MAT0234 - Medida e Integração -

IME - segundo semestre 2020

Lista Espaços L^p

- 1. Mostre que o Teorema da Convergência Dominada vale nos espaços L^p , se a função g pertencer a L^p . Sugestão: tente imitar a demonstração dada para o Teorema (p=1).
- 2. se as funções f_n , f g pertencerem a L^{∞} o que acontece com o Teorema da Convergência Dominada? $||f_n f||_{\infty} \to 0$?
- 3. Prove esta versão mais geral do Teorema da Convergência Dominada, refazendo a demonstração do Teorema: Sejam f_n , g_n , f, g funções em L^1 , com $f_n \to f$, $g_n \to g$ qtp e $|f_n| \leq g_n$; $\int g_n d\mu \to \int g d\mu$. Então $\int f_n d\mu \to \int f d\mu$. Sugestão: tente imitar a demonstração dada para o Teorema. Qual hipótese substitui a hipótese de dominação por uma função, do Teorema original? Comente.
- 4. Seja f_n uma sequência de funções em L^1 que converge qtp para $f \in L^1$. Mostre que $f_n \to f$ em $L^1 \iff ||f_n||_1 \to ||f||_1$. Solução: Considere $h_n = |f_n| + |f| |f_n| |f|$ e aplique o Lema de Fatou.
- 5. Se $f \in L^p(X, \mathcal{X}, \mu)$, $1 \leq p < +\infty$ $e \in > 0$ então $\exists \phi$ uma função simples com $||f \phi||_p < \epsilon$. Sugestão: use a sequência de funções simples definida na lista de Funções Mensuráveis. O que acontece no caso de L_{∞} ?
- 6. Se $f \in L^p e$ $g \in L^{\infty}$ então $fg \in L^p e$ $||fg||_p \le ||f||_p ||g||_{\infty}$.
- 7. Seja (X, \mathcal{X}, μ) um espaço de medida finita e f mensurável. Seja $E_n = \{x \in X; (n-1) \le |f(x)| < n \}$ Mostre que $f \in L^p \iff \sum_{n=1}^{\infty} n^p \mu(E_n) < +\infty$.
- 8. Seja (X, \mathcal{X}, μ) um espaço de medida e f mensurável, $f \in L^{p_1} \cap L^{p_2}$, $p_1 < p_2$. Mostre que $f \in L^p \ \forall \ p \in [p_1, p_2]$.
- 9. Seja $f \in L^p(X)$ uma função limitada. Mostre que $f \in L^q(X) \ \forall q \geq p$.
- 10. Desigualdade de Chebyshev: Se $f \in L^p(X)$ então $||f||_p^p \ge c^p \mu(\{|f(x)| \ge c\})$.
- 11. Mostre que $L^{\infty}(X, \mathcal{X}, \mu)$ está contido em $L^{1}(X, \mathcal{X}, \mu) \iff \mu(X) < +\infty$. Sugestão: considere a função f = 1.
- 12. Se $f \in L^{\infty}$ $e \mu(X) = 1$ então $||f||_{+\infty} = \lim_{p \to +\infty} ||f||_p$. Solução: seja $\phi = \sum_{k=1}^n a_k \chi_{E_k}$ simples, com a representação padrão e com máximo em a_1 . Então $(\int |\phi|^p d\mu)^{\frac{1}{p}} = a_1 \left[\sum_{k=1}^n (\frac{a_k}{a_1})^p \mu(E_k)\right]^{\frac{1}{p}}$. Observe para k=1, colocando em evidência a_1 , temos a primeira parcela igual a $\mu(E_1)$, e em todas as outras os coeficientes são potências com base < 1 e expoente p. Quando $p \to +\infty$ as outras parcelas tendem para 0. Tomamos p suficientemente grande de modo que a soma das parcelas com $k \geq 2$ torna-se $< 1 \mu(E_1)$ e assim temos que $||\phi||_p \leq a_1[\mu(E_1) + \sum_{k=2}^n (\frac{a_k}{a_1})^p \mu(E_k)]^{\frac{1}{p}} \leq a_1[\mu(E_1) + 1 \mu(E_1)]^{\frac{1}{p}} = a_1$. Agora aproximamos f por uma função ϕ simples. Lembre que se f limitada, então a sequência ϕ_n da Lista de Funções Mensuráveis converge uniformemente.
- 13. Usando o exercício anterior calcule $\lim_{p\to\infty} ||sen(x)||_p \ para \ Lp[0,1]$. Qual é o $\lim \int_{[0,1]} sen^p(x) \ d\mu$?

14. Seja $X=\mathbb{N}$ e λ a medida em X, com $\lambda(n)=\frac{1}{n^2}$. Mostre que $\lambda(X)<+\infty$. Seja $f(n)=\sqrt{n}$. Mostre que $f\in L^p\Longleftrightarrow 1\leq p<2$. O análogo acontece se X=(0,1) com a medida de Lebesgue e $g(x)=\frac{1}{\sqrt{x}}$.