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Summary of topics

@ 20/10: Introduction & Kinetic Theory
@ 27/10: Lattice Boltzmann & Hands-On
@ 03/11: Dense Fluids & Hands-On
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@ g(r,t): external force per unit mass
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@ 7.: relaxation time (BGK collision model)
@ fo: equilibrium distribution function
@ g(r,t): external force per unit mass

@ equation of state: p = pRT (ideal gas)



of

of of 1
ot

+E =

2
fo= 5&(2%}% T)_3/2 exp [ — (£2R ;) ]

g= folu+7g,pT)

7. relaxation time (BGK collision model)

fo: equilibrium distribution function

g(r,t): external force per unit mass

equation of state: p = pRT (ideal gas)

transport coefficients: © = pRT'7, and A = %cUpRTTC
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7. relaxation time (BGK collision model)

fo: equilibrium distribution function

g(r,t): external force per unit mass

equation of state: p = pRT (ideal gas)

transport coefficients: © = pRT'7, and A = chpRTTC

multiscale modeling approach



PHYSICAL REVIEW E VOLUME 56, NUMBER 6 DECEMBER 1997

Theory of the lattice Boltzmann method: From the Boltzmann equation
to the lattice Boltzmann equation

Xiaoyi He'®" and Li-Shi Luo®™!
ICenter for Nonlinear Studies, MS-B258, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
2Complex Systems Group T-13, MS-B213, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
JICASE, MS 403, NASA Langley Research Center, 6 North Dryden Streei, Building 1298, Hampton, Virginia 23681-0001
(Received 29 April 1997; revised manuscript received 26 August 1997)

@ Design time-marching scheme
@ Introduce discrete velocity space



Part 2:
The Lattice Boltzmann method

@ Time-marching scheme

@ Lattice scheme

@ The Lattice Boltzmann Equation
@ Boundary conditions

@ Hands-on tutorial



Time-marching scheme



The left-hand side of the transport equation is an
exact differential along constant velocity lines

Fr(t),€,t) with i(t) =¢

that is:
d(r(t).&0) _of , of
dt Ot or




The left-hand side of the transport equation is an
exact differential along constant velocity lines

Fr(t),€,t) with i(t) =¢

that is:
df (r(t),€,t)  Of N of
dt ot or

In the LB scheme, the transport equation is
integrated along these constant velocity lines
df (t)

dt - Qg(t)



Integrating over a small time interval 6t we get

flr+ &8t &t +6t) — fr.6.6) = [y (s)ds



Integrating over a small time interval 6t we get

flr+ &8t &t +6t) — fr.6.6) = [y (s)ds

The right-hand side must be approximated
somehow...

1)
[y (s)ds = 61 9, (1)

simple first-order scheme (too crude)



Integrating over a small time interval 6t we get

Flr+ €0t &t +6t) — fr.&.t) = [ 0y (s)ds

The right-hand side must be approximated
somehow...

st

[ 0y (s)ds = [0t + 6t) + 0y (1)

v'second-order scheme (OK!)



... but this leads to an implicit scheme:

ft+6t)— f(t) = (g[ﬂg(t + 6t) + Qq(t)]



... but this leads to an implicit scheme:

ft+6t)— f(t) = (g[ﬂg(t + 6t) + Qq(t)]

Introduce new dynamic variable

(1= 1)~ 2,00



... but this leads to an implicit scheme:

ft+6t)— f(t) = (g[ﬂg(t + 6t) + Qq(t)]

Introduce new dynamic variable
ot



... but this leads to an implicit scheme:

ft+6t)— f(t) = (g[ﬂg(t + 6t) + Qq(t)]

Introduce new dynamic variable

< ot ot
t)y=(1+— t) — —g(t
f)=(1+5-) 10 = 5ot
Then, after a few manipulations,

Flo 460~ (1) =~ (F(1) — g(0)

with the new (dimensionless) relaxation time

T =(1./0t) + 35, (7> 0.50)




The time propagation is conducted as

Flo+t) = F(t) — ~(7(0) — g(0)

g = fo[l + 5t(7' — %) (gR_TU) : g}




The time propagation is conducted as

Flo+t) = F(t) — ~(7(0) — g(0)

g = fo[l + 5t(7' — %) (gR_TU) : g}

In terms of f the flow fields are computed as
p=[mfdg
u= / mé fd¢ + ot
pu = 5 P8

po = [ 4mefig + % pg -



The time propagation is conducted as

f(ra f,t) - Qg(r7 57 t)
(7 -9)

T

f(r+ &0t €t + 60t)

Q

In terms of f the flow fields are computed as
p=[mfdg
u= /mffdﬁ + ot
pu = 9 P8

: = ot
pe = [ m&* fg + = pg-u



Lattice scheme



Basic idea: introduce a discrete velocity space,
f(r,&t) — f(r,eqt) a=0,....M

so that flow-field integrals can be replaced by some
quadrature rule :

p=[mfig
pu= [ méfdg
pe = [ ymé&*fdg



Basic idea: introduce a discrete velocity space,
f(r,&t) — f(r,eq,t) a=0,...,M

so that flow-field integrals can be replaced by some
quadrature rule :

0= /mfd£ A~ %:Waf(r,ea,t)
pu = /mﬁfdf ~ > me, Wof(r,e,,t)

pe = [ m€ fd€ =3 jmleal Waf(r en.t)

e, = nodes, W, = weight factors, M = order



Basic idea: introduce a discrete velocity space,
f(r,&t) — f(r,eq,t) a=0,....M

so that flow-field integrals can be replaced by some
quadrature rule (Chapman-Enskog assumptions):

p=[mfode = S Wafolr.eq.t)
pu = [ méfod§ =3 meq Wafo(r,eq, 1)

pe = [ 3m€ fod€ = 3 gmleal* Wafi(r, ea, 1)

e exact under suitable conditions ...



Basic idea: introduce a discrete velocity space,
f(r,&t) — f(r,eq,t) a=0,...,M

so that flow-field integrals can be replaced by some
quadrature rule (Chapman-Enskog assumptions):

p=[mfdE =S Waf(r,eq1)
pu = /mEde = > me, W,f(r,e,,t)
pe = [ 3m&®fde = 3 Jmles|” Waf(r,eqt)

e exact under suitable conditions ...



Low Mach number approximation

If we assume

(u’/RT) <1 (VRT  sound speed)



If we assume

(w?/RT) <1 (VRT o sound speed)

_pm
h=onrT)2" p|




If we assume

(v®’/RT) <1 (VRT o sound speed)
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If we assume

(u’/RT) <1 (VRT o sound speed)
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If we assume

(v®’/RT) <1 (VRT o sound speed)

eq — p/m € <€'u)2 u? —i,,
7= GrrT)? 1+RT+2(RT)2 “oRT|C

(from now on we consider D = 2)



If we assume

(u’/RT) <1 (VRT o sound speed)

eq — ,O/TI’L 5 (€'U)2 u? _
fq:(27rRT)lz‘)[1+RT+2(RT)2 “oRT|C

(from now on we consider D = 2)

.. evaluation of flow variables will involve integrals
of the form:

[ deude, (€)™ (&) e



If we assume

(w?/RT) <1 (VRT o sound speed)

eq — p/m € -u 1 (€ )2 u2 _ &
/ :W;[1+}3T+2(RT) “oRT|¢

(from now on we consider D = 2)

.. evaluation of flow variables will involve integrals
of the form:

[ e (6aym o x [ g, () e



If we assume

(w?/RT) <1 (VRT o sound speed)

eq — p/m £-u (€ u)? u? &
/ =M[1+RT+2<RT>2 “oRT|¢

(from now on we consider D = 2)

.. evaluation of flow variables will involve integrals
of the form:

[ dg, (&)™ o X [de, (&))" I

Gauss-Hermite quadratures exact if Mg, < (2M — 1)



General M-th order formula (one dimension):
“+o0 g
[ ) e dr S wat(za)

with node points and weight factors determined by

Ly Vi
- M2 [Hy (wa))?

with HM(xa) =0

Wa

Hy(z) = M-th degree Hermite polynomial



General M-th order formula (one dimension):
“+o0 g
[ ) e dr S wat(za)

with node points and weight factors determined by

Ly Vi
- M2 [Hy (wa))?

with Hy(ze) =0

Wa

Hy(z) = M-th degree Hermite polynomial

ex: _ 9. Ta= _1/\/§ +1/\/§
M =2: Wy = JE2 )2



General M-th order formula (one dimension):
“+o0 g
[ ) e dr S wat(za)

with node points and weight factors determined by

Ly Vi
- M2 [Hy (wa))?

with Hy(ze) =0

Wa

Hy(z) = M-th degree Hermite polynomial

e M—g So= —V6/2 0 V62
' L we= VT/6 2ym/3 /T/6



General M-th order formula (one dimension):

[ b e de S wap(xa)

—0o0
with node points and weight factors determined by

L VN
M2 [Hy(za)]?

with HM(xa) =0

Wy
Hy(x) = M-th degree Hermite polynomial

00 2 ,
/ g™ e " dr =) waxl)
J —00 o i

ifm<2M —1



What is the minimum quadrature order needed?

pu = / d§ 7)12 &) (isothermal)

——

pe = [dg Tm@ - FUE  (thermal)



What is the minimum quadrature order needed?

pu = / dg 7)12 &) (isothermal)
pe = [dg Tm@ - FUE  (thermal)

But this is not enough: the relations
/dg méSf = 0:; /dggmg%f =0

must also be preserved with §f = ¢ with ¢(&)
being of second-order in (&;,&,) [He-Luo (1997)].



— —

0= /df ;7/12 (&) - f1¢€) (isothermal)

——

0= [de Tm@-5(8) - F7€  (thermal)



— —

0= /df ;7/12 (&) - f1¢€) (isothermal)

——

0= [de Tm@-5(8) - F7€  (thermal)

Thus, the minimum quadrature order for each
velocity component (&,,&,) is

<2M —1 = My, =3  (isothermal)
<2M -1 = My,=4 (thermal)



— —

0= /df ;7/12 (&) - f1¢€) (isothermal)

——

0= [de Tm@-5(8) - F7€  (thermal)

...and the minimum number of nodes in
two-dimensional velocity space for each case is

3 x 3 =9 nodes (isothermal)
4 x4 =16 nodes (thermal)



Difficulties involved in thermal models:

@ Not really compatible with simple BGK model
(recall: \/uc, # 2.5 for ideal gases)

@ Finer lattices are required

@ Nodal positions depend on temperature
(weight function involves T")

@ Second-order low Mach number approximation
not really adequate (thermal models should
account for high compressibility)

@ Generally more unstable



Isothermal lattice models

From now on we consider only isothermal models

Hydrodynamic moments:

p= / mfd€, pu= / mé& fd€ + O;pg
Equation of state ( ):
p = pRT = pc?
Cs = \/W — VRT (isothermal sound speed)
Transport coefficient:

p=pRTT. = v=p/p=cr (kinematic viscosity)



From now on we consider only isothermal models

Hydrodynamic moments:

. < o
p=[mfde, pu= [mefe+" e



From now on we consider only isothermal models
Hydrodynamic moments:
. < ot
p=[mde, pu= [mEfdE+ 7 pg
Equation of state (ideal gas for now):

p = pRT = pc;
cs =/ (0p/dp)r = VRT (isothermal sound speed)



From now on we consider only isothermal models
Hydrodynamic moments:
p= [mfde, pu= [ mefic+ v
Equation of state (ideal gas for now):
p = pRT = pc;
Cs = \/W — VRT (isothermal sound speed)

Transport coefficient:

p=pRT7, = v=p/p=cr. (kinematic viscosity)



Evaluation of flow variables with 3 x 3 quadrature:

P = ZWafeq(r7ea7t)7 pu = Zmea Wafeq(rvecwt)

(figure: J. Zhang, Microfluid Nanofluid (2011) 10:1-28)



Evaluation of flow variables with 3 x 3 quadrature:

P = ZWafeq(r7ea7t)7 pu = Zmea Wafeq(r7ea7t)

y 7 4 I
L—x

(figure: J. Zhang, Microfluid Nanofluid (2011) 10:1-28)

c=+V3RT:
€y = (Oa O)

(S5} (+C, O)
e = (0,4c¢)
€3 = (—C, 0)
ey = (0, —C)
es = (+c¢, +c)
e = (—c,+c)
€7 = (_Ca _C)
es = (+c¢,—c)

‘lattice speed’



Evaluation of flow variables with 3 x 3 quadrature:

P = ZWOéfeq(r7 eomt)? pa = Zmea Wafeq(r7 €a; t)

6 2 5 .
weights
D
Wy =ws-(2rRT)? - e2rT
_ 4
3 0 1 Wo = g .
Wy =Wy =W =Ws =g
N |
Ws = W = Wr = Ws = 35

(figure: J. Zhang, Microfluid Nanofluid (2011) 10:1-28)



Then:
8
p=> m x W,fr, e,t)
a=0
8

pu= > me, x W,f% r, e,,t)
a=0



Then:
8
p=> m x W,fr, e,t)
a=0
8

pu= > me, x W,f% r, e,,t)
a=0

2
_ a

Wafeq(r,ea,t) _ 1+ SRS (ea : U—)

u?

m RT © 9RT

" 9RT



Then:

8
pu= > meqn(rt)
a=0

3e, - u N 9(e, -u)* 3u?
m c2 2c4 2c2

(D2Q9 lattice equilibrium distribution)



D2Q9 lattice quadrature:

p= 3 m Waf(r,cot)

a=0

pu = 28: meq [Waf (r, e, t)]

a=0



D2Q9 lattice quadrature:

P = 28: m [Wafeq(rv €a; t)]

a=0
8
pu= > me,[W,f r, e,,t)]
a=0
Same formulas apply to the dynamic variables f:

p= Y m [Waf(reu )]

a=0

pa = 28: meg [Waf(l', €a, t)]

a=0



D2Q9 lattice quadrature:

P = 28: m [Wafeq(r7ea7t)]

a=0

pu=3 men [Waf(r,ent)]

a=0

And also to the time-marching variables f:

8 -
P = z::() m [Wozf(ra €q, t)]
ot

8 .
pu = ZO meq [Wo f(r,eq,t)] + 58



New dynamic variables:

na(r,t) = Wof(r,eq,t)  (obs: [W,] = [d€])



New dynamic variables:
na( ) W f(I‘ €a, ) (ObS [ (J - {df])

Time-marching scheme translates to
1
No(r+e,0t, t+0t)—ngy(r, t) = —;(na(r, t)—ga(r,t))

Gal(r, 1) = ne(r,t)[1+3(5t/*) (T — 1) (ea —u) - g



New dynamic variables:
na( ) W f(I‘ €a, ) (ObS [ (J - {df])

Time-marching scheme translates to
1
No(r+e,0t, t+0t)—ngy(r, t) = —;(na(r, t)—ga(r,t))

o, 1) = g2 ([T +3(6t/%) (1 — }) (e —u) - g
Evaluation of flow fields

plr;t) =2 mna(r,?)

p(r, t)u(r, t) = > meq na(r,t) + (9t/2)p(r, t)g(r, )



New dynamic variables:
na(r,t) = Wof(r,eq,t)  (obs: [IWo] = [d€])

Time-marching scheme translates to
1
No(r+e,0t, t+0t)—ngy(r, t) = —;(na(r, t)—ga(r,t))

ga(r,t) = ni(r,t) [1 + 3(675/02)(7' — %)(ea —u) - g}
Evaluation of flow fields

plr;t) =2 mna(r,?)

p(r, t)u(r, t) = > meq na(r,t) + (9t/2)p(r, t)g(r, )

just one step away from the LBE ...



The Lattice Boltzmann Equation



Final step: spatial grid is chosen so that updated
populations are mapped to a new site (instead of

ending up in an arbitrary point)
6

7

(image downloaded from Krishna Kumar's site: kks32-slides.github.io)

2
A
€6 €2 €5
€3 0 €1
er '64 €s
4

8



Final step: spatial grid is chosen so that updated
populations are mapped to a new site (instead of
ending up in an arbitrary point)

6 2 5
A
€6 €2 €5

3 0 1

e
er '4 €s

7 4 8

(image downloaded from Krishna Kumar's site: kks32-slides.github.io)

The grid becomes a regular lattice with parameter

ox =c- -0t =+vV3RT -0t



Final step: spatial grid is chosen so that updated
populations are mapped to a new site (instead of
ending up in an arbitrary point)

6 2 5

\
€6 €2 es

A
Y
wo

-

€3 O €1 >1

e
(ord '4 ()

7 4 3

(image downloaded from Krishna Kumar's site: kks32-slides.github.io)

(spatial labels: ry, functions: ¥y = ¥(ry))
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[
/s

from: C. Korner et. al., J. Stat. Phys, 121, 179-196 (2005)

Not all lattices are physically acceptable

Rotational properties of the Navier-Stokes
equations must be preserved



Na(Tr + €40t t + 0t) = ng(rg, t) + Qo(ry, t)




Na(Tr + €40t t + 0t) = ng(rg, t) + Qo(ry, t)

o Q. (ry,t) = —i(na(rk,t) — a(rs,1))



na(rk + ea5t7t + 5t) - na(rk:a t) + Qa(rka t)

o Q. (ry,t) = —i(na(rk,t) — a(rs,1))
o ga(ri,t) = ng(ry, t)[1+3(6t/?) (T — §)(ea — W) - 8|



Na(Tr + €40t t + 0t) = ng(rg, t) + Qo(ry, t)

o () (I‘k, ) = —71_<na(rk:7t) - goz(rkvt))

o ga(ri,t) = ng(ry, t)[1+3(6t/?) (T — §)(ea — W) - 8|

Wa Pk 3(eq-up) (e, -up)? 3wl
“U(ry, 1) = 1 -
o n(re 1) m [ + c2 + 2c4 202}




Na(Tr + €40t t + 0t) = ng(rg, t) + Qo(ry, t)

Qu(rp. 1) = —i(na(rk,t) ot )

Ga(rr, t) = n(ry, t){l + 3(575/02)(7 — %)(ea —uy) - gk}
3u?

3(e, - 9(e, - uy)?
(e Uk)—l— (eq - ug)

WaPk
e, t) = ——|1
L (rka ) m [ + c2 2¢4

V= %02675(7' — %), p= %CQp, cs =c/V3

2c2

}



Na(Tr + €40t t + 0t) = ng(rg, t) + Qo(ry, t)

Qu(rp. 1) = —i(na(rk,t) ot )

Ga(rr, t) = n(ry, t)[l + 3(5t/02)(7 — %)(ea —uy) - gk}
3u?

3(eq - uy) 4 9(eq - up)?

WaPk
“Urg,t) = ——|1
g (I‘k, ) m [ + 2 94

v = %02575(7' 1), p= %c2p, cs =c/V3

D2Q9-isothermal Lattice Boltzmann model

2c2

}



The formulas can be put in dimensionless form by
employing lattice units:

r=(6z)r, t=(0t)t, u= (dz/dt)u, m = (m)m
(obs: in these units: ¢ =1 and m = 1)
Other quantities:
N = g X (1/62%)
p=px(m/ox®)
g =g x (dz/81%)
v =10 x (d2°/5t)

ete.



In lattice units (dimensionless form, bars omitted):

na(rk+eaat+1) :na(rka )+Q (rk7 )




In lattice units (dimensionless form, bars omitted):

na(rk+eaat+1) :na(rka )+Q (rk7 )

o O, (ry,t) = —i(na(rk,t) — ga(rk,t))



In lattice units (dimensionless form, bars omitted):

na(rk+eaat+1) :na(rka )+Q (rk7 )

o O, (ry,t) = —i(na(rk,t) — ga(rk,t))

o g.(ri,t) = n(ry, t)[l + 3(7 — %)(ea —uy) - gk}



In lattice units (dimensionless form, bars omitted):

na(rk+eaat+1) :na(rka )+Q (rk7 )

o O, (ry,t) = —i(na(rk,t) — ga(rk,t))
o g.(ri,t) = n(ry, t)[l + 3(7 — %)(ea —uy) - gk}

o n(ry,t) = wapr|l+ 3(eq - up) + 3(eq - up)® — 3uj]



In lattice units (dimensionless form, bars omitted):

na(rk + ea>t+ 1) - na(rka ) + Q (rk7 )

Qo (rg, t) = _71_<na(rk:t) — go(r, 1))
Ga(rp, t) = ni(ry, t)[l + 3(7 — %)(ea —uy) - gk}
nd(rg, t) = wapk[l + 3(eq - ug) + 9(ea u;f)2 — %ui}

%(T _ %), p= %p (ideal gas), ¢ = 1/\/§



In lattice units (dimensionless form, bars omitted):

na(rk + ea>t+ 1) - na(rka ) + Q (rk7 )

O (14, 1) — —i(na(rk,t) g t))

Ga(rp, t) = ni(ry, t)[l + 3(7 — %)(ea —uy) - gk}
nd(rg, t) = wapk[l + 3(eq - ug) + 9(ea u;f)2 — %uﬂ
(1 — %), p= %p (ideal gas), ¢ = 1/\/§

> Na Zaj Na€o + 508



Fluid properties (v, cs, po)|r provide natural scales:
time: v/c?, length: v/c,, mass: py (v/c,)’

The dimensionless parameter 7 then sets the
model’s physical time and length scales:

1
A A G T <L Y
C26t ’7'—5
Conflict:

o For most fluids: 107135 < (v/c?) < 107%s
@ In simulations we would like: 0.50 < 7 < 1.00



[T ~20°C] v (107%m?/s) ¢ (m/s) v/c? (s)

Air 15 343 1.275 x 10710
Glycerine 648 1920  1.758 x 10710
Castor Oil 292 1474 1.344 x 10710
Water 1 1482 4.550 x 10713

(https://www.engineeringtoolbox.com)



[T ~20°C] v (107°m?/s) ¢

Air 15
Glycerine 648
Castor Oil 292
Water 1

(m/s)  v/c(s)

343 1.275 x 1071
1920 1.758 x 10710
1474 1.344 x 10710
1482 4.550 x 10713

(https://www.engineeringtoolbox.com)

Example: 7= 0.51 = dt = 100 x (v/c?) , dx = \/3cs6t

Air
Glycerine
Castor Ol
Water

ot
12.8 ns
17.6 ns
13.4 ns
0.05 ns

ox

7.6 um
58.5 um
34.3 um
0.1 gm



[T ~20°C] v (107%m?/s) ¢ (m/s) v/c? (s)

Air 15 343 1.275 x 10710
Glycerine 648 1920 1.758 x 10710
Castor Oil 292 1474 1.344 x 10710
Water 1 1482 4.550 x 10713

(https://www.engineeringtoolbox.com)

Example: 7= 0.51 = dt = 100 x (v/c?) , dx = \/3cs6t

ot ox
Air 128 ns 7.6 um
Glycerine  17.6 ns 58.5 um
Castor Oil 13.4 ns 34.3 um
Water 0.05ns 0.1 gm

e In this introductory course we will simply choose 7 so as to
ensure the stability of our simulations.



Given an initial state {n,(rx,0)} time propagation is carried
out by iterating two simple operations:



Given an initial state {n(rx,0)} time propagation is carried
out by iterating two simple operations:

e Collide: compute collision term and update local
populations (using a buffer array)

ne (v, t) = na(r, t) + Qo (ry, t)

(obs: hydrodynamic moments updated here)



Given an initial state {n(rx,0)} time propagation is carried
out by iterating two simple operations:

e Collide: compute collision term and update local
populations (using a buffer array)

1Tk, 1) = na (e, 1) + Qa(ry, t)
(obs: hydrodynamic moments updated here)

e Stream: copy updated populations to neighboring
sites

Ne(ry +eq, t + 1) = nl (g, t)

(obs: special rules apply at boundary nodes)



*shock waves in a periodic domain

e Collide: compute collision term and update local
populations (using a buffer array)

ne (v, t) = na(rg, t) + Qo (ry, t)

(obs: hydrodynamic moments updated here)

e Stream: copy updated populations to neighboring
sites
No(ry +eq, t + 1) = nl(ry, t)

(obs: special rules apply at boundary nodes)



Boundary conditions



@ Some populations on boundary nodes are left
unspecified after a streaming step
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@ Some populations on boundary nodes are left
unspecified after a streaming step

@ Bottom-up: a more fundamental theory could
tell us how to assign the missing values

@ Top-down: unknown populations are adjusted
so that standard fluid-dynamics boundary
conditions are obtained



[ NA L

~ma N




—




| H
| |

e the simplest way to specify the unknown populations is

through the bounce-back scheme



west wall/inlet: undetermined populations



after colliding; before streaming



populations going into the wall...



. are bounced to their opposite direction



Southwest edge: undetermined populations




after colliding; before streaming




populations going into the wall...



. are bounced to their opposite direction



Single time-step bounce back:
o Completely general
@ Extremely simple to implement
@ No-slip velocity condition holds on average
°

No-slip boundary lies midway between solid and
fluid nodes



On pressure and velocity boundary conditions for the lattice Boltzmann
BGK model
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@ Fix inlet/outlet pressure (density)
o Fix inlet/outlet velocity
o Fix wall velocity



— 1

4 unknowns:
(uy, ny,ns5, ng)

P = Zna
Uz =D Na(€a)s
0= Zna(ea)y



4 unknowns:

5 5 (uy, ny,ns5, ng)
E p= Z Mg
— 1 “
’ PUy = Zna<ea)x
7 a 8 0="> nales)y

ny+ns+ng=mng+ne+ng+ng+neg+nr—p
ny + N5+ Ng — PUy = N3 + Ng + Ny

N5 — Ng = Ny — No + N7 — Ng



4 unknowns:

Uy, N1, N5, N8) v
TN
pP= Zna
— 1 “
’ PUy = Zna<ea)x
i 2| s 0=2_na(ea),y
5711 = 5713

ny+ns+ng=mng+ng+ng+ng+ng+ny—p
N1+ N5+ Ng — PUy = N3 + Ng + Ny
N5 — Ng = Ny — No + N7 — Ng

ny —ni? =ng —n3? < non-equilibrium bounce-back



e
- E=
.

4 unknowns:
(Ug,m1,n5,n8) v

p=2_Ma
PUy = Zna(ea)m
0= Zna(ea)y

(5711 = 5713

Uy, =1 — [n0+n2+n4+2(n3+n6+n7)]/0

2
ny =Nz + 50Uy

1 1
Ny = Ny — 5(712 —ng) + §PUz

1
ng = ng + 5(ng

—ng) + §pu,



5 unknowns:

(nh N2, N5, Ne, ”8)
P = Zna
(0%
0="> nales)s
o
0="> nales)y
(e}




5 unknowns:

(n1, ng, ns, ng, ng)
P = Z Na
(0%
0="> nales)s
[e%
0="> nales)y
(6%

Ny +No+nNs+nNg+nNg=N3+Ng+N7+nNg—p

n1+ns — Ng + nNg = N3 + ny

No + N5 + Ng — Ng = Ny + Ny



5 unknowns:
(ny,n2,ns, ng, ng) v’

p=7> Na
0="> nales)s
0= Zna(ea)y

(5711 = 5713, 5”2 = 6”4

Ny +Nog+MNs+nNg+nNg=N3+nNg+Ny+nNg—p
n1+ns — Nng + nNg = N3 + ny

No + N5 + Ng — Ng = Ny + Ny

ny —ni? =ng —n5?’ « non-equilibrium bounce-back

ny —ng? =ny —ny?! < non-equilibrium bounce-back



5 unknowns:

(n1,ng, ns, ng, ng) v
P= Zna
o
0="> nales)s
[e%
0= Zna(ea)y
(e}

(5711 = 5713, 5”2 = 6”4

n1 = N3
Mo = Ny
Ny = Ny

ng = %[p —ng — 2(n3 + ny + ny)|

ng = %[p — Ng — 2(713 + ng + n7)]
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4 unknowns: (p, ns, ns, ng)
3 equations

P = Z No
Pl = Zna(ea)x
puy = _Nal€a)y



4 unknowns: (p, ns, ns, ng)

5 > 5 3 equations

! p=> MNa
Pl = Zna(ea)x

e e

p+ne+ns+ng=mng+n+n3+ns+ny+ng
Ng + N5 + Ng — Py = Ny + N7 + Ng

N5 — Ng — Py = N3 — N1 + Ny — Ng



4 unknowns: (p, ns, ns, ng)

4 equations v/

6 2 5
T pP= Znoc
PUy = Zn(X(ea)I

3
e e

0ng = ony

p+ne+ns+ng=mng+n+n3+ns+ny+ng
Ng + N5 + Ng — Py = Ny + N7 + Ng
N5 — Ng — Py = N3 — N1 + Ny — Ng

ny —ngl =ny —ny? < non-equilibrium bounce-back



4 unknowns: (p, ns, ns, ng)
4 equations v/

6 2 5

T pP= Znoc
Pl = Zna(ea)x

3
e e

0ng = ony

2
No = Ny + 3PUy
9 — 1 1 1
Ny = Ny — 5(711 — Tlg) + 5 PUy + 6 PUy
9 — 1 1 1
ng = Ng + 5(711 — n3) — 3PUg + 6 PUy

p=[ng+ni+ng+2(ns+ny+ns)l /(1 —uy)



The complete LB algorithm (1 timestep)

e Fix boundary conditions: stream-unspecified
populations are set to their target values

e Collide:
n;ky(rk;t) o n()z(rka ) + Q (rk7 )

(hydrodynamic moments updated, forces computed)

e Stream and bounce-back:
ne(ry +eq,t+ 1) =n. (ry,t) if ry + e, is fluid
ner (v +€h t+ 1) =n’ (v, t) if v + e, is solid

(no conflict with boundary conditions)



e Fix boundary conditions: stream-unspecified
populations are set to their target values



e Fix boundary conditions: stream-unspecified
populations are set to their target values

e Collide:
TLZ(I'k,t) — na<rk'7 ) =+ Q (I'k, )

(hydrodynamic moments updated, forces computed)



e Fix boundary conditions: stream-unspecified
populations are set to their target values

e Collide:
nZ(rk7t> — na<rk'7 ) =+ Q (I'k, )

(hydrodynamic moments updated, forces computed)

e Stream and bounce-back:

ne(rp +eqt+ 1) =n. (ry, t) if ry + e, is fluid
nar (v +€b t+1) = n’ (v, t) if vy + e, is solid

(no conflict with boundary conditions)



Hands-on tutorial



Hands on

LB-lab-0:
program usage

LB-lab-1:
profiling a channel flow

LB-lab-2:
visualizing flow past obstacles



B

) & = &

X. He; L-S. Lou
Theory of the lattice Boltzmann method: From the Boltzmann equation to the
lattice Boltzmann equation. Phys. Rev. E, 56(6), 6811-6817 (1997)

Q. Zou; X. He
On pressure and velocity boundary conditions for the lattice Boltzmann BGK
model. Phys. Fluids. 9 (6), 1591-1598 (1998)

X. Shan; X. He
Discretization of the Velocity Space in the Solution of the Boltzmann Equation.
Phys. Rev. Lett., 80(1), 6811-6817 (1998)

L-S. Lou
Unified Theory of Lattice Boltzmann Models for Nonideal Gases.
Phys. Rev. Lett., 81(8), 1618-1621 (1998)

P. J. Dellar
Bulk and shear viscosities in lattice Boltzmann equations. Phys. Rev. E., 64,
031203 (2001)



X. Shan; H. Chen
Simulation of nonideal gases and liquid-gas phase transitions by the lattice
Boltzmann equation. Phys. Rev. E., 49(4), 2941-2948 (1994)

S. Nekoeian; A. S. Goharrizi; M. Jamialahmadi; S. Jafari; F. Sotoudeh
A novel Shan and Chen type Lattice Boltzmann two phase method to study the

capillary pressure curves of an oil water pair in a porous media. Petroleum, 4,
347-357 (2018)

S. Chen; G. D. Doolen
Lattice Boltzmann Method for Fluid Flow. Annu. Rev. Fluid Mech., 30 (1998)

X. He; G. D. Doolen
Thermodynamic Foundations of Kinetic Theory and Lattice Boltzmann Models
for Multiphase Flows. Journal of Statistical Physics, 107(1-2), 309-328 (2002)

J. Zhang
Lattice Boltzmann method for microfluidics: models and applications. Microfluid
Nanofluid 10:1-28 (2011)



@ S. Succi

The Lattice Boltzmann Equation for Fluid Dynamics and Beyond

@ Q. Chang; J. lwan; D. Alexander
Application of Lattice Boltzmann Method: Thermal Multiphase Fluid Dynamics

[ J. 6. Zhou
Lattice Boltzmann Methods for Shallow Water Flows



	Title page
	Summary of topics
	Review
	The Lattice Boltzmann method
	Time-marching scheme
	Lattice scheme
	The Lattice Boltzmann Equation
	Boundary conditions
	Hands-on tutorial


