusing of energy 
while maintaining good penetration depth, thus making SAR shaping by either 
phasing or mechanical scanning clinically feasible for superficial sites.3

Over the years, ultrasound devices capable of improved heating uniformity 
and controlled depth of penetration, mostly by using multiple applicators with 
phasing and power steering, have been designed.127–133  

2. Radiofrequency (RF) 

The initial investigation of the use of RF waves in the body is credited to 
d’Arsonval in 1891, which showed that RF waves that pass through living tissue 
cause an elevation in tissue temperature without causing neuromuscular excita-
tion. These observations eventually led to the development in the early- to mid-
1900s of electrocautery and medical diathermy.134–137 To heat large tumors at 

503 

Begell House Digital Library, http://dl.begellhouse.com Downloaded 2009-4-14 from IP 150.164.47.133 by Universidade Federal de Minas Gerais



R. W. Y. HABASH ET AL. 

depth, RF fields in the range of 10–120 MHz are generally used with wave-
lengths that are long compared to body dimensions and, thus, deposit energy over 
a sizeable region.64 Schematically, a closed-loop circuit is created by placing a 
generator, a large dispersive electrode (ground pad), a patient, and a needle elec-
trode in series. Both the dispersive electrode and needle electrode are active, 
while the patient acts as a resistor. Thus, an alternating electric field is created 
within the tissue of the patient. Given the relatively high electrical resistance of 
tissue in comparison with the metal electrodes, there is marked agitation of the 
ions present in the tumor tissue that immediately surrounds the electrode. This 
ionic agitation creates frictional heating within the body, which can be tightly 
controlled through modulation of the amount of RF energy deposited.138–140 The 
tissue’s resistance to current flow results in thermal lesions. The desiccated and 
coagulated tissue raises the resistance to current flow, impeding effective tissue 
heating and limiting the size of RF-induced lesions. Studies have shown that RF-
induced lesions increase rapidly in size during the initial period of power applica-
tion, and then the rate of increase diminishes rapidly as the resistance rises at the 
electrode-tissue interface and the current flow falls.141,142

3. Microwaves 

One of the more promising hyperthermia techniques is the use of microwaves. 
Microwave hyperthermia has been used on thousands of patients suffering from 
prostate or breast cancer. Microwave-generated heat is used to shrink and/or de-
stroy cancerous tumors. Microwave hyperthermia has generally utilized single-
waveguide microwave antennas working at  434, 915, and 2450 MHz. A hyper-
thermia system includes the antenna and a noncontacting temperature sensor that 
scan a predetermined path over the surface of tissue to be treated. The tempera-
ture sensor senses the temperature of the tissue, and a controller closes a feed-
back loop that adjusts the microwave power applied to the antenna in a manner 
that raises the temperature of the tissue uniformly. Microwave hyperthermia is 
frequently used in conjunction with other cancer therapies, such as radiation 
therapy. It can increase tumor blood flow, thereby helping to oxygenate poorly 
oxygenated malignant cells.  

The early systems have had the heating disadvantage of having lateral SAR 
contours that are significantly smaller than the applicator dimensions, thus caus-
ing underheating problems in early trials when investigators used applicators that 
covered the tumors visually, but heated only their central region. Also, at the fre-
quency of operation, these systems have relatively long wavelengths, limiting 
their ability to focus on tumors. To overcome these limitations, improved an-
tenna-based systems and multiple-applicator systems have been used clinically 
for large tumors, and phasing of such systems is a possibility.3
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B. External RF Applicators 

1. Capacitive Heating 

A useful RF approach that has been used clinically is the capacitivley coupled 
system. This name is due to the applicator shape, which is similar to a two-plate 
capacitor excited by an electric potential between the plates as shown in Figure 2. 
Capacitor-plate applicators are typical electric field (E-type) applicators. These 
applicators are usually operated at either 13.56 or 27.12 MHz, two of the fre-
quencies assigned to industrial, scientific, and medical use (ISM frequencies). 
Capacitive hyperthermia equipment generally consists of an RF generator, an RF 
power meter, an impedance-matching network, a set of electrode applicators, a 
temperature-control system for the applicators, a set of connecting cables, and a 
patient-support assembly. The RF energy is transmitted from the generator via 
coaxial cables to electrodes placed on opposite sides of the body, and the power 
is distributed locally or regionally through interaction of electric fields produced 
between the parallel-opposed electrodes. The adjustable positions of the elec-
trodes permit heating at different angles and treatment sites. 

RF-capacitive devices are convenient to apply to various anatomical sites. 
Tissues can be heated by displacement currents generated between the two ca-
pacitor plates. However, they are not robust in terms of positioning because cur-
rents tend to concentrate around the closer electrode tips when they are nonparal-
lel. Another disadvantage is the excessive heating of subcutaneous fat. This is 
because the electric fields generated are normal to the skin surface and currents 
must pass through the high-resistance low-blood-flow superficial fatty layers,  
causing substantial superficial heating. It has been shown that with a patient with 
subcutaneous fat of more than 1.5–2 cm in thickness, which is difficult to heat 
with this heating modality, their related pain levels are frequently treatment limit-
ing, even when skin precooling is applied .3,143,144  

With multiple-capa-
citor configurations,145 
internal heating patterns 
can be adjusted by 
changing the relative vol-
tages applied to various 
plates. Ring capacitors 
can produce deep internal 
heating without overheat-
ing the surface if a proper 
gap is maintained be-
tween the rings and the 
body surface. A number FIGURE 2. Capacitive applicator for hyperthermia. 
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of researchers indicate the ability of RF-capacitive systems to achieve a good re-
gional deep heating.144,146–158 Results of a seven-institution Japanese trial employ-
ing the Thermotron RF-8 capacitive heating device (Yamamoto Vinyter, Osaka, 
Japan) are noteworthy. Treatment given to 177 patients with deep-seated tumors 
used hyperthermia in combination with radiation therapy alone (96 patients) or 
with radiochemotherapy (81 patients). Maximum intratumor or intracavitary 
temperatures greater than 42°C were obtained in 77% and 74% of the tumors, re-
spectively. Response rates and symptomatic improvement were felt to be higher 
than expected for historical controls treated with radiation therapy or chemother-
apy alone.149

2. Inductive Heating 

Inductive heating by coupled energy transfer from a coil carrying alternating cur-
rent (AC) surrounding a biological object through air is used to achieve deeper 
hyperthermia (for example, more than 5 cm). Magnetic fields in RF induction 
heating can penetrate tissues, such as subcutaneous fat, without excessive heating. 
Such magnetic fields induce eddy currents inside the tissues. Since the induced E 
fields are parallel to the tissue interface, heating is maximized in muscle rather 
than in fat. However, the heating pattern is generally toroidal in shape, with a 
null at the center of the coil.  

The simplest inductive applicator is a single coaxial current loop.160 Since the 
coaxial current loop produces eddy-current-type E fields that circulate around the 
axis of the loop, heating in the center of the body is minimal. In general, induc-
tive applicators seem not to couple as strongly to the body as capacitive applica-
tors, and relatively high currents are usually needed to get adequate heating. Sub-

sequent use of these devices shows that 
they still heat a large amount of normal 
tissues. These applicators are usually op-
erated at ISM frequencies of 13.56, 27.12, 
and 40 MHz, with the depth of penetra-
tion typically being a few centimeters. 

FIGURE 3. Inductive applicator for hy-
perthermia. 

Induction hyperthermia equipment 
generally consists of an RF power gen-
erator, an RF power meter, an imped-
ance-matching network, one or more in-
duction coil applicators, a set of connect-
ing cables, and a patient-support as-
sembly. An inductive applicator for 
hyperthermia is shown in Figure 3. A pair 
of cylindrical ferrite cores is used for the 
applicator. The distance between the pair 
of ferrite cores is adjustable, depending 
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on the size of the region to be heated. The target is placed between or under the 
pair of ferrite cores. The time-varying magnetic field penetrating the body causes 
an eddy current. As a result, Joule’s heat is produced. To effectively control the 
heating position vertically or horizontally, conductive plates to shield the mag-
netic field are introduced.161 In response to demand for clinical use, various in-
ductive heating applicator systems have been developed and used in the long his-
tory of hyperthermia.156,159–163

3. Capacitive and Inductive Heating 

A heating system combining a pair of capacitivley coupled electrodes and induc-
tion-aperture-type applicators is also called a hybrid heating system. Figure 4 
shows schematically the inductive heating system. In this case, the currents pro-
duced by the electrodes and applicators are substantially additive in the central 
region of the phantom, but are substantially opposed in the superficial regions 
beneath the apertures of the applicators.164

C. External Radiative EM Devices 

One of the major problems of high-frequency EM devices is the limited depth of 
penetration due to the EM principle of skin depth. Only tumors located 2–3 cm 
from the skin surface can, therefore, be heated with conventional surface applica-
tors.165 Different types of antennas can be used as applicators, including wave-
guides and horns,166–169 and microstrip patches.170–173 To attain deeper localized 
heating, metal-plate lens applicators are used. These applicators can converge 
microwave energy in a lossy medium, such as human muscle, of up to 6 cm .174

 
FIGURE 4. Capacitive and inductive heating system.
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1. Single Applicators 

Early hyperthermia trials were conducted with single-aperture devices having no 
ability to steer or focus energy other than shifting patient position relative to the 
applicator. These trials included 27 MHz ridged waveguide,166 82 MHz helix,175 
70 MHz coaxial TEM applicator,167–169 and 27 to 70 MHz evanescent-mode 
waveguide excited below the cutoff frequency by entering a resonant circuit 
(lumped capacity and inductance) with a wave impedance build-up band-pass fil-
ter for the operating frequency.126,176 Most of the microwave equipment includes 
a water bolus for surface cooling. Low-profile, light-weight microstrip applica-
tors, which are easier to use clinically, are also used. The type of applicator se-
lected depends on the production of sufficient thermal field distributions at dif-
ferent depths of the tumor in a variety of anatomical sites. Single-element appli-
cators can safely deliver optimum thermal doses to relatively small superficial 
tumors. Over the years, several types of applicators for external local hyperther-
mia have been investigated by many researchers based on the principle of a di-
electric filled waveguide or horn antenna.177–185  

2. Multielement Array Applicators 

To increase the value of the SAR at depth relative to the surface SAR in hyper-
thermia therapy, we must geometrically focus energy deposition from multiple E 
fields generated by an array of applicators.186 A basic array for external deep 
heating will likely consist of an annular ring of radiating apertures. The parame-
ters of interest are the external E field within an array at the surface of the pa-
tient’s body, the SAR pattern within the target volume, and the radiation leakage 
levels of the scattered fields around the applicator. 

Several different RF electrode arrays have been investigated. Manning et 
al.187 examined two arrays of needle electrodes arranged in two planes, with a bi-
polar RF current  between the arrays. In the bipolar system, RF current is passed 
between two electrodes instead of between a single electrode and a ground path, 
so two electrodes heat the tissue instead of one, resulting in a larger ablation zone. 
Other groups investigated different array configurations,188,189 and segmented 
needle electrodes have been suggested to allow for better control of tissue heat-
ing.190  

An array of applicators with variations in phase, frequency, amplitude, and 
orientation of the applied fields can add more dimensions to controlling the heat-
ing patterns during hyperthermia cancer therapy.51 Because of the constructive 
interference of E fields at the intended focus and destructive interference of E 
fields away from the focus, multichannel coherent phased-array applicators can 
theoretically provide deeper tissue penetration and improved localization of the 
absorbed energy in deep-seated tumor regions without overheating the skin and 
superficial healthy tissues, compared to single or incoherent array applicators.  
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When comparing array applicators with a single applicator, array applicators 
provide deeper tissue penetration, reduce undesired heating of normal surround-
ing tissues between the applicator and tumor, and improve local control of the 
tumor temperature distribution. Heat generated by RF devices is delivered re-
gionally across a much larger area. However, a microwave array system requires 
target compression because of the shallow penetration of the higher microwave 
frequencies. RF array applicators surrounding the body are used in attempting to 
heat deep tumors. However, studies in external RF array thermotherapy have 
shown the difficulty of localizing RF energy in malignant tissue deep within the 
human body without damaging superficial healthy tissue due to hot spots. Im-
provements in RF energy deposition are achieved when the RF phased array is 
controlled by an adaptive algorithm to focus the RF energy in the tumor and tu-
mor margins, while the superficial RF fields are nullified. 

Clinically, the use of phased arrays as heating applicators has several advan-
tages. Phased arrays can easily compensate for the effects of inhomogeneities of 
the treatment volume (which includes the tumor and the surrounding tissues). 
The heating pattern can be controlled electronically, thus eliminating the need for 
mechanical movement of the applicator head. This simplifies the machine-patient 
interface and allows for better use of the available power. Also, electronic 
switching can be performed rapidly, thus enabling swift response to changes in 
the tumor environment. However, clinicians cannot always accurately predeter-
mine or manually adjust the optimum settings for output power and phase of each 
antenna to focus heat reliably into deep-seated tumors.186,191 Figure 5 shows how 
hyperthermia treatment is performed, while Figure 6 illustrates the equipment 

 
FIGURE 5. Hyperthermia treatment with RF radiative devices.186
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setup that performs the process of hyperthermia using an array of applicators.  
Two outstanding challenges in EM phased-array hyperthermia are (1) to se-

lectively elevate the temperature in the cancerous tissue without excessively ele-
vating the temperature of the surrounding healthy tissues in the presence of elec-
trical and thermodynamic inhomogeneities, and (2) to react to unexpected 
changes in the patient positioning and physiology (e.g., sudden change in blood 
flow in the tumor) that can significantly impact the quality of the delivered 
treatment.192,193  

Significant research progress has been obtained recently in heating devices 
appropriate for deep hyperthermia including ultrasonic arrays,194–208 RF ar-
rays,105,209–216 and microwave arrays.39,137,191,192,193,217–239  

Petrovich et al.240 have reported the results of a 14-institution trial conducted 
in the United States that employed the annular phased array system for regional 
hyperthermia production in 353 patients with advanced, recurrent, or persistent 
deep-seated tumors. Hyperthermia was used alone or in conjunction with radia-
tion therapy, or chemotherapy, chemotherapy, and radiation therapy in 4%, 12%, 
13%, and 69% of the patients, respectively. Complete responses (10%) and par-
tial responses (17%) were obtained, with the highest complete response rates 
noted in patients receiving radiation therapy in conjunction with hyperthermia 
(12% versus 2%). 

 
FIGURE 6. A minimally invasive system of four coherent EM radiating antennas used to 
heat deep-seated tumors.186
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Better understanding of array applicators is important, not only in the design 
of single antenna in the near-field range (matching, symmetrization, efficiency), 
but also in combining these antennas in an array. The coupling between the an-
tennas is the most essential and critical feature, which has to be as low as possi-
ble in a well-controllable array. Transforming networks are needed to link the 
amplifier system and antennas. A kind of feedback control must be established 
between the amplifier system (for example, single generators) and a patient-
adapted power distribution.60  

D. Interstitial and Intracavitary Devices  

As early as 1976, it was suggested that RF currents applied between groups of 
stainless steel electrodes could be used to induce elevated temperatures in deep-
seated (depth ≥ 3 cm) tumors.241 The application of an alternating voltage of suf-
ficient magnitude across planes comprising multiple pairs of such electrodes is 
capable of generating electrical currents through the tumor, leading to an increase 
of the tissue temperature. The simplicity of the basic concept accounts for in-
creasing acceptance of interstitial probes by hyperthermia research groups, and 
its application to various anatomical tumor-bearing sites.  

Interstitial hyperthermia is an invasive procedure where a single or an array 
of interstitial antennas or electrodes is implanted in accessible tumors that might 
be located in deep or superficial tissues. The invasiveness gives interstitial sys-
tems the clear advantage of being potentially effective (able to concentrate power 
into the tumor), thus potentially maximizing the tumor temperature while mini-
mizing thermal damage to normal tissue. In addition to electrodes, the interstitial 
hyperthermia system includes a generator controlled with an automatic tuning 
system and temperature-limitation system. Temperature measurements must be 
performed at the antennas and between them. In most systems, every single an-
tenna is controlled by its own generator. Dedicated systems have in addition two 
or more segments per antenna or electrode controlled in phase and/or amplitude. 
One limitation of the interstitial heating approach is the inability of the system to 
vary the power deposition along the radial direction, i.e., the direction perpen-
dicular to the electrode length.  

Although often compared to interstitial systems, intracavitary systems are 
really interior versions of superficial systems that, by using the appropriate body 
cavities, minimize both the amount of intervening normal tissue between the ap-
plicator and the tumor (compared with using a superficial system for the same 
tumor) and the amount of tissue trauma (compared with the more invasive inter-
stitial system). Intracavitary systems are quite promising for a few important sites 
such as the prostate and the esophagus. More advanced systems have been devel-
oped recently, including multiple applicators in a segmented, phased-array ultra-
sound system.3

Accurate models of the power deposition patterns of specific applicators and 
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the bioheat response of the tissue to these procedures are continually being de-
veloped and improved on. These models have been important in developing 
treatment strategies and in the implementation of treatment planning.242 Some 
examples of model development specific to interstitial applicator design and 
treatment planning include those for ultrasound,243–249 RF current 
sources,190,221,250–255 and microwave.256,261 Clinically, interstitial hyperthermia has 
been applied for prostate carcinoma, recurrent breast cancer and malignant brain 
tumors.101,102,261–266

The development of partially insulated electrodes is helping significantly to 
reduce the temperatures in surrounding normal tissues, therefore improving the 
therapeutic gain. Multiple electrodes multiplexing also provide added flexibility 
and the means for dynamic control of power deposition during treatments.  

E. Nanotechnology-Based Sources 

The major problem of actually applied hyperthermia treatments is to achieve a 
homogenous heat distribution in the treated tissue. The currently available mo-
dalities of hyperthermia are often limited by their inability to selectively target 
tumor tissue and, hence, they carry a high risk of collateral organ damage or they 
deposit heat in a very localized manner, which can result in undertreatment of a 
tumor. Nanotechnology-based cancer therapy is a special form of interstitial 
thermotherapy with the advantage of selective heat deposition to the tumor cells. 
This new therapy is one of the first applications of nanotechnology in medicine 
and is based on heating of ferric oxide nanoparticles in an AC magnetic field. 
The method is also known as magnetic fluid hyperthermia (MFH) or nanocancer 
therapy. This technique meets the requirement of maximal deposition of heat 
within the targeted region under maximal protection of the surrounding healthy 
tissue at the same time.  

Deep local inductive heating can be achieved by using an implant material, 
which generates heat by its interaction with the magnetic field. However, since 
eddy currents are predominantly induced near the surface of the human body, the 
result is that both the implanted region and the superficial normal tissues are be-
ing heated. Eddy-current absorbers consisting of silicon rubber containing a fine 
carbon powder are therefore used. 

The application of biocompatible magnetic nanoparticles (in the form of fer-
rofluids) for diagnosis and therapeutic purposes is being considered by a growing 
number of biomedical researchers. Applications of this technology in biology and 
medicine include separation of biological materials using magnetically labeled 
beads,267 drug delivery and medicine,45 cell sorting based on the fact that high 
magnetic flux density attracts magnetically labeled cells,268,269 and hyperther-
mia.270–274 For the first time, hyperthermia with magnetic nanoparticles enables 
the physician to select between different treatment temperatures after only a sin-
gle injection of the nanoparticles. The process involved in the magnetic hyper-
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thermia, which is based on the known hypersensibility of tumor cells to heating, 
is related to energy dissipation when a ferromagnetic material is placed in an ex-
ternal alternating magnetic field. The technique consists of the localization of 
magnetic particles or seeds within tumor tissue followed by exposure to an exter-
nally applied magnetic field to cause them to heat.44 If particles are localized into 
the tumor tissues in the bone, it will be easy to heat the tumor because heat 
quenching by the blood flow is ignored and a high hyperthermic effect will be 
expected.274 The success of such an approach depends critically on the ability to 
specifically attach a given particle on a certain type of cells, namely, the ones 
that are to be killed. This is a very complex biochemical, biological, and medical 
subject. Other issues to be resolved (depending on the kind of organs to be 
treated) are transportation to the target, neutralizing the body’s immune system, 
minimizing the mass of magnetic material, and detection of possible accumula-
tion of magnetic material in other organs. 

Magnetically mediated hyperthermia using magnetic particles has been used 
in the treatment of brain tumors, tongue cancers, kidney cancers, malignant 
melanoma, and a hamster osteosarcoma.274 The physician may either choose hy-
perthermia conditions (up to 45°C) to intensify conventional therapies such as 
radiation or chemotherapy, or thermoablation by using higher temperatures up to 
70°C. Clinically, this technique may provide the potential to address many short-
comings of other delivery systems.  

For clinical applications, magnetic materials should present low levels of 
toxicity as well as a high saturation magnetic moment in order to minimize the 
doses required for temperature increase. Currently, magnetite (Fe3O4) is used in 
this process because it presents a high Curie temperature and high saturation 
magnetic moment (90–98 emu/g, or ~ 450–500 emu/cm3), and has shown the 
lowest toxicity index in preclinical tests. On the other hand, it should be carefully 
investigated whether long-term deposits of magnetite affects patient health, that 
is, acute and/or chronic toxicity by excess absorption of Fe ions.275

V. HYPERTHERMIA COMBINED WITH OTHER MODALITIES 

Hyperthermia has been used for the treatment of resistant tumors of many kinds, 
but still with unsatisfactory results. Hyperthermia can be used by itself, and re-
sults in shrinkage and sometimes complete eradication of tumors. However, these 
results may not last, and the tumors can regrow. Most tumor sites are unreachable 
with the present interstitial, superficial, and regional hyperthermia techniques 
alone. Furthermore, for the limited number of sites that are heatable, dosimetric 
studies indicate that the temperature distributions reached are highly inhomoge-
neous and that it is almost impossible to obtain the protocol temperature 
goals.242,276–280 Accordingly, the most beneficial contribution of hyperthermia for 
oncological treatments will be based on enhancing the effectiveness of other 
treatment modalities (including radiotherapy, chemotherapy, radiochemotherapy, 
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gene therapy, and immune therapy).  
The biological rationale for hyperthermia applied in combination with radio-

therapy or chemotherapy is well established and appears promising; in particular, 
the sensitivity of hypoxic cells to heating makes hyperthermia an ideal adjunct to 
standard radiotherapy.281 Hyperthermia produces direct injury by damaging the 
entire cellular machinery, including nucleic acids, the cytoskeleton, and cell 
membranes. Radiotherapy and many chemotherapeutic agents have similar 
mechanisms of action. There are reports of synergistic effects of regional or 
WBH for cancer treatments that include radiotherapy, bleomycin, mitomycin C, 
Adriamycin, 5-flurourical, cisplatin, and carboplatin.282

Falk and Issels59 conducted an extensive review on the state of the art of hy-
perthermia in the year 2000 describing the effect of hyperthermia combined with 
radiotherapy, chemotherapy, or both. All the considered studies but two show a 
statistically significant higher (up to a doubling) tumor control and/or cure rate 
for the combined treatment modality. The positive results of most of the studies 
explain the renewed enthusiasm in hyperthermia, which is reflected in the grow-
ing number of institutes interested in the application of hyperthermia.57,69,283

A. Hyperthermia and Radiation 

The synergistic effects of hyperthermia combined with radiation have been in-
vestigated and reported to yield higher complete and durable responses than ra-
diation alone in superficial tumors. Several mechanisms are responsible for the 
supra-additive effect of the combination of radiotherapy and hyperthermia. The 
additive effect comes from the sensitivity of cells in the hypoxic, low pH areas, 
and the cells in the S-phase, which are both relatively radioresistant.4 Hyperther-
mia may cause an increased blood flow, which may result in an improvement in 
tissue oxygenation, which then results in a temporally increased radiosensitiv-
ity.284 Clinical data and experiments in vivo show hyperthermia at mild tempera-
tures, easily achievable with the use of presently available clinical hyperthermia 
devices, increases perfusion in the tumor region, leading to a higher oxygen con-
centration. Higher perfusion can increase drug delivery and reoxygenation. Most 
human tumors have increased blood flow both under hyperthermia and hours 
later. Only a few cases of human tumors have shown vascular breakdown.285,286

Biologically, hyperthermia has two different types of interactions with radia-
tion. First, heat has a radiosensitizing effect. This is most prominent with simul-
taneous application, but is of the same magnitude in both tumor and normal tis-
sue, and will not improve the therapeutic ratio unless the tumor is heated to a 
higher temperature than the normal tissue. Second, hyperthermia exhibits a direct 
cytotoxic effect, and a moderate heat treatment alone can almost selectively de-
stroy tumor cells in a nutritionally deprived chronically hypoxic and acidic envi-
ronment. Because such cells are the most radioresistant, a smaller radiation dose 
is needed to control the remaining more radiosensitive cells. Clinically, heating 
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of superficial tumors (such as breast tumors, neck nodes, and malignant mela-
noma) has confirmed the biological rationale for using hyperthermia as an adju-
vant to radiotherapy.287

Combined hyperthermia and radiation offers potential clinical advantages for 
treatment of tumors. Importantly, the synergy between radiation and heat is 
highly dependent on the order of application and highest when given simultane-
ously. It has been reported by many clinical trials that hyperthermia therapy has 
been shown to substantially improve local control of cancer, tumor clinical re-
sponse, and survival rates when added to radiation treatments. It yields consider-
able therapeutic gain compared to radiation alone in treating various cancerous 
tumors.54,56,149,154,159,186,278,287–305 However, not all studies have shown increased 
survival in patients receiving the combined treatments.2,59,60,306  

A disadvantage intrinsically associated with hyperthermia is that one heat 
treatment can cause a transient resistance against a subsequent treatment (ther-
motolerance). In radiotherapy, a standard treatment regimen consists of a six 
week course of radiation doses. If one would like to apply hyperthermia with 
each of these radiation treatments, this thermotolerance would certainly nega-
tively interfere with the effectiveness of the treatment. Therefore, the mecha-
nisms underlying thermotolerance are being extensively explored to find ways to 
minimize its development.  

B. Hyperthermia and Chemotherapy 

In clinical practice, it is difficult to deliver therapeutic amounts of infused che-
motherapy to solid tumors deep in the body without incurring toxic effects in 
healthy body organs. Limited amounts of free chemotherapy infused into the 
bloodstream reach the tumor due to damaged vasculature in the vicinity of the 
tumor and also due to tumor cell pressure that blocks the chemotherapy from 
passing through the cell membrane. A number of clinical studies have established 
that elevated cell tissue temperature, induced by EM  energy absorption, signifi-
cantly enhances the effectiveness of chemotherapy in the treatment of malignant 
tumors in the human body without increasing the infused amount of drug.59,95,307  

For the combination of hyperthermia and chemotherapy, spatial cooperation 
can again explain the additive effects. Drug concentration will be less in the in-
sufficiently perfused tumor regions. When it comes to chemotherapy, there are 
indications that some chemotoxicity can be potentiated by hyperthermia. The im-
portant mechanisms for an interactive effect are increased intracellular drug up-
take, enhanced DNA damage, and higher intratumor drug concentrations, result-
ing from an increase in blood flow. An interactive effect was observed for virtu-
ally all cell lines treated at temperatures above 40°C for alkylating agents, 
nitrosureas, and platin analogues, with enhancement ratios depending on tem-
perature and exposure time. The effect of these drugs can be enhanced by a factor 
of between 1.2 and 10, and an extremely high thermal enhancement ratio of 23 
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was even observed for in vitro application of melphalan to drug-resistant cells at 
44°C.308 In combination with chemotherapy, the type of drug, dose, temperature, 
and time of administration all play a role in determining the effect of treatment.  

Improvement of local control by hyperthermia combined with systemic che-
motherapy was observed  by many researchers.309–319 There is insufficient infor-
mation to make conclusions regarding the use of WBH as an adjunct to either ra-
diation or chemotherapy, and inadequate data regarding the use of local hyper-
thermia in conjunction with chemotherapy alone. This practice is based, in part, 
on an initial body of evidence consisting of phase I and II clinical studies de-
scribing the technical feasibility of WBH.318,320–324   

Extensive reviews on the combination of hyperthermia with chemotherapy 
have been published.59,84

C. Hyperthermia and Radiochemotherapy 

Radiochemotherapy is a widely used means of treatment for patients suffering 
from primary, locally advanced, or recurrent rectal cancer. The efficacy of treat-
ment can be enhanced by additional application of regional hyperthermia to this 
conventional therapy regime. Many researchers conducted investigations on the 
effectiveness of hyperthermia combined with radiochemotherapy in the treatment 
of cancer.325–333 An extensive review on the combination of hyperthermia with 
radiochemotherapy was published in 2001.59

D. Hyperthermia and Gene Therapy 

Gene therapy may be defined as the treatment in which genetic material is intro-
duced in a cell to enhance or modify its function. This results in the manufacture 
of protein(s) that are either directly therapeutic or interact with other substances 
to exert a therapeutic effect. In order to treat cancer effectively, the genetic mate-
rial must exert its effect only on tumor or tumor-associated cells, not on normal 
cells, and must not eliminate the body’s immune response that is so critical in 
fighting cancer. In order to achieve these goals, an approach must be developed 
that combines fever-range WBH with a gene that only affects tumor cells spliced 
with additional genetic material designed to cause the suicide gene to be ex-
pressed predominantly in tumor cells. Hyperthermia is expected to help in open-
ing up the pores of tumor blood vessels so that more liposomes reach the tumors 
and deliver their DNA content to tumor cells. It also increases the amount of pro-
tein created by the incorporated DNA and boosts the immune system so that it 
sends specialized cells into the tumors to help kill them.  

Gene-infected cells were found to be more sensitive to hyperthermia.334–336 In 
a murine system, intratumorally injected viral gene therapy encoding for inter-
leukin-12, controlled with a heat-shock promoter and followed by hyperthermia, 

516 

Begell House Digital Library, http://dl.begellhouse.com Downloaded 2009-4-14 from IP 150.164.47.133 by Universidade Federal de Minas Gerais



THERMAL THERAPY, PART 2 

was shown to be feasible and therapeutically effective, with no apparent systemic 
toxicity.337

VI. CHALLENGES AND FUTURE TRENDS 

Hyperthermia is an emerging therapy method in oncology. It has been an effec-
tive modality of cancer treatments, showing significant improvements in clinical 
responses for many patients when used alone or in combination with other treat-
ment methods, such as surgery, chemotherapy, radiation therapy, and gene ther-
apy.49 The clinical exploitation of hyperthermia was and is still hampered by 
various challenges including the high degree of interdependency between physi-
ology and biology, technical and clinical limitations, and standardization. 

A. Biological and Physiological Mechanisms 

An important unresolved factor involves the biological and physiological mecha-
nisms by which hyperthermia works.3 Although hyperthermic cell killing has 
been demonstrated in many in vitro studies, the mechanisms underlying cell 
damage and death have not been fully elucidated. Further work is required to-
ward this end, and information from research studies on the effects of hyperther-
mia on tumors in vivo will be valuable.  

Until the underlying mechanisms by which positive clinical results have been 
obtained are understood and the spatial and temporal distributions of the impor-
tant biological and physiological variables are known, it will remain impossible 
to set precise engineering design goals.3

B. Technical and Clinical Challenges 

Realization of the potential of hyperthermia as a primary therapy depends on the 
advances that must be made in EM heating techniques and thermometry.34 Many 
major technical advances have been applied in biological and clinical research; 
the resulting improvements in instrumentation have helped in conducting more 
accurate and elegant experiments to produce heat for hyperthermia treatment in-
cluding ultrasound, RF, and microwaves. Table 1 summarizes the major hyper-
thermia methods currently in use. 

Recent developments in hyperthermia have expanded the treatment options 
of patients with certain types of cancer. The effectiveness of hyperthermia treat-
ment is related to the temperature achieved during the treatment, as well as the 
length of treatment and cell and tissue characteristics. Control of the heating 
process as a major part of hyperthermia should be improved to ensure that in-
creased temperature levels can be properly maintained, delivered, and localized 
within the tumor region. Effective control of the heating distribution will require 
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TABLE 1 
Summary of Major Hyperthermia Methods 

Heating  
approach Advantages Disadvantages Application 

Ultrasound  Good focus performance 
in tissue. No hot spots in 
fatty tissues. Heating pos-
sible to 5–10 cm depth 
with single transducer and 
up to 20 cm depth with 
multiple transducers. 
Temperature is easy to 
measure and control. 

Heating area is small. No pene-
tration of tissue-air interfaces. 

Treatment of superfi-
cial and deep re-
gional tumors. Ex-
amples include sur-
face lesions, head 
and neck, and le-
sions in extremities. 

Radiofrequency  Simple instrumentation. 
No shield required. Large 
treatment area. Electrodes 
not limited in size, and in-
sulation can be accom-
plished. 

Difficult to control electric fields. 
Only areas where fat is thin can 
be treated by capacitive sys-
tems. 

Treatment for large 
and superficial tu-
mors in neck, limb, 
chest, brain, abdo-
men, etc. 

Microwaves Technology very ad-
vanced. Heating large 
volumes is possible. Spe-
cialized antennas for heat-
ing from body cavities 
have been developed. 
Multiple applicators, co-
herent or incoherent, can 
be used. Can avoid hot 
spots in the fatty tissues. 

Heating not localized at depth; 
limited penetration at high fre-
quencies. Temperature meas-
urement is difficult and ther-
mometry requires noninteract-
ing probes. Possible health 
effects on personnel. Shielding 
of treatment rooms required, 
except at medically reserved 
frequencies (915 MHz).  

For treatment of su-
perficial tumors in 
breast, limb, pros-
tate, and brain. 

(1) sophisticated controllers that can properly steer the power deposition to 
achieve close-to-optimal temperatures and (2) accurate measurements of the spa-
tial and temporal distributions of temperature during the treatment. The theoreti-
cal evaluations and simulations of such controllers have been evolving from sin-
gle-point controllers to more complex model-based controllers192,193,338 that can 
control the complete temperature in the heated region. 

The lack of needed engineering tools can be viewed as a major stumbling 
block to hyperthermia’s effective clinical implementation. Developing clinically 
effective systems will be difficult, however, because it requires solving several 
complex engineering problems for which setting appropriate design and evalua-
tion goals is currently difficult owing to a lack of critical biological, physiologi-
cal, and clinical knowledge, tasks that must be accomplished within a compli-
cated social/political structure.3  

Although hyperthermia requires investments in equipment and personnel 
training, the same is true for other types of cancer treatment modalities. Another 
obstacle in the acceptance of hyperthermia may be the lack of public awareness 
of this technique. Most of the clinical studies are on the application of hyper-
thermia in combination with radiotherapy. However, the experimental and the 
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few clinical results with combined chemotherapy and hyperthermia indicate that 
this combination is also worth further testing.10 Carefully conducted phase III tri-
als with rigorous quality assurance must employ prospective thermal dosimetry 
to validate the role of hyperthermia in multimodality therapy.68

C. Standardization 

A number of challenges must be overcome before hyperthermia can be consid-
ered a standard treatment for cancer.2,10,60,68 Hyperthermia suffers from a lack of 
dosing and treatment standardization and scientific consensus about its effects on 
malignant and healthy tissues. In order that hyperthermia will gain widespread 
approval and clinical use, the technique requires further research and standardiza-
tion.49 Standardization of equipment between centers must be achieved before 
large-scale trials can be realized.34 Two major factors make standardization of 
hyperthermia treatment difficult. First, there is no clear clinical thermal dose-
effect relationship. This is compounded by the inability to consistently produce a 
uniform pattern of heat distribution throughout the tumor mass. The second ma-
jor issue relates to thermal dosimetry; specifically, the inability to predict or 
measure accurately the temperature throughout the tumor mass and the surround-
ing healthy tissues. Thermal dose formulations that have taken into account both 
the temperature distribution and time at various temperatures have shown good 
correlations with complete response rates276 and duration of local tumor con-
trol.339 These need to be confirmed in future clinical trials.  

D. Future Research 

In conclusion, hyperthermia is not yet a fully developed modality; there are still 
problems with its routine clinical application, and there is still room for further 
technological improvements. We believe that the development of hyperthermia is 
an example of a valuable research program that is clearly important and from 
which physicians and patients will benefit.. 
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