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This paper describes a mathematical  model developed to simulate the physical charac- 
teristics of the human thermal system in the transient state. Physiological parameters, 
such as local metabolic heat  generation rates, local blood flow rates, and rates of sweating, 
must be specified as input data. Automatic  computation of  these parameters will be 
built into the model at  a later date when it is used to study thermal regulation in the 
human. 

Finite-difference techniques have been used to solve the heat conduction equation on a 
Control Data  Corporation 1604 computer. Since numerical techniques were used, it was 
possible to include many more factors in this model than in previous ones. The body 
was divided into 15 geometric regions, which were the head, the thorax, the abdomen, and 
the proximal, medial, and distal segments of the arms and legs. Axial gradients in a 
given segment were neglected. In  each segment, the large arteries and veins were ap- 
proximated by an arterial pool and a venous pool which were distributed radially through- 
out  the segment. Accumulation of heat  in the blood of the large arteries and veins, and 
heat transfer from the large arteries and veins to the surrounding tissue were taken into 
account. The venous streams were collected together at  the heart  before flowing into 
the capillaries of the lungs. Each of the segments was subdivided into 15 radial sections, 
thereby allowing considerable freedom in the assignment of physical properties such as 
thermal conductivity and rate of blood flow to the capillaries. 

The program has been carefully checked for errors, and it is now being used to analyze 
some problems of current interest. 

The synthesis of an adequate mathematical model for the human thermal sys- 
tem must include the following factors: (1) the manner in which heat generated 
by metabolic reactions is distributed throughout the body, (2) conduction of 

* This study was supported by the office of the Surgeon General, U.S. Army, under contract 
no. DA 49-193-MD-2005. 

147 



148 EUGENE H. WISSLER 

heat due to thermal gradients, (3) convection of heat by circulating blood, 
(4) the geometry of the body, (5) the relatively low thermal conductivity of the 
superficial layer of fat and skin, (6) countereurrent heat exchange between large 
arteries and veins, (7) heat loss through the respiratory tract,  (8) sweating, 
(9) shivering, (10) the storage of heat, and (11) the condition of the environ- 
ment, including its temperature, motion relative to the body, and relative 
humidity. Some of these factors, such as the last one, can be measured with 
relative ease. On the other hand, such factors as the local rate of heat genera- 
tion can only be measured in vivo with great difficulty, and their values must 
be deduced from indirect measurements. Indeed, one of the principal uses of 
a mathematical model is to assign reasonable values to those parameters which 
cannot be measured directly in an experiment. 

Early mathematical models, such as those developed by L. W. Eiehna, 
W. F. Ashe, W. B. Bean, and W. B. Shelley (1945) and by W. Machle and 
T. F. Hatch (1947) were based on the "core and shell" concept in which the 
rectal temperature and the mean skin temperature were used as measures of the 
deep and superficial temperatures, respectively. Since the amount of in- 
formation built into these models is relatively small, the formulas are simple 
and easy to use, but  they fail in many eases. For instance, D. McK. Kerslake 
and J. L Waddell (1958) have observed that  the relative volumes assigned to 
the core and shell depend on the peripheral circulation, but  these models do 
not consider this explicitly. 

Recent attempts to build more information into the models have involved 
the use of modern computers of both the analog and digital types. In  either 
case, the basic problem has been to solve the transient-state heat conduction 
equation with internal heat generation. C . H .  Wyndham and A. R. Atkins 
(1960) have approximated the human by a series of concentric cylinders. 
Assuming that  the rate of heat transfer between adjacent cylinders is propor- 
tional to the difference between the temperatures of the cylinders leads to a 
set of first-order differential equations which are easily solved on an analog 
computer. The effect of peripheral circulation is implicitly included in the 
model by allowing the effective thermal conductivity to vary as a function 
of temperature. R . J .  Crosbie, J. D. Hardy,  and E. Fessenden (1961) have 
adopted a very similar approach using an infinite slab rather than a cylinder. 
They have built in some of the more important physiological responses to 
thermal stress by allowing the effective thermal conductivity, metabolic rate, 
and rate of vaporization to vary as the mean temperature of the body varies. 
Although these models do include, in a not clearly defined mean manner, some 
of the factors mentioned in the first paragraph, they  do not include the effect 
of regional variations in heat generation rates and blood flow rates. Wyndham 
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and Atkins are currently adapting their model to include regional variations 
by  using a physical system similar to the one discussed below. 

In two previous papers, the author has obtained both steady-state (1961a) 
and transient-state solutions (1961b) for a model based on a representation of 
the human using six cylindrical elements. Two of the elements represent the 
arms; two represent the legs; one represents the trunk; and the sixth represents 
the head. The elements are connected by  the vascular system. Each ele- 
ment is a two-region composite cylinder, w/th the inner region composed of 
tissue, bone, and viscera and the outer region composed of fat and skin. All 
of the factors mentioned in the opening paragraph were explicitly included in 
the analysis, but  such variables as local heat generation rates and local blood 
flow rates were assigned as parameters to be specified in the input data. The 
solution obtained was an analytical one expressed in terms of  an infinite series 
of orthogonal functions, and a high-speed digital computer was used to evaluate 
the temperatures for a particular case. Much of the computation time was 
spent evaluating eigenvalues; and since this had to be repeated whenever a 
physiological variable changed, the program was not a very efficient one for 
studying thermal regulation problems in which physiological parameters were 
varying rapidly. Therefore, it was decided to investigate the  possibility of 
obtaining a more versatile solution by using finite difference techniques. The 
purpose of this paper is to describe the result of this investigation. 

Theory. The physical system on which the equations are based is shown in 
Figure 1. I t  consists of a number of cylindrical elements representing longi- 

Figure 1. A schematic diagram showing the geometric arrangement of the elements and 
~he circulatory system 

tudinal segments of the arms, legs, trunk, and head, Each element, consisting 
of a conglomeration of tissue, bone, fat, and skin, has a vascular system which 
can be divided into thre~ subsystems representing the arteries, the veins, and 
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the capillaries. The heat which is generated in the elements by metabolic 
reactions is either stored in the element, carried away by circulating blood, or 
conducted to the surface where it is transferred to the environment. This is 
simply a statement of the first law of thermodynamics, which can be formulated 
mathematically as the heat conduction equation given below: 

cST, 1 8 ( ~ST,'~ 
(p6'~) 8t = r ~ \k~r 8r ] + h,n~ + Qci(Ta~ - T i )  + 

H ,u (Ta i  - T t )  + H~i(Tv~ - TO,  (1) 

in which 
T~(t, r) = instantaneous temperature of the tissue, bone, or viscera at a 

distance r from the axis of the i th element, 
pt(r) = density of tissue, 
C~(r) = specific heat  of tissue, 
kl(r } = effective thermal conductivity of tissue, 
hint(t, r) = metabolic heat generation per unit volume, 
Qc~(t, r) = product of the mass flow-rate and specific heat of blood entering 

the capillary beds per unit volume, 
Had(t, r) = heat transfer coefficient between the arteries and tissue per 

unit volume, 
Hv~(t, r) = heat transfer coefficient between the veins and tissue per unit 

volume, 
Tat(t)  = temperature of the arterial blood, 
Tvt(t)  = temperature of the venous blood. 

The term on the left-hand side of equation (1) is the rate of accumulation of 
thermal energy per unit volume due to the changing temperature of the tissue 
and capillary blood in the volume. This equals the sum of the five terms on the 
right which represent in order the net rate of conduction of heat into a unit 
volume, the rate of heat generation by metabolic reactions, the net rate at 
which heat is carried into the volume by capillary blood, the rate at which 
heat is transferred from arterial blood to the tissue, and the rate at which heat 
is transferred from venous blood to the tissue. I t  should be observed that  this 
form of the heat conduction equation is applicable only to an axially symmetri- 
cal system in which the longitudinal conduction of heat is negligible. This 
means that  the analysis does not apply to situations in which the subject is 
curled up in a ball in order to conserve heat. I f  the subject is moving so that  
there is a uniform flow of air around each of the elements, the analysis should 
apply. H . H .  Pennes (1948) has shown that  longitudinal conduction in the 
arms is relatively unimportant.  This should be true also in the legs, but 
probably is not true in the head. I t  has been assumed that  there is perfect 
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heat transfer between the blood in the capillaries and the neighboring tissue, 
i.e., the temperature of blood leaving the capillary beds is equal to the tem- 
perature of the neighboring tissue. Because of the small diameter of the 
capillaries this is probably a good approximation, but such a simple condition 
does not prevail in the larger vessels. As a first approximation it has been 
assumed in this paper that the rate of heat transfer from the blood in the large 
vessels to the neighboring tissue is proportional to the difference between the 
blood and tissue temperatures. The proportionality factor has been called Ha 
for the arteries and Hv for the veins. 

Since the temperature of blood in the large vessels changes with time, it is 
necessary to write two more thermal energy balances. In formulating the 
equation for the arteries it has been assumed that the arteries in the ith element 
form a pool having a uniform temperature, Ta~. The rate of accumulation of 
the thermal energy in this reservoir is equal to the sum of the net rate at which 
heat is carried into the pool by flowing blood, the rate at which heat is trans- 
ferred from neighboring tissue to the blood in the pool, and the rate at which 
heat is transferred directly from the venous pool to the arterial pool due to the 
proximity of certain arteries and veins. This equality is expressed mathe- 
matically in the following equation. 

MC" 3T,u f:~ ( )at T = Qai(Ta" - Ta~) + 21rL~ Hat(T ~ - Tat)rdr + 

H a , ( T v , -  Ta,), (2) 
in which 

Tam(t) = temperature of the blood entering the arterial pool, 
Ma~ = mass of the blood contained in the arterial pool of the ith element, 
Ca~ = specific heat of blood, 
Q~(t) = product of the mass flow rate and specific heat for blood entering 

the arterial pool, 
L i = length of the i th  element, 
Ha~ = heat transfer coefficient for direct transfer between large arteries 

and veins. 

The integral is necessary in equation (2) because the tissue temperature is a 
function of r. 

The corresponding equation for the venous pool is 

( f :, = Qv~(Tvn - T~) + 27rL t (Qet + tt~)(T~ - T~)rdr + 

in which 
Qvt(t) = product of mass and specific heat for venous blood flowing into 

the venous pool of the ith element from the nth element. 
4----B.M.B. 
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I t  will be assumed throughout this analysis that  the Ma~'S and Mv~'s are con- 
stants so that  

Q~(t) = Q~i(t) + 2~rL~ ~ Qc~(t, r)rdr. (4) 

The equation for the venous temperature in the abdominal section is slightly 
different than equation (3) because two veins, one from each leg, flow into this 
section. I t  was also necessary to modify the equations for the thoracic section 
since all of the venous streams terminate and the arterial streams originate in 
this section. I t  was assumed that  the temperature of the blood entering the 
pulmonary capillaries is equal to the "cup mixing" mean temperature of the 
venous streams entering the right ventricle. This necessitated a change in 
equation (1) because the temperature of the venous blood entering the pul- 
monary capillaries is different than the temperature of the arterial blood enter- 
ing the more superficial capillaries of the thorax: 

8T1= 1 8 ( ST~ 
(pC)~ 8t r 8r ,k~r"~-r ] + hml + Qc~(T~I - T~) + 

Qc'(T~I - T~) + H~I(Ta~ - Tx) + H~x(Tv~ - T1), (5) 

in which 
Qca(t, r) = product of the mass flow rate and specific heat for arterial blood 

flowing into the capillaries, 
Qc,(t, r ) =  product of the mass flow rate and specific heat for venous blood 

flowing into the pulmonary capillaries. 
Equations (2) and (3) were Mso modified to take cognizance of the fact that  
venous blood flows into the pulmonary capillaries which in turn empty  into 
the arterial pool: 

(Me)a1 ~Tal f ] l  8t = 2~rL1 Qcv(T1 - Tal)rdr + 

21rL 1 Hal(T1 - Tal)rdr + Havl(Tvl - T~I) (6) 

( iC)v l  $Tvl = ~ Q,I,(T,, - T,~) + 
~t 

f. 27rL1 Hv~(T1 - Tvl)rdr + Havl(Tal - Tvl) + qrvl, (7) 

in which 
qr~l(t) = rate at  which heat is transferred from venous blood in the thorax 

to air in the respiratory tract,  
Qvlt(t) = rate at  which venous blood flows from the ith element into the 
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venous pool in the thorax = Qa~(t) for those elements which are con- 
nected to the thoracic segment. 

The total rate of heat loss through the respiratory tract  depends on the 
respiratory rate and the temperature and humidity of the inspired air. In  this 
analysis it was assumed that  the expired air was saturated with water vapor at 
a mean temperature Tr: 

T r ---~ 0.25Tv~head -}- 0 .25Ta_head -~ 0.5Tv_cllest. (8) 

Furthermore, it was assumed that  25 per cent of the heat loss through the 
respiratory tract came from the arterial pool in the head, 25 per cent from the 
venous pool in the head, and 50 per cent from the venous pool in the thorax. 

Before these equations can be solved uniquely, certain constraining condi- 
tions must be specified. Some of these take the form of initial conditions, 
which specify all of the temperatures at the instant the transient begins: 

T~(O, r) = To~(r ) (9) 

To,(o) = To0  (lO) 

= ( 1 1 )  

Also needed are boundary conditions which relate the subject to his environ- 
ment. In  general they  are based on the fact that  the local rate of conduction 
of heat  to the surface through the tissue is equal to the rate of heat transfer 
from the surface to the environment: 

- [k, 3T,] 
-~7"r Jr--a, = H,[T,(t, a,) - Te,], (12) 

in which 

H~ = heat transfer coefficient, 
Tet = effective environmental temperature. 

The heat  transfer coefficient depends on the physical properties of the fluid 
surrounding the element, the velocity of the fluid, the wetness of the surface, 
and the relative humidity of the environment. I f  heat transfer by evaporation 
is important, the effective temperature of the environment will be lower than 
the dry-bulb temperature. In  this paper, the heat transfer coefficient for a 
subject in air has been computed using the equation 

Hi = Hc~ + Hr~ + ~ ~-~ ~(K~F~ + KDf), (13) 

in which 

Hc~ = heat transfer coefficient for convection, 
Hr~ = heat transfer coefficient for radiation, 
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~ = latent heat  of water at T~, 

(dp/dT)~ = rate of change of partial pressure of water with temperature 
at Ti, 

K~ = mass transfer coefficient for convection, 
F~ = wetted fraction of the surface, 
KD~ = mass transfer coefficient for passive diffusion of -water through the 

epidermis. 

A summary of the equations used has been published previously (Wissler, 
1961a). Finally, since each element possesses axial symmetry,  

~r / r=o = O. (14) 

Solution of  the equations. The use of numerical techniques and large, high- 
speed digital computers to solve the heat conduction equation has received 
considerable attention lately. A good description of these techniques is given 
in the recent book by G. E. Forsythe and R. W. Wasow (1960). The principal 
feature of finite-difference techniques is that  they can be used even if the 
physical properties vary with position, and it is for this reason that  they  were 
employed to solve the equations presented in the preceding section. 

Basically, the procedure used consists of subdividing each of the circular 
elements into a number of annular shells and assigning a single characteristic 
temperature to the material in each of the shells. Then the right-hand side 
of equation (1) at a particular value of r can be approximated by a linear 
algebraic equation. Furthermore, no a t tempt  is made to compute the tem- 
peratures of the shells as continuous functions of time. Instead, one employs 
a marching procedure in which the initial temperatures are used to compute 
the temperatures a short interval of time, At, later. These new temperatures 
are then used to compute the temperatures at time, 2At, and so on as long as 
necessary. 

Figure 2 is helpful in visualizing this process. Normally, the temperatures 
in a given element are all specified at t = 0, the row k = 1, by the initial con- 
ditions; and the problem is to devise a procedure for computing temperatures 
in the next row (k = 2), and so forth until the entire table has been completed. 
I t  should be noted tha t  the space and time steps need not all be the same size. 
One can use small space steps near the outside of the cylinder where the 
temperature gradients are the largest and large space steps near the center 
where the temperature gradients are small. Similarly, small time intervals 
can be used at the beginning of the interval when the temperature is changing 
rapidly, and larger time intervals can be used near the end of the transient. 
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In  the development of  the finite-difference equations, we will let T~.kj be 
the temperature existing at the j t h  radial point rj, in the ith element after the 
(/c - 1)th time step, t = t k. The difference equation used to approximate 
equation (1) was obtained by  integrating each term in the equation over an 
annular region ranging from r = rj - ( h / 2 )  to r = rj + (h+/2), in which h_ 

t 

K 

k 

3 
2 h 

t=O I 
I 2 3 4 5 i . . . . .  J 

Figure 2. 

r= 0 r = a  i 

Diagram showing the temporal and spaeial steps used in deriving the finite 
difference equations 

is the space increment to the left of r s and h + is the increment to the right of rj. 
Assuming that  T~. kj is characteristic of the temperature in this interval and 
allowing the physical properties to have one value (subscript - ) to the left of 
rj and another value (subscript + ) to the right of rj, one obtains the following 
equation: 

- h_/4)  h+(rj + h+14) ] 3T,.~s ~ 
h_(rj 2 (pC)k- + 2 (pC)k+ 8t = 
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k4+(rj + h+/2) 8T4.~(s+iI2)  _ ]~4_(rj - h _ / 2 )  8T, .k ,_~l~.~ + 
8r 8r 

.h_ (rj - h_/4 
2 [(Qc4- + Ha4-)(Tai. k - T4.~J) + Hv4-(Tv4.k - T4.kJ)] + 

h+(r~ + h+/4) } 
2 [(Qc4+ + Ha4+)(Ta4.~- T4.~) + Hv~+(T~4.~- T4.~)]~. (15) 

A common factor of 2~r has been cancelled out of each term. Similarly, 
integrating over the interval from r~ - h_/2 to r~ and using equation (12) to 
evaluate [k4_(ST/3r)]r=r ~, one obtains 

8T4.~ ~ 
h _ ( r ~ -  h_/4) (pCh_ 8t = -]c4_(r ~ h_/2)  3T4.u(~_~/~)Sr 

r~H4(T4.~ - Te4) + 

h_(r~ - h_ 
2 /4) [(Qc~ + Hai-)(Ta4.u - T4 .~)  + 

H , t _ ( T v 4 . ~ -  T~.~)]. (16) 

The derivatives appearing in the preceding equations are approximated as 
follows: 

8T4.(k+l/2)s _ T4.(k+l)s-  T4.ki (17) 
8t At 

8Ti.k(j+112) _ T i .k ( j+ l ) -  T,.~j (18) 
3r Ar 

~Ti'k(i-1/2)-- T4"ki- T4"kU-1) (19) 
3r Ar 

Substituting the preceding expressions into equations (15) and (16) and using 
the arithmetic mean of the values of the r ight-hand side at  t imes t~ and t~ + 1 
to approximate the value of the r ight-hand side at t ime (t~ + tk+l)/2, one ob- 
tains a set of equations each having the form 

A~.tT4.(k+lxi-~) + B4,jT4.<k+~)j + C4.iT4.<k+Ixj+l) + 

U4.jTa4.~+I + V4.jT~4.~+I = D4.j, (20) 

in which A4. j, B4, j, C~. j, U4. j, and V~. j are constants determined by the physical 
properties and the mesh size, and D4.j is determined by the temperatures at 
t ime t k. I t  is worth noting tha t  A4, x and C4. ~ are both zero. 

Equat ion (2) was next  approximated in the following way. In  place of the 
derivative on the left-hand side use 

3 T a t ' ( k + l / 2 )  = Ta4"k+l- Ta4'k, (21) 
8t At 
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and in place of the integral containing T~ use 

//a~(r)T~(t~, ~ r)rdr ~ W~, ~.T~, e~, 

in which 

157 

(22) 

The complete set of equations is 

+ U 1 T a +  V1T~ = Di 

+ U~T~ + V2T, = D~ 

+ UsTa + V3Tv = Da 

A j _ 2 T I _ 3  + 
B j - 2 T j - 2  + C j - 2 T ] _ I  

A j - i T , - 2  + B~-lT~_l  + C , _ I T ,  

A ~ T j - 1  + B , T j  

W1T 1 + W2T2 + "'" + W j - 1 T I - 1  + W I T I  

+ UI_sTa + V,_~.Tv = 
D j -  2 

+ u , _  ~ T~ + V,_  ~ T~ = (26) 
D~- i  

+ U j T  a + V , T  v = D ,  

+ U,+IT~, + V,+IT~ = 
Dj+I + E,+ITa, ,  

using a Ganssian elimination procedure. 
displayed below: 

B1Tz + C1T2 

A2T1 + B~T~ + C~T3 

A3Tg. + BaTs + C3T4 

W~ i Ha~(r)rdr" (23) 
d rj - h - / 2  

Substituting the expressions given in equations (22) and (23) into equation (2) 
and again using the mean of the values of the right-hand side at times t k and 
t~ + 1, one obtains an equation having the form 

] 

W~,iT~.(k+I)t + U~. 1Ta~.k+l + Vi. jTv~.k+l = D~. j + E~. ~Ta,n.k+ 1. (24) 
i.--.1 

Similarly, equation (3) can be approximated by an algebraic equation 
having the form 

] 

X,./Tf.(k+l)/ + U L~+ITaLk+I + V LJ+ITvLk+I = 
j = l  

Di. ,+l  + E~. ~+lTv,.k+l. (25) 

Given the temperatures Tam.k+1 and T,~.k+l of the arterial and venous 
blood entering an element, one can compute the tissue temperatures and blood 
temperatures in that  element by solving simultaneously the J equations repre- 
sented by equation (19) together with equations (24) and (25). Because of the 
particularly simple form of equation (20), a solution can be obtained with ease 
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XITI + X2T2 + "'" + X~-~T~-I + X~T~ + U~+~T~ + V~+~T~= 
D~+~ + E~+~T~. 

The subscripts ~ and k + 1 have been dropped to conserve space. To solve 
this set of equations let 

C1 U1 V1 D1 

C~ , U~ , 
b~ = B t  _ A~b~_l u~ = B~ - A~bt_l  

D~ 

q~ = B~ - A i b t _ l  ' 

w~ = W t -- w~_lbi_ 1 

J 

qs = V j + l  -- ~ Wf2t 
~=1 

J 

VI+ 1 = V y +  1 - ~ w|vt  
i=1 

y 

q1+x = D ~ + I -  ~ wtq~ 

This reduces the set of equations 

Tx + b iT2  

T2 + bgTa 

Vt 

v, = B ,  - A~bi_ 1 ' 

(1 < i < J )  

xt = X t  - x t - l b t - 1  

J 

'/~J+2 = U J+2 -- ~ XtUt 
|= 1  

J 

V j+ 2 = V j+ 2 -- ~ X|Vt 
i=1 

J 

q J+2 = D J+2 - ~ xtvt. 
f = l  

(26) to the simpler set given below: 

(27) 

+ UlTa + vlT,~ = ql 

+ u2Ta + v2Tv = qs 

T I - 1  + b j - 1 T $  + 

u 1 - 1 T a  + v j - 1 T v  = q J-1 

T ,  + u1T, ,  + vaT,, = q j  

u ~ + l T a  = v j + l T v  = q J+l + EJ+lTar ,  

u~+2Ta + v j + 2 T v  = q$+9. + E j + 2 T ~ , ,  

(28) 

Now the method of solution in a given element is clear. One solves the last 
two equations for T a and T v, and then computes 

T~ = q~ - u1Ta  - v jT , ,  

T j  = q~ - b jT j+I  - u t T  a - v~T v, j = J - 1 . . . . .  1. (29) 

Finally, we must devise a scheme for computing simultaneously the blood 
temperatures in all of the elements. These temperatures are defined by  pairs 
of equations similar to the last two of equations (28). To see how these 
equations can be solved easily, consider the distal and medial segments of an 
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The equations for these two segments are 

Figure 3. Diagram showing the blood flows into and ou~ of ~wo adjacen~ elements 

~i-1.  l '+ lTa( t -1)  + vt-1.  l '+ lTv( t -1)  = q~'+i + E j '+ ITa(~-2)  (30) 

ut- i .  J'+2Ta(~-i) + v~-i. j,+2Tv(t-i) = qJ'+s + EI'+2Tv~ 

u~. ~+ITa~ + v,. ~+lTvi = qi+1 + E~+lTa(t-1) (31) 

~..1+2Tat -{" vt. J+2Tv~ = q1+~." 

Note that  E j+2 = 0 because there is no venous flow into a distal element. 
Eliminate Ta~ from the second of equations (31) to obtain 

Tv, = gi + S,T,~(,_I), (32) 
in which 

gi = ~ \u~. I+1 us. ~+./ 

I ( E , + , ~  
St  = "~ \u~. J+l/ 

d --~ ?)L y + l  vf ,  y + 2  

u~. J+l u~. ~+~ 

Substituting the expression for Tvl computed in equation (32) into the second 
of equations (30), one obtains 

(u~_l. J'+l - StEI"+I)Ta(i-1) + v t -1 . . '+lTv( i -1)  = q1'+l + StEr (33) 

Since this equation has the same form as the second of equations (31), one can 
obviously obtain another equation of the form 

Y~(t-1) = g~-z + St-~Ta(~-~)" (34) 

In  this way one can work his way back to the thoracic section where all venous 
streams terminate and all arterial streams originate. The last two of equations 
(28) written for the thoracic section have the form 

Ul. jTa l  + v l . . ,Tv l  = q.~ 

u~. ~+~T,~ + v~. ~+~T~,~ = q~+~ + ff_~E~+~.,~Tvn, (35) 
II 
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in which the summation extends over those elements connected to the thoracic 
segment. For each of these segments an equation corresponding to equation 
(34) can be written: 

Tv, ~ = g,~ + SnTal. (36) 

Thus, T a l  and Tvl can be computed using equations (35) and (36), and then 
all of the remaining temperatures can be computed. 

A program was written in Fortran language for performing the previously 
described calculations on the CDC 1604 computer located at The University of 
Texas. Since the numerical procedure used only gives an approximate answer 
and since it is easy to make mechanical mistakes in preparing a program of 
this size, a great deal of effort was devoted to checking the accuracy of the 
results. 

One good test  of the accuracy is to solve a problem for which an analytical 
solution can be obtained and compare the two results. The distal segment of 
an arm or leg can be caused to cool like a section of an infinite homogeneous 
cylinder by  setting the rate of blood flow into the segment equal to some neg- 
ligibly small value (zero leads to division by  zero in the program) and setting 
the metabolic heat generation rate equal to zero. The analytical solution for 
this case is discussed in many books, such as the one by  H. I. Carslaw and 
J.  C. Jaeger (1959). In  the test calculation, a uniform initial temperature of 
37~ and an environmental temperature of 20~ were used. The physical 
properties were such that  the surface temperature of the cylinder fell to about  
24~ during 3,000 seconds of cooling. After 1,000 seconds of cooling, the 
analytical solution gave a surface temperature of 25.57~ while the numerical 
solution gave 25.58~ and after 3,000 seconds of cooling the corresponding 
temperatures were 24.07~ and 24.06~ The mean tissue temperature at 
t = 3,000 seconds computed analytically was 27.81~ while the numerically 
computed temperature of the venous blood leaving the element, which should 
be very close to the mean tissue temperature, was 27.84~ I t  appears that  
the numerical procedure used is sufficiently accurate to produce useful results. 
The above results were obtained using 15 radial points and taking time steps 
of 5 seconds. Under these conditions, computing the temperatures in all 15 
elements of the body requires about  15 minutes of computer time. 

Since it is not convenient to obtain analytical solutions for the heat conduc- 
tion equation applied to a nonhomogeneous cylinder, some other checking pro- 
cedure had to be devised. I t  proved to be fairly convenient (and informative 
since several errors were found in this way) to check the over-all energy bal- 
ances. For instance, in a given element the net rate at  which heat is trans- 
ported into the element by  circulating blood, plus the rate of heat generation 
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by metabolic reactions, minus the rate at which heat is lost to the environment 
must equal the rate of accumulation of heat in the element. It  must also be 
true that the rate at which heat is carried into the arterial pool in an element 
by incoming arterial blood, minus the rate at which it is carried out of the pool 
by arterial blood entering the capillaries or flowing into an adjacent element 
must equal the rate at which heat is transferred from the arterial pool to the 
surrounding tissue plus the rate of accumulation of heat in the arterial pool. 
Making such over-aU checks on the computed results indicated that the pro- 
gram was quite free from error. 

- - - -  FINITE DIFFERENCE SOLUTION 
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Figure 4. Comparison of rectal  temperatures  obtained (1) experimentally,  (2) by  com- 
puta t ion using an analyt ical  solution, and (3) by  computat ion using the firti~e difference 

scheme presented in this paper  

Finally, results computed using the numerical procedure were compared 
with roughly equivalent results computed using the analytical procedure re- 
ported in a previously published paper (Wissler, 1961b). A/though inherent 
differences in the two programs precluded making an exact check, the agree- 
ment as shown in l~igure 4 was acceptable in the sense that the differences 
between corresponding curves could be explained logically. The most striking 
difference is that the central abdominal temperature computed numerically 
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falls much more rapidly during the early resting period than the corresponding 
temperature computed using the analytical procedure. An explanation for 
this can be found by  studying the temperature profiles existing at the beginning 
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of the period of cooling as shown in Figures 5 and 6. One interesting feature 
is that the mean temperature of the abdomen computed numerically is higher 
than the corresponding temperature computed using the earlier analytical 
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Temperature profiles ex~mg at the end of the exercise period as computed 
using the finite difference scheme 
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solution. This is reasonable because the metabolic heat generated in the t runk 
was concentrated in the abdomen in the latest model but was distributed uni- 
formly throughout the entire t runk in the earlier model. Although there is 
not  much heat generation in the thoracic section, the temperature is still 
relatively high. This is due to the very high blood flow rate that  exists in the 
lungs. The pronounced dip in the temperature profile of the thorax occurs in 
the region just outside of the lungs where a capillary blood flow rate of 0.0004 ce 
of blood/cc of tissue-second was used. Since this value is much lower than the 
value of 0.0055 assigned to the subcutaneous region, the temperature of the 
region just outside of the lungs does not rise as rapidly as the temperature of 
the lungs or the subcutaneous tissue. Finally, it should be noted tha t  the 
temperatures of the arms and legs are somewhat lower in the latest model than 
they were in the previous model. This is due to the fact that  the temperature 
of the arterial blood entering these regions is lower in the latest model. I t  seems 
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Figure 7. Two curves which show the influence of heat transfer between the blood in 
large vessels and the surrounding tissue on the rectal temperature during cooling 

reasonable that  this, in turn, can be attributed to the higher blood flow rates 
used in the abdomen and thorax. After all, the amount of heat generated in 
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the entire body during the period of exercise is very nearly the same in the two 
models; and since the abdominal temperature increases more rapidly in the 
latest model than in the previous model, the temperatures of the extremities 
must increase less rapidly. Finally, to return to the original point, one would 
expect the central abdominal temperature computed using the latest model to 
decrease more rapidly during the first part  of the cooling period because the 
abdominal region is at a higher temperature and, therefore, more susceptible 
to heat loss than i t  was when the earlier model was used. This is particularly 
true because the peripheral regions are at  a lower temperature than previously 
and, hence, they serve as heat sinks. 

I t  was found using the earlier model that  allowing heat transfer between 
adjacent large arteries and veins did not affect the rate of heating or cooling 
significantly because of the very large blood flow rates used (Wissler, 1961b). 
In contrast, it was found in this s tudy that  permitting heat transfer between 
the large arteries and veins and the surrounding tissue does have a pronounced 
effect on the rate of heating or cooling. This is illustrated in Figure 7 where 
there are presented two cooling curves, one obtained with no heat transfer 
between the large vessels and tissue and the other obtained with what  was 
evidently too much heat transfer. I t  is hoped that  observations of this kind 
can be used to determine appropriate values for those parameters which cannot 
be measured directly. 

I t  is felt that  this model contains as much information as the currently 
available experimental data warrant. The next task is to s tudy the charac- 
teristics of the model in order to determine what kind of experiments might be 
useful in determining those parameters which cannot be measured directly. 
For example, one can ask whether useful information can be obtained by  the 
measurement of transient temperatures in the brachial veins during periodic 
heating of a distal portion of the arm. I f  the calculations show that  measurable 
variations should exist, then a measurement of the amplitude and phase of the 
variations should prove to be very worth-while. The results of such calcula- 
tions will be reported in future papers. 
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